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ABSTRACT Personal mobile devices such as smartwatches, smart jewelry, and smart clothes have launched
a new trend in the Internet of Things (IoT) era, namely the Internet of Wearable Things (IoWT). These
wearables are small IoT devices capable of sensing, storing, processing, and exchanging data to assist
users by improving their everyday life tasks through various applications. However, the IoWT has also
brought new challenges for the research community to address such as increasing demand for enhanced
computational power, better communication capabilities, improved security and privacy features, reduced
form factor, minimal weight, and better comfort. Most wearables are battery-powered devices that need
to be recharged – therefore, the limited battery life remains the bottleneck leading to the need to enhance
the energy efficiency of wearables, thus, becoming an active research area. This paper presents a survey
of energy-efficient solutions proposed for diverse IoWT applications by following the systematic literature
review method. The available techniques published from 2010 to 2020 are scrutinized, and the taxonomy
of the available solutions is presented based on the targeted application area. Moreover, a comprehensive
qualitative analysis compares the proposed studies in each application area in terms of their advantages,
disadvantages, and main contributions. Furthermore, a list of the most significant performance parameters
is provided. A more in-depth discussion of the main techniques to enhance wearables’ energy efficiency
is presented by highlighting the trade-offs involved. Finally, some potential future research directions are
highlighted.

INDEX TERMS Wearables, Internet of Wearable Things, energy consumption, wearable applications,
energy efficiency, computing, systematic literature review.

I. INTRODUCTION
The advent of small, inexpensive, and battery-powered com-
puting units such as microprocessors and micro-controllers
have paved the way for developing a wide variety of small
form-factor devices that can be connected between each other
and to the Internet. Such small devices form the basis of
the Internet of Things (IoT) concept [1]. Millions of objects
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obtain a possibility to communicate over and to the Internet
for seamless on-the-fly access and better control. However,
more recently, the concept of smart devices worn and carried
near the body, namely – wearables, has emerged forming the
novel Internet of Wearable Things (IoWT) paradigm [2].

The IoWT or, similarly, the Wearable Internet of Things
(WIoT) [3] is a merge of various smart wearable devices,
as depicted in Fig. 1, including smartwatches, wrist
bands, smart shoes, smart jewelry, smart glasses, adhe-
sive skin patches, etc. Wearables are equipped with various
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FIGURE 1. Forthcoming wearable integration scenario.

sensors, computing, and communication units, thus, enabling
them to sense, process, and exchange various data types
continuously [4].

Another very closely related research area is Wear-
able Body Sensor Networks (WBSNs) [5], [6] also known
as Wireless Body Area Networks (WBANs) [7]. These areas
mainly focus on human health-related applications and thus
have some overlap with WIoT. However, there exists a sub-
tle difference between WBSNs/WBANs and WIoT in the
number of sensors/devices involved. WBSNs or WBANs
usually aim to include a large number of wearable sensor
nodes (up to 50 nodes) connected in the form of a network
cooperating towards a common goal. For instance, multiple
wearable sensor nodes collaborate to monitor an individual’s
overall health. Whereas, WIoT devices are often standalone
ones currently being utilized for a wide range of applica-
tions, including health monitoring, observing human activ-
ities through localization and tracking, and various gaming
and entertainment gadgets [8], [9]. Moreover, wearables also
assist consumers in carrying out their everyday tasks more
conveniently and efficiently employing visual and auditory
stimuli [10], e.g., responding to incoming calls and messages,
being notified of weather updates, and visualizing the timely
vital information and many others [11]–[13]. Thus, broad
adoption of wearables can revolutionize everyday human
tasks and improve the overall quality of life [14], [15].

As of today, the consumers’ interest in wearables prolifer-
ates enormously. The recent survey of the market trends indi-
cates that wearable technology is expected to hit $ 52 billion
by the end of 2020, which is around 27% higher compared
to 2019 [16].

However, the paradigm focus shift from conventional
smartphones towards smart wearables has also brought a
plethora of research challenges to the scientific, research and
industrial communities to be addressed. Besides the increase
and versatility of the application areas, the growing demand
for wearables’ performance also arises. Today, wearables
are still facing numerous limitations in several aspects such
as computational power, communication capabilities, secu-
rity & privacy features, form factor, weight, and comfort
despite others [17], [18]. Still, the major bottleneck lies in

the devices’ limited battery life since wearables are mobile
battery-powered devices according to numerous research
works [19]–[21]. Therefore, the design of energy-efficient
solutions for such devices is of utmost importance to prolong
the wearables’ battery lifetime while meeting the applica-
tion’s performance requirements.

Due to the increasing interest of the consumer market
towards wearable devices, there have been significant con-
tributions from the scientific and research community. Over
the years, several attempts have been made to develop highly
efficient solutions aiming to address the related challenges
and exploit the full potential of wearable technology. Con-
sequently, several survey papers have been published in the
field. Some of them shed some light on wearable computing
evolution as one of the potential solutions to solve the energy
efficiency challenge of wearables.

For instance, work by Seneviratne et al. [8] presented a
survey and classification of different commercially available
wearable devices as per their functionality and wearabil-
ity. It presents a general discussion on wearables’ energy
efficiency enumerating limited strategies, namely battery
advancements, efficient sensing, and energy harvesting. Sim-
ilarly, Rault et al. [22] published a survey of energy-efficient
approaches for wearable sensor networks. However, the focus
is limited to health-related human context recognition appli-
cations. Additionally, Williamson et al. [19] described the
energy challenges for wearable sensing with a focus on the
MiniatureMicro-Electro-Mechanical (MEMS)-based inertial
measurement units. Further, Sun et al. [23] provided a survey
of the enabling communication technologies that can support
wearable devices for current and future applications.

Moreover, some surveys focus on the use of wearables for
a specific application such as health monitoring [24], activity
recognition [25], [26], assisted living [27], mobile crowdsens-
ing [28], smart garments [29], and indoor positioning [30].

In the studies mentioned above, none of the analyzed
papers are explicitly focusing on the energy efficiency aspect
and rather briefly mentioned the challenge in terms of energy
requirements. Furthermore, a statistical analysis of the recent
developments in the research field of energy efficiency in the
IoWT was missing. Therefore, we provide a comprehensive
survey of the state-of-the-art energy efficiency solutions for
wearables following the systematic literature review method-
ology to fill in this gap in the IoWT technology.

The main contributions provided in this paper are:
1) Presenting a taxonomy of the IoWT solutions from

an energy efficiency perspective based on the targeted
application area classifying them into four categories:
healthcare, activity recognition, smart environments,
and general solutions.

2) Providing a qualitative and comparative analysis of
existing studies and presenting their advantages, dis-
advantages, main performance parameters, and major
contributions.

3) Summarizing the main findings about the tech-
niques adopted in the literature to enhance wearables’
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energy efficiency and highlighting the trade-offs
involved.

4) Offering a statistical analysis of the available solutions
in terms of year-wise publications, application areas,
evaluation tools, simulation platforms, and communica-
tion technologies.

5) Identifying the potential challenges and future research
directions concerning energy efficiency in the
IoWT segment.

We achieve the mentioned contributions by answering the
following research questions:
Q1. What is the year-wise research trend related to the

IoWT technology?
Q2. What are the current main application areas for the

IoWT from an energy-efficiency perspective?
Q3. What are the primary performance parameters used

to analyze and compare the performance of proposed
energy-efficiency-related solutions?

Q4. What are the different performance evaluation tools
used in the literature for the IoWT architectures?

Q5. What are the most commonly used wireless communica-
tion technologies in the IoWT?

Q6. What are the different techniques used in the literature
to achieve energy efficiency in the IoWT?

Q7. What are the potential future research directions in the
field of energy efficiency of the IoWT?

The rest of the paper is organized as follows. The research
methodology adopted for this Systematic Literature Review
is explained in Section II. Next, Section III presents a detailed
discussion of currently existing solutions utilized for different
wearables applications (Q: 2,3) as well as statistical analysis
and discussion on state-of-the-art research done in the IoWT
field (Q: 1,2,4,5). Strategies to improve energy efficiency
in wearables are presented in Section IV (Q: 6). Further,
Section V outlines the main challenges, potential future
research directions, and related discussion (Q: 7). Finally,
the summary of the review is drawn in the last section.

II. RESEARCH METHODOLOGY
This section discusses the research methodology adopted to
carry out this systematic literature review, which is based on
the PRISMA guidelines, proposed in [31].

The initial step was to identify the appropriate keywords
and associated synonyms to form a search expression. After
brief analysis of the literature, the following search expres-
sion was formed:

(‘‘energy efficien*’’ OR ‘‘energy conserv*’’
OR ‘‘low power’’)
AND (wearable*)
AND (edge OR cloud OR fog OR approximate OR
IoT OR ‘‘Internet of Things’’ OR performance)

A search was performed with the selected keywords for the
2010 – 2020 period in the two most widely accepted research
databases in Information and Communications Technology

(ICT) domain, namely Scopus [32] and Web of Science [33].
We gathered a set of 2370 potentially relevant publica-
tions (as of July 2020), excluding grey literature, pre-prints,
and duplicates. We then analyzed the titles, keywords, and
abstracts of the publications in order to identify papers and
articles that described at least topics related to the energy
efficiency/consumption in the IoWT field. The following
exclusion criteria were developed to refine the search results
during the paper titles and abstracts’ initial screening:
C1. Not related to wearable networks/computing;
C2. Pure survey and review articles;
C3. Works with no technical content;
C4. Full text not available.
The entire selection process is given in Fig. 2. After apply-

ing the aforementioned refinement procedures, we lowered
the articles number to 50 potentially relevant papers. After
analyzing the selected literature references and citations,
we increased the number to 151 works to be included in
the core and discussion of this systematic review on energy
efficiency in the IoWT.

FIGURE 2. The main steps involved in the executed systematic literature
review process.

III. CLASSIFICATION OF EXISTING APPLICATIONS AND
RELATED TECHNOLOGIES
This section presents a classification, statistical analysis, and
qualitative analysis of the selected papers. The yearly distri-
bution is provided in Fig. 3. It can be observed that there
is an increasing trend in the number of publications in the
IoWT domain while some works from 2019 and 2020 may
still be not indexed or under review.

Based on the targeted application area, the selected papers
were classified into four main categories, namely, health-
care, activity recognition, smart environments, and general
solutions. Fig. 4 presents a statistical analysis of different
application areas in wearable technology. Within each of
them, specific applications are considered to benefit from
IoWT energy-efficient technologies, as depicted in Fig. 5.
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FIGURE 3. Year-wise distribution of number of articles analyzed: Red
Lines correspond to mean and mean +/− standard deviation.

FIGURE 4. Percentage of works targeting each application area in the
analysed literature.

Due to the fact that many consumer wearable devices
historically appeared in the healthcare field for continuous
observation of patients [34], a plethora of research papers fall
under the healthcare category with a share of about 48%.
Here, wearables were mostly used to monitor vital human
signs. The above-mentioned trend can be explained by the
fact that wearables were initially developed for specific

medical purposes such as continuous monitoring of human
heart activity through the Electrocardiography (ECG), hear-
ing devices for the deaf, robotic limbs for the medically
paralyzed patients, etc.

Evidently, wearables have found applications in many
other domains apart from healthcare over time. For instance,
research focusing on human activity recognition contributed
as much as 20%. Activity recognition can be used to mon-
itor and keep track of human physical movements. For
example, wearables have been increasingly used to pro-
vide several user activity-based services such as suggest-
ing areas of interest, activity-based fitness recommendations
through step counting, and tracking the user’s sports activ-
ities [35], [36]. Similarly, wearables have also been used
to provide location-based services [37], gesture recognition
applications [38], and monitoring industrial workers [39].
Therefore, all such studies that utilized wearables for track-
ing user activity are grouped under the activity recognition
category.

Many research studies provided general IoT-based
solutions using wearables that can be adopted in different
application areas. The percentage of such solutions con-
tributes about 22%. Moreover, wearables were also adopted
in some other application areas such as Smart Environments,
with a share of 10%.

Additionally, wearables have found applications in the
Smart Environments domain. For example, the use of wear-
ables has been proposed in smart buildings to monitor
and minimize electricity use by automatically powering off
unnecessary electrical equipment through real-time monitor-
ing of the occupants and environment [40], [41]. Similarly,
some studies utilize wearables to assess and optimize users’
thermal comfort level in a smart environment by continuously
monitoring the temperatures and automatically controlling
the heating/cooling systems [42]. Moreover, wearables can
also be used to assist persons with disabilities enabling them
to carry out their daily activities more independently [43].
Therefore, all such studies that utilize wearables for appli-
cations in the smart environment concept are grouped under
this category.

FIGURE 5. Main application domains of wearables with high energy-efficiency impact.
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Finally, some studies either do not specify the application
area or are claimed to be suitable for multiple application
areas. Such studies are grouped under the general solutions
category, i.e., the researchers were generally elaborating on
the technology, enablers, or strategies without the focus on
any specific application area.

A discussion on each classification category’s specifics
is provided along with qualitative and performance analysis
of papers falling under each category in the following sub-
sections. We provide a summary of the identified solutions
by presenting the aim, advantages, disadvantages, and major
findings for each application area in Tables 1, 3, 5, and 7.
Moreover, we present a comparative evaluation of solutions
in terms of the main considered performance parameters
for each application area including traditional common
Key Performance Indicators (KPIs) parameters, e.g., latency,
energy consumption, and throughput, as well as specific
ones in Tables 2, 4, 6, and 8. Note, the tables only provide
acronyms instead of the terms’ introduction in order to save
space and for better readability. The taxonomy of frequently
used acronyms is given before the references’ list.

It is worth noting that there are some application
area-specific performance parameters present for different
areas. The healthcare area also focuses on Signal Reconstruc-
tion Quality, which is a measure of how accurately a signal
is reconstructed at the gateway node based on the recorded
observations through sensors. Network Lifetime is another
parameter that defines the operating duration of a network
until one of its nodes depletes its energy. Furthermore, the
Signal to Noise Ratio (SNR) provides the relative strength
of the desired signal compared to noise level. Moreover,
Compression Ratio is a parameter that shows the degree to
which a data set is compressed. Finally, Reliability is given
as the probability of failure in the system.

Additionally, the Sensitivity metric is used in the activity
recognition applications providing the ability for a wearable
device to detect any activity by the user instantly. Moreover,
the Video Quality parameter is used in smart environments
for crowdsensing applications. Finally, Execution Time and
Transmission Time are considered in general solutions show-
ing the measure of how fast a wearable device performs
computations and how quickly it can transmit the data to a
gateway node.

The following subsections detail the applications along
with the related performance metrics.

A. HEALTHCARE APPLICATIONS
Recently, the advent of the IoWT technology and advances
in wireless communication have revolutionized the medical
field [68]. Moreover, due to the miniaturization of various
sensors, several smart healthcare devices have been devel-
oped that are easy to use and carry while at the same time
are capable of connecting to the Internet to access the cloud
services. These include wearable devices for continuous
patient monitoring inside hospitals [45] and several small
gadgets that continuously sense and keep track of individuals’

various health indicators during their everyday routine [51].
Wearables under the healthcare applications domain cover
solutions such as heart and respiratory rate monitoring sys-
tems [56], stroke rehabilitation systems [53], and monitoring
heart, muscle, and brain activities through the ECG, Elec-
tromyography (EMG), and Electroencephalography (EEG)
signals [69]. Several wearable devices have been developed
to continuously sense and measure various physiological
parameters of humans and animals, including heart rate,
blood pressure, body temperature, stress hormones among
others [52].

The IoWT concept enables remote patient monitoring sys-
tems where a patient carries one or more wearable devices
that continuously monitor the patient’s health and record
the measurements in online databases to be assessed by the
patient’s doctor. Automated help-seeking solutions are also
proposed for an emergency case, e.g., a call could be initiated
to the caretaker/medical staff [70].

From Table 2, it can be observed that the most commonly
monitored performance parameter is energy consumption,
followed by accuracy, latency, and throughput. The reliability
factor was found to be the least analyzed in the context of
wearables for healthcare. Interestingly, since most healthcare
wearables rely on continuously sensing various physiological
parameters (as explained above), the devices deplete their
energy due to excessive sensing, and redundant data gen-
eration consuming much time. Therefore, strategies such as
compressive sensing and data compression are very efficient
for energy conservation in healthcare applications [71]. These
strategies are discussed in more detail in Section III-E.

B. ACTIVITY RECOGNITION APPLICATIONS
Over the past decades, wearables were increasingly used for
various activity recognition applications [72]–[74]. Due to the
miniaturization of electronic equipment, it became possible to
integrate several sensors in a single wearable device such as
accelerometers, gyroscopes, magnetometers, heart-rate sen-
sors, etc. Those devices are used to sense different human
activities [75]. Many applications rely on the continuous
monitoring and recording of human activities such as fitness
levels based on user’s sports activities, areas of interest by
keeping records of the most visited sites, fall detection, sleep,
and fatigue detection, gesture recognition, emotion recogni-
tion, housekeeping, and so on [76]–[78]. Similarly, wearables
have also been used to track the activities as well as assist
workers in their workplaces for improved performance [79].

Similarly, wearables are also applied in habitat monitor-
ing [80]. For example, monitoring the activities and behaviors
of animals in their natural environment, taking care of pets,
tracking the flying patterns of birds, and so on [81], [82].

The most commonly studied performance parameters in
the activity monitoring domain are energy consumption and
accuracy, according to Table 4. The latency, battery lifetime,
and sensitivity were not so frequently analyzed.

Most activity recognition wearables rely on continu-
ously sensing various subjects’ physical movements through
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TABLE 1. Summary of recent studies in healthcare domain.
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TABLE 2. Main parameters considered by recent studies in healthcare.

different sensors that produce raw data. These recordings
need to be processed and analyzed for feature extraction and
classification to accurately detect activities of interest through
sophisticated Machine Learning (ML) techniques that often
require high computing capabilities [93], [94]. Since wear-
ables are autonomous devices with limited computational
power, various strategies such as task offloading, low power
hardware design, data compression, and approximate com-
puting are very efficient for energy conservation in activity
recognition domain.

C. SMART ENVIRONMENT APPLICATIONS
Recently, wearables have gained much attention for a wide
range of the IoT applications, especially in a broad smart envi-
ronment area where automation is brought close to the users.
Smart environments include smart cities, smart buildings,
smart homes, smart transportation, etc., for enhanced urban
development to improve the overall quality of life [100].
For instance, wearables can be used to optimize heat and
electricity management in smart buildings where heat and
electricity can be managed for optimal user experience and
resource-saving [101].

Furthermore, mobile crowdsensing is another very active
area of research involving wearables, where users generate
mass volumes of data through collectively sensing and shar-
ing gathered data of common interest in smart cities [102].

Similarly, wearables can be applied for controlling home
appliances in smart homes. For example, with wearables, it is
possible to authorize individuals’ access to shared appliances,
such as refrigerators, washing machines, or shared living
areas like hostels and student apartments, etc. Moreover,
it can also help track when an individual used a particular
appliance for a fair distribution of electricity usage among
residents.

Table 6 shows that the most commonly analyzed perfor-
mance parameters, besides latency, throughput, and video
quality, are energy consumption and accuracy.

D. GENERAL SOLUTIONS FOR WEARABLE APPLICATIONS
Wearables are currently being used for a wide range of new
applications apart from the conventional application areas.
Similarly, there is a trend to propose general-purpose solu-
tions that could be tuned for any specific application.

For instance, Nakhkash et al. [103] provided the energy
consumption profiles of various IoT applications running on
resource-constrained wearables and proposed the efficacy of
software approximations for maximizing energy and perfor-
mance gains.

Similarly, the work by Golkarifard et al. [104] proposed
a generic code/task offloading scheme for wearables to uti-
lize computing resources of cloud and nearby devices. The
authors elaborated on a generic task scheduler that dynami-
cally classifies tasks for local and remote processing.
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TABLE 3. Summary of recent studies in activity recognition domain.

TABLE 4. Main parameters considered by recent studies in activity recognition domain.

Song et al. [107] outlined the software engineering sup-
port for appflication developers to utilize shared resources
between mobile devices for optimal performance through
seamless resource sharing to enhance programmer’s produc-
tivity as well as reduce energy consumption and execution
time of devices.

Additionally, some studies propose using low power hard-
ware for the development of future wearables by providing
the overall energy consumption profile, and achieved energy
savings [108], [112].

Furthermore, there has been an increasing trend towards
proposing generic ML techniques for wearables targetting
different applications. For example, Xu et al. [113] proposed

a generic deep learning framework for wearables to achieve
improvements in their performance and energy consumption.
They advocate that since wearables are capable of collecting
a wide spectrum of data, including user activity-related data,
healthcare-related data, fitness tracking, etc., the possibility
to collect such unique data creates countless applications for
deep learning.

For these application areas, energy consumption is
the most commonly considered performance parameter,
followed by latency, throughput, and execution time,
as listed in Table 8. The other parameters such as net-
work lifetime, transmission time, and accuracy are rarely
analyzed.
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TABLE 5. Summary of recent studies providing solutions for Smart Environments domain.

TABLE 6. Main parameters considered by recent studies in Smart Environments domain.

E. SECTION SUMMARY
This subsection provides the main summary and discus-
sion of the statistical data based on the systematic literature
review results.

First, Fig. 6 presents a statistical analysis of the evalu-
ation methods found in the literature to assess the perfor-
mance of newly proposed solutions and compare them with
other already existing solutions. The methods mainly include
performance comparisons through simulations or real-time
experiments on prototypes or a combination of both simula-
tion results and their validation through real-time experiments
on prototypes.

As per the recorded statistics from the relevant papers,
it has been observed that 58% of the studies carried out
experiments on real prototypes only. 23% of the studies were
simulation-based with no real-time validation. Also, 19%
provided performance evaluation of the proposed solutions
through both simulations and validation through real-time
experiments on prototypes.

Inspired by [114], Table 9 highlights some wearable
devices listed in the prototype-oriented papers from the
energy efficiency perspective. It has been observed that most
of the works focused on developing research-based proto-
types to emulate a wearable device for their proposed solu-
tions in the attempt to develop more efficient devices, rather
than experimenting with the wearable devices available on
market. Based on the literature, we have presented the energy
consumption profile (classified as low, medium, high) of
various wearables.

FIGURE 6. Percentage of the evaluation methods used in the analysed
literature.

Here, most of the devices used in healthcare and activity
recognition application areas have a low-medium energy con-
sumption profile, due to their low data rate and low-power
hardware to fulfill the extended operation time require-
ment. At the same time, some solutions in the smart envi-
ronment and general-application categories have medium-
to-high energy-consumption profiles, due to the applica-
tion requirements demanding high data rates and complex
processing.

Furthermore, since a significant share of the scientific
community relies on simulation-based studies, researchers
need to know the existing trend in the choice of simulators
used in the field. For this purpose, we collected statistics
on the different types of network simulators utilized in the
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TABLE 7. Summary of recent studies providing general solutions using wearables.

TABLE 8. Main parameters considered by recent studies providing general solutions for wearable applications.

surveyed literature and their percentages of use. The collected
statistics are presented in Fig. 7. It has been observed that
MATLAB [115] has the highest share (around 50%). Several
other network simulators were also used, namely Network
Simulator 2 [116], OPNET [117], OMNeT++ [118], and

Castalia [119]. All of the listed network simulators were
equally popular among the scientific community, with an
equal share of about 5%. Some researchers used custom-built
simulators, including C++ and Java-based, with a share
of 10%.
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TABLE 9. Examples of wearable devices per application area.

Finally, some of the studies did not report the tool
used for the simulations, which were about 20%. This
high fragmentation would suggest the design of a simula-
tion tool specifically conceived for the IoWT well recog-
nized by the community and favoring the reproducibility of
results.

Although the communication technology choice is affected
by the application area with specific requirements and asso-
ciated constraints, it is significant to highlight that the most
commonly used communication technologies operate on a
short range. The collected statistics regarding the wireless

technology used in different works are presented in Fig. 8.
Bluetooth (including Bluetooth Low Energy (BLE)) is the
most common short-range communication technology in the
field, with a share of about 46%. Zigbee is also used in many
applications with a share of 15%, followed byWi-Fi with 9%.
Furthermore, some proposed solutions use a combination
of these communication technologies. Such techniques are
referred to as hybrid and contribute 9%. The IEEE 802.15.6,
also referred to as WBANs, was found to have a share of 6%.
Finally, solutions that do not specify the communication tech-
nology contribute 15%.
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FIGURE 7. Percentage of the network simulators used in the analysed
literature.

FIGURE 8. Percentage of the communication technologies used in the
analysed literature.

FIGURE 9. Distribution of the energy-efficiency analysis elaboration in
the analyzed papers.

Finally, the paperswere analyzed from the energy-efficiency
focus perspective, i.e., the depth of the discussed systems
evaluation, as shown in Fig. 9. Based on the observa-
tion, it could be concluded that most of the works high-
light the problem of energy efficiency at a theoretical
level without providing any metrics that could be directly
converted into energy-related ones. Interestingly, a signif-
icant portion of researchers (29%) has performed proto-
typing and measurements of the proposed energy-efficient
strategies.

IV. STRATEGIES TO IMPROVE ENERGY EFFICIENCY
OF WEARABLES
In this section, we present a detailed discussion of the main
techniques adopted in the surveyed literature to achieve better
energy efficiency in wearable devices and related communi-
cations networks based on our systematic review.

A. TASK OFFLOADING
Many resource-hungry applications involve computationally
intensive tasks such as deep learning techniques for activity
recognition, etc. Those can shorten the battery life of wear-
able devices and, therefore, computational task offloading,
i.e., when the offloaded tasks are executed remotely in, e.g.,
cloud to reduce the processing and energy consumption of
the mobile device, has been extensively used in the litera-
ture to achieve energy efficiency in wearables [86], [120],
[121]. Conventionally, task offloading relies on using cloud
services to process computationally expensive tasks. How-
ever, it involves substantial transmission delays that some-
times could not meet many IoT applications’ strict latency
requirements [122], [123].

Additionally, the unavailability of stable Internet connec-
tion was another problem for the task offloading [104].
Today’s handheld devices, such as smartphones, are equipped
with more powerful chipsets with multicore processors that
have the potential to be an efficient alternative. There-
fore, utilizing edge computing [124] and fog comput-
ing [125] techniques to use the resources of nearby mobile
and gateway devices has proved to be very beneficial for
resource-constrained wearable devices both in terms of
energy consumption as well as performance [126]–[128].

Another benefit of the computation offloading lies in
the fact that most of the available wearable devices are
equipped with low-power short-range communication tech-
nologies such as BLE that eliminate the dependency on
the actual direct Internet connectivity. However, the down-
side is increased latency [129]. Another complexity lies in
the effective splitting of tasks into locally- and remotely
executable tasks that could run independently on nearby
devices [105]. Therefore, task offloading may work effec-
tively for delay-tolerant applications to minimize energy con-
sumption.Whereas, it might not be a practical option for other
applications with strict latency requirements.

B. DUTY CYCLING
Wearable devices commonly have a computation unit with
storage, a communication unit, and several sensors onboard
for their operation [3]. All these modules contribute signifi-
cantly to the wearable device’s overall energy consumption
if they remain active all the time. However, there are several
applications in which all of these units are not so frequently
used. Some of these are long term environmental monitor-
ing [130], smart agriculture and livestock monitoring [131],
and long term healthcare applications [132], [133], etc.
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Therefore, duty cycling is another approach used to con-
serve energy by powering off all or major hardware modules
of the wearables or making them enter sleep mode when
not in use to minimize the wearable device’s overall energy
consumption. This optimization requires efficiently identify-
ing the duration and timing of the sleep cycles. Otherwise,
it could negatively affect the wearable device’s performance
in terms of execution speed, responsiveness, and latency.
Recently, some studies have also proposed using artificial
intelligence-based techniques such as reinforcement learning
to develop intelligent Medium Access Control (MAC) proto-
cols for IoT devices to efficiently predict wakeup schedules
and adaptive sleep cycle management to save energy [134].

C. ENERGY-AWARE ROUTING
Wearable devices often connect to other wearables or mobile
devices in their surroundings to communicate with the remote
instance (either an edge/fog node or a cloud [135]) through
the gateway node. It is applicable mostly in healthcare appli-
cations where multiple wearable devices coordinate to mon-
itor a patient’s overall health condition by communicating
data to a common data collection point to be further trans-
mitted to a remote medical facility for further processing and
analysis [136]. In this regard, energy-aware routing, i.e., the
use of energy-efficient routing protocols in order to prolong
the resource-constrained devices lifetime., plays an important
role to conserve the energy of network nodes that may oth-
erwise engage in excessive relaying, thus resulting in early
battery depletion [137].

Although energy-aware routing seems to be an efficient
approach, some overheads are involved in determining the
best routing path [138]. Nodes need to be aware of their
neighboring nodes’ remaining energy levels, which also
requires communicating some periodic control messages to
share the available resources. Therefore, it is crucial to
consider trade-offs while designing an energy-aware rout-
ing approach.

D. LOW-POWER HARDWARE DESIGN
With the advancements in electronic equipment design, sev-
eral units supporting the low -power computing, communi-
cation, and sensor s have been developed for future wear-
ables for extended battery life [139], [140], thus, forming a
concept of low-power hardware design. Additionally, sev-
eral prototypes have been developed with low power and
miniaturized Application-Specific Integrated Circuit (ASIC)
hardware design architectures [141]–[143].

In many wireless devices, the communication subunit is
usually considered the most energy-consuming entity [144].
It has been observed that even with duty cycling techniques,
a considerable amount of energy is spent listening to the
wireless channel for incoming messages and minimizing the
chances of collision with other parallel transmissions [145].
Moreover, in highly dynamic and crowded situations where
wearable devices need to sense nearby devices for possible
data exchanges continuously, the radio needs to be in the

listening mode most of the time, leaving little space for duty
cycling [146].

Therefore, some studies propose the use of additional
near-zero power consumption hardware units called the
wakeup radios [147]. These devices are mainly used to listen
for any activity over the wireless channel to wakeup the main
radio unit as and when needed. These devices are found to be
highly energy-efficient. However, the downside is the added
cost and space for integrating these wakeup radios and the
actual communication units on wearable devices.

E. LOW-POWER COMMUNICATIONS
Most of the wearables available today deploy short-range
wireless communication technologies such as BLE [148],
Zigbee [149],Wi-Fi [150] despite others. However, the choice
of communication technology highly depends on the nature
of the application, e.g., if the targeted application requires a
high data rate, then Wi-Fi is an optimal choice. Otherwise,
using high data rates and high power communication proto-
cols can be inefficient since many IoWT applications do not
require it [151].

Generally, low power short-range communications are
specifically designed to decrease the power overheads related
to data transmission, the technology such as BLE and Zig-
bee have emerged to be more effective in energy consump-
tion [129], [152], [153]. Furthermore, the advent of low power
long-range non-cellular technologies such as LoRa [154],
Sigfox [155], and IEEE 802.11ah [156] also appear to
be promising candidates for low power wearable devices.
However, the industrial gap keeps the cellular technologies
(Long-Term Evolution (LTE) for Machine-Type Communi-
cations (LTE-M) and Narrowband IoT (NB-IoT)) in their
infancy from wearable perspective [157].

F. ADAPTIVE TRANSMISSION POWER CONTROL
Data transmission is often considered the most power-
consuming task for wearables, i.e., transmitting a single bit
may roughly require 1,000 times more energy than a single
computation [158]. Wearables deploy onboard transceiver
units that are usually tuned to perform data transmission
with a fixed high transmission power to provide transmission
coverage in a specific area [159]. However, there can be sev-
eral arrangements where a comparatively lower transmission
power can serve the purpose and effectively communicate the
data to a node in close proximity by ineffectively selection the
transmission power based on the surrounding environment
situation, thus, employing the adaptive transmission power
control strategies.

For transmit-intensive applications that involve frequent
data transmissions, this problem becomes even more severe.
Therefore, always using a fixed high power for data trans-
missions is inefficient, and an adaptive transmission power
control mechanism can prove to be very efficient in terms of
energy consumption [160]–[162]. However, the transmitting
node needs to know the receiver’s relative distance to estimate
the amount of transmission power necessary. It may require
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the exchange of some periodic control messages among
nodes if they are not fixed. Recently, some studies have
also proposed the use of lightweight ML-based intelligent
transmission power control schemes, where nodes iteratively
learn their remaining energy levels and adaptively tune their
transmission powers to ensure minimum energy consumption
while also maintaining a minimum packet error rate [163].

G. COMPRESSIVE SENSING
Compressive sensing is a signal acquisition and reconstruc-
tion technique where signal sparsity is exploited to achieve
efficiency in energy consumption, bandwidth, and perfor-
mance [164], [165]. It allows an optimal reconstruction of
the actual signal by using significantly fewer samples than
required by the Nyquist criteria. Several studies have shown
the benefits of compressive sensing in power consumption
optimization [165]–[167]. Many wearable applications, such
as healthcare, etc., also rely on sparse signals. Therefore,
following the Nyquist criteria deploying fixed sensing inter-
vals for sensors embedded in wearables might prove to be
inefficient for application involving sparse signals. However,
the downside is that this technique can only be used for sparse
signals.

In contrast, many other applications would still require
higher sampling rates to reconstruct the desired signal at the
destination effectively. Some studies advocate using adaptive
compressed sensing for applications where the nature of the
generated signal is unknown. For example, several activity
recognition applications might waste energy in fixed peri-
odic sampling when there is no activity. Therefore, in such
cases, adaptive compressed sensing proves to be very effec-
tive where sampling rates are varied dynamically as and
when required to conserve energy [57]. Furthermore, secure
compressive sensing is also used in wireless communications
as a cryptosystem with the measurement matrix as a key to
secure data exchange between communicating entities [168].
Moreover, it has also gained much attention to the cognitive
radio communication field [169].

H. DATA COMPRESSION
Data generation and processing is one of the primary tasks of
any wearable device [170]. However, many sense-intensive
applications such as healthcare and activity recognition
involve continuous sensing and generate vast amounts of data
that might be correlated, redundant, or not efficient in some
scenarios. Therefore, efficient data compression can be ben-
eficial in several ways and improve the overall performance
of the device [171]. Efficiently handling the generated data
and discarding redundant and unnecessary data items reduces
the data size and processing time while enhancing the device
battery life [172].

Hence, data compression techniques have been used in
numerous works to reduce the size of the data set that needs
to be processed and exchanged to achieve energy efficiency
at both computation and communication phases [173]–[175].
Most of the proposed data compression algorithms attempt

to enhance the compression ratio that can be interpreted
as the degree to which the redundant data is removed
while maintaining a particular Root Mean Square Error
(RMSE) and SNR are essential considerations in the IoWT
applications [55].

I. APPROXIMATE COMPUTING
Approximate computing, i.e., approaches when the calcu-
lations do not provide the precise result but rather rely on
‘‘good enough’’ answers quickly, at scale, and with energy
efficiency, has emerged as an efficient technique to boost
performance and energy efficiency in resource-constrained
devices such as wearables [176]. Since many applications
in the IoWT rely on redundant and noisy data, approximate
computing allows trading accuracy for energy and perfor-
mance gains [177]. Several applications involvingML, signal
processing, image processing, big data analytics, etc., may
not require highly accurate results. Instead, findings that are
‘‘good enough’’ might serve the purpose [178].

However, approximate computing’s main challenges lie in
identifying the threshold for the minimum required accu-
racy for any specific application, finding the approximable
tasks in the execution flow, and monitoring the application
results [179]. Therefore, careful tuning of the approximation
techniques can help to achieve optimal performance gains
such as execution speed, execution time, latency, and energy
efficiency.

J. SECURITY PRIMITIVES-RELATED ASPECTS
Most of the modern wearable devices rely on conventional
information security primitives that were not designed with
energy efficiency of resource-constrained devices in mind.
Today, the developers and researchers have been investi-
gating the aspects of information security enablers suit-
able for wearable technology, which is especially important
for medical and industrial segments. The authors of [180]
have investigated the executability of various primitives used
in symmetric and asymmetric cryptography, block ciphers,
ecliptic-curve cryptography, and conventional hashing func-
tions. The set of measurements has shown that the use of
broadly adopted techniques brings significant computational
load on wearables compared to, e.g., smartphones. However,
the authors did not provide any metrics that could be directly
projected on energy efficiency but rather the primitives exe-
cution time comparison. As one of the solutions, this work
highlights the need to develop specific lightweight primitives
keeping in mind the trade-off between energy consumption
and security as one of the drivers for efficient resource-
constrained devices.

The work presented in [181], [182] outlines a sophisti-
cated scenario of the blockchain systems migration towards
wearable devices as an unavoidable step of the distributed
systems’ evolution. The authors have developed a testbed
allowing to measure the self-discharge rate of the battery of
the device caused by the execution of different consensus
algorithms. It was proven that Bitcoin-like systems, based
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on the Proof-of-Work (PoW) consensus [183], are not suit-
able for battery-powered devices since their operational time
decreases almost twice. The authors stress that new consensus
mechanisms should be developed and utilized for wearables
to reduce the impact of cryptography primitives execution on
battery life. One of the discussed solutions for that challenge
is the Proof-of-Activity (PoA) algorithm that allows us to
step aside from the computational-hungry PoW to a simpler
verification procedure executed on the wearable side [184].

The authors of [185] have analyzed the utilization of
Hypertext Transfer Protocol (HTTP) vs. Secure Hypertext
Transfer Protocol (HTTPS) traffic on personal handheld
devices to evaluate the state-of-the-art readiness of wearables
for encrypted traffic processing. As an important finding,
it was shown that the energy consumption of mobile phones
and smart wearables caused by traffic encryption is compa-
rable. In contrast, the leading cause of energy consumption
was the communications side and the need for an inter-
mediary gateway. The authors of [186] also elaborate on
the need to consider the memory and CPU requirements in
order to optimize the executability of cryptographic compo-
nents better, including the hardware acceleration. Moreover,
the work [187] highlights the optimization problem of a
power-performance application-oriented solution for wear-
able motion sensors.

Sincewearable themselves are commonlymarket-available
devices without an open-source operating system, with only
a few examples opposing this trend [186], the development
and integration of novel energy-efficient security solutions
are still in their infancy. At the same time, most of the smaller
developers do not pay much attention to energy-efficiency
aspects.

K. SECTION SUMMARY
This section presented a detailed and comprehensive analysis
of the most commonly used strategies to enhance energy effi-
ciency in the IoWT domain. Several challenges and trade-offs
were highlighted under each strategy to be considered by the
research community while designing novel energy-efficient
techniques (more details on challenges are available in the
next section). We believe that several strategies can be com-
bined for maximum energy gains and optimal performance
for designing power-efficient future wearables.

The next section provides a detailed discussion on the
main challenges and future research directions, specifically
regarding energy efficiency in wearables. Moreover, we also
provide some general challenges and limitations to be taken
into account during the the future wearables design.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
Wearable technology is already pacing its way towards
mass adoption. Numerous aspects limit this evolutionary
trend besides energy consumption related aspects that we
would like to highlight before concluding the paper. This
section continues the discussion on energy-efficiency aspects
of wearables by outlining the main challenges and future

perspectives of wearable devices from the energy effi-
ciency/power consumption perspective. It provides a sum-
mary based on the systematic literature review and extends
it with future research directions in this domain.

Table 10 highlights the main identified challenges and pro-
posed mitigation solutions found in the literature. We divide
those into five subgroups based on the specifics of the
challenge, namely, Architecture (aspects related to physical
and logical placement of the node in the network), Net-
working (algorithms, protocols, and routing aspects), Data
Processing (including data storage), and, more generally,
Hardware and Software.

The major challenges identified include transmission over-
heads, wireless technology-related issues, inefficient rout-
ing, security-related aspects, processing limitations, storage
limitations, lack of hardware acceleration, inefficient use
of energy-consuming modules, and battery limitations. The
weighted relations between those before-listed groups of
challenges are depicted in Fig. 10.

FIGURE 10. Weighted relation between the main energy-efficiency
challenge groups.

Besides challenges and with the advancement in the pro-
cessing units and the demand for high-end wearables relying
on heavy computations, the currently available battery power
resources might not be enough for the extended device oper-
ation. Therefore, it is predicted that energy harvesting will be
an essential part of the high power future wearables [188].
Many researchers already work on various opportunities to
enable this feature, including microkinetic energy harvesting
systems utilizing frequencies occurring in human motion to
harvest energy [189], powering wearables with solar energy
harvesting [190], self-powering smart fabric [191] and wire-
less power transfer for implantables [192], [193]. Consid-
ering the increasing power requirement of the IoT devices,
some researchers have proposed green energy harvesting
solutions for IoT devices [194]. However, energy harvesting
techniques have not yet been mature enough to be integrated
into the IoWT for several reasons. First, the energy harvesting
efficiencies of the state-of-the-art energy harvesters are not
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TABLE 10. Summary of the main challenges related to energy efficiency of wearables.

high enough to independently power wearable devices in
the IoWT. Second, the availability of ambient energy is not
always guaranteed. Third, the desired miniature design of
the wearable devices imposes another challenge since energy
harvesting requires integrating multiple additional hardware
equipment such as ambient energy harvesters, additional bat-
teries to harvest energy, etc. Therefore, a significant amount
of research is required to enable future IoWT devices to
continuously generate power from ambient sources to charge
their batteries for an extended battery life [195], [196].

From the communications perspective, most of the
existing wearable devices connect to the Internet via

gateway node (commonly, a smartphone) due to the lack
of direct long-range connectivity capabilities [197]. Such
a setup can cause significant performance degradation to
the high-end wearables that demand high-data rates, e.g.,
AR/VR/MR or XR applications [198]. Therefore, direct
Internet connectivity-enabled devices equipped with IEEE
802.11 or cellular modules are expected to get more attention
in the nearest future [199]. Moreover, some other long-range
non-cellular connectivity solutions such as NB-IoT, LoRa,
Sigfox, etc., are also expected to enter the wearables indus-
try, opening directions for many new wearable IoT appli-
cations [200]. Therefore, it is essential for the research
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community to follow and address the associated challenges
such as the impact on the communication channel, reliability,
security, privacy, etc.

Moreover, direct Internet connectivitymight introduce new
challenges in terms of energy efficiency of wearable devices;
since communicating directly to an access point (in case of
Wi-Fi) or a base station (in case of cellular or non-cellular
connectivity) will involve communication at a comparatively
longer distance as compared to accessing the Internet through
a smartphone/gateway node. Consequently, resulting in high
power consumption [23]. Therefore, the use of adaptive
transmission power control along with efficient duty cycling
and energy harvesting mechanisms will become essential to
conserve energy. Additionally, near-zero power consumption
wake-up radios to minimize the actual communication unit’s
energy consumption can also be beneficial [147].

Generally, most of the available wearables are standalone
devices in terms of their operation, i.e., multiple wearables are
not collaborating towards a common goal rather than fulfill
their tasks. However, with the increasing interest of the con-
sumer community in adopting wearables for their day to day
tasks, it is expected that individuals will be carrying multiple
wearables in their daily routine in the nearest future [15].
Thus, a network of wearables could be formedwhere personal
wearable could benefit from sensing, computing, and trans-
mission resources of other wearables nearby to efficiently
carry out the desired tasks through collaboration and forming
personal wearable clouds [201].

From the medical domain perspective, consumer wear-
able devices started to attract more attention to the devel-
opment of medical area [202]. Some standalone wearable
equipment was utilized for patients admitted to hospitals to
monitor their health [203]. However, the recent developments
including the COVID-19 pandemic [204], have diverted the
research attention towards using technology to find a cure
and/or disease prevention. Smart wearable technology can
be a potential game-changer in the era of COVID-19, where
wearables can be used that could notify users of the possible
COVID-19 viruses around them. Additionally, wearables can
be utilized for contact-tracing purposes to track the potential
carriers of airborne infectious diseases, who came in close
contact with an upper-tract-disease infected patient to prevent
the spread [205]. Importantly, such medical devices and gad-
gets must have sufficient resources to at least accommodate
the user for one whole day [206]. Therefore, the use of low
power technologies in the design of future medical wearables
is a must [207].

Importantly to note, security and privacy have become
critical concerns, primarily due to the medical applications.
Wearable devices are often carrying sensitive and private
data associated with the users that can be exploited to iden-
tify and track individuals. For instance, we observe differ-
ent device locking mechanisms in wearables, including fin-
gerprinting and facial recognition techniques. Such specific
biometry-related data associated with users is the most sen-
sitive information since passwords can be changed while

most of biometry or behaviour factors remain unchanged over
life of an individual [208]. It has been observed that most
commercially available wearables often have very minimal
or no security features due to performance degradation issues
since many of the available data encryption and security tech-
niques are compute-intensive for wearables [180]. Therefore,
the development of lightweight and efficient security and
privacy techniques tailored explicitly for wearables is an up-
and-coming research area [209].

From the computing perspective, due to the miniaturiza-
tion of electronic equipment, future wearables are expected
to be equipped with more powerful processors with sub-
stantial storage resources that will consume much energy if
not appropriately handled [210]. Additionally, the increasing
demand for high computing resources from diverse wearable
applications demands the development of efficient computing
techniques that could satisfy not only application require-
ments but also conserve energy. In this regard, approximate
computing or inexact computing have recently emerged as
an effective technique where output accuracy is traded for
computing time and energy by relying on nearly accurate
results [211] (for a detailed discussion on approximate com-
puting refer to Section IV-I.) Similarly, developing in-device
signal processing and embedded ML techniques specifically
designed for wearables has gained significant attention from
the research community [212]. Most wearables are usually
recording and communicating raw data to edge devices or
remote cloud servers to be analyzed and processed for mean-
ingful information extraction. This behavior not only continu-
ously engages the device’s radio, which significantly impacts
the battery life of the device but also results in overburdening
the limited storage capacity of wearables [213].

On the contrary, if this raw data is processed on the device,
the extracted information will consume significantly fewer
resources, thus, boosting the device’s energy efficiency. For
instance, wearables often communicate raw data to remote
cloud servers for feature extraction and classification to
predict any patient anomaly and/or emergency condition in
healthcare applications. It involves not only high latency but
also consumes high energy due to continuous data transmis-
sions. Therefore, on-board lightweight embedded ML tech-
niques could improve the battery lifetime of wearables many
folds while enhancing device performance [214].

Next, comfort and ease of use are vital for wearables.
Since these devices remain in close contact with the human
body and skin, it is vital to consider those while developing
future wearables and, especially, to take into account their
chances of overheating or short circuit. Some of the high-end
wearables available today dissipate much heat and they may
not get wide acceptance by the consumers due to that reason.
Therefore, those are also essential considerations to be taken
care of in the development of future wearables.

In its entirety, modern wearable devices as part of the
general Information Technology (IT) ecosystem can also help
make other systems more energy-efficient. A recent study
projected that IT-enabled devices could cut global greenhouse
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gas emissions by 16.5% in 2020 [215]. The gains will be
achieved through many different applications, ranging from
smart power grids, sophisticated communications systems
to sensor-driven intelligent traffic management, and more
keeping the wearables as part of the general environmental
picture.

VI. SYSTEMATIC REVIEW SUMMARY
The need to develop highly energy-efficient solutions has
increased manifold with the advances in wearable technology
and the increasing interest of users towards wearables for a
wide range of value-added and entertainment applications.
Moreover, charging personal devices and electronic gadgets
more frequently is highly unpleasant and inconvenient from
a user’s perspective. Therefore, energy efficiency in wear-
ables has become an active research area. Although more
sophisticated and efficient batteries have been developed for
an increased battery life of devices, the need for enhanced
processing power and complexity of applications is also ris-
ing at a significant pace. Therefore, the design of highly
energy-efficient solutions has become necessary to fulfill the
requirements of the latest power-hungrywearable sensors and
applications to satisfy user demands.

In this paper, we presented a systematic literature review of
the state-of-the-art research papers in the area focusing on the
energy-efficiency aspect in the IoWT domain. We presented
a taxonomy of the IoWT solutions from an energy efficiency
perspective based on the targeted application area classi-
fying them into four categories, namely healthcare, activ-
ity recognition, smart environments, and general solutions.
It was observed that most of the existing solutions target
healthcare-related applications because wearables were his-
torically developed for specific medical purposes. However,
more recently, with the advancements in the field, wearables
have found applications in many diverse fields apart from
healthcare. Additionally, a statistical analysis of the available
solutions was presented in terms of year-wise publications
revealing an increasing trend in the research related to wear-
ables, and we anticipate it to increase further in the coming
years.

Further, a detailed discussion based on the qualitative and
comparative analysis of existing studies in each category
was provided, presenting their advantages, limitations, main
performance parameters, and major contributions, as well as
giving a quick overview of this field’s research. Similarly,
a statistical analysis was presented to depict the percentage
of tools used in the performance evaluation of the proposed
solutions, which revealed that the research community is
more inclined to develop a prototype to validate the efficiency
of their proposed solution. However, some studies presented
simulation-based results only where MATLAB was found to
be the most widely used simulator besides others. Whereas,
some fraction of the studies presented both simulation-based
results validated through real-time experiments on proto-
types. Similarly, a statistical analysis was presented showing
BLE to be the most widely used mainly due to its low power

consumption feature to present another vital insight related
to the most commonly used communication technologies in
wearables today. Moreover, to facilitate new researchers in
the field, a summarizing discussion was presented on the
main techniques adopted in the literature to enhance wear-
ables’ energy efficiency highlighting the trade-offs involved.

Although, the solutions addressing various aspects in the
IoWT domain already exist, we believe the field is far from
saturated. We foresee that there is still room for improve-
ment and further research. Therefore, we investigated open
research directions in the field to motivate researchers for
developing future energy-efficient IoWT-based systems.

LIST OF ACRONYMS

3D Three Dimensional
AR Augmented Reality
ASIC Application-Specific Integrated Circuit
BAN Body Area Network
BLE Bluetooth Low Energy
CNN Convolutional Neural Network
CPS Cyber-Physical System
ECG Electrocardiography
EEG Electroencephalography
EMG Electromyography
GMG Global Greenhouse Gas
GSR Galvanic Skin Response
HTTP Hypertext Transfer Protocol
HTTPS Secure Hypertext Transfer Protocol
HVAC Heating, Ventilation, and Air Conditioning
ICT Information and Communications Technology
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
IoWT Interent of Wearable Things
IT Information Technology
KM Kuhn-Munkras algorithm
KPI Key Performance Indicator
LTE Long-Term Evolution
M2M Machine-to-Machine
MAC Medium Access Control
MANET Mobile Ad Hoc Network
MCC Mobile Cloud Computing
MCSS Multicombined Computing Sorting

Segmentation
MEC Mobile Edge Computing
MEMS Miniature Micro-Electro-Mechanical
MR Mixed Reality
ML Machine Llearning
NB-IoT Narrowband IoT
PoA Proof-of-Activity
PoW Proof-of-Work
PPG Photoplethysmography
QoS Quality-of-Service
RFID Radio-Frequency Identification
RMSE Root Mean Square Error
SNR Signal to Noise Ratio
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SoC System on Chip
SK Skin temperature
TDMA Time-Division Multiple Access
WBAN Wireless Body Area Network
WBSN Wearable Body Sensor Network
WIoT Wearable Internet of Things
VR Virtual Reality
Wi-Fi Wireless Fidelity
XR Extended Reality
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