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ABSTRACT Skeletal muscles are functionally regulated by populations of so-called motor units (MUs).
An MU comprises a bundle of muscle fibers controlled by a neuron from the spinal cord. Current methods
to diagnose neuromuscular diseases and monitor rehabilitation, and study sports sciences rely on recording
and analyzing the bio-electric activity of the MUs. However, these methods provide information from a
limited part of a muscle. Ultrasound imaging provides information from a large part of the muscle. It has
recently been shown that ultrafast ultrasound imaging can be used to record and analyze the mechanical
response of individual MUs using blind source separation. In this work, we present an alternative method - a
deep learning pipeline - to identify active MUs in ultrasound image sequences, including segmentation of
their territories and signal estimation of their mechanical responses (twitch train). We train and evaluate
the model using simulated data mimicking the complex activation pattern of tens of activated MUs with
overlapping territories and partially synchronized activation patterns. Using a slow fusion approach (based
on 3D CNNs), we transform the spatiotemporal image sequence data to 2D representations and apply a deep
neural network architecture for segmentation. Next, we employ a second deep neural network architecture
for signal estimation. The results show that the proposed pipeline can effectively identify individual MUs,
estimate their territories, and estimate their twitch train signal at low contraction forces. The framework
can retain spatio-temporal consistencies and information of the mechanical response of MU activity even
when the ultrasound image sequences are transformed into a 2D representation for compatibility with more
traditional computer vision and image processing techniques. The proposed pipeline is potentially useful to
identify simultaneously active MUs in whole muscles in ultrasound image sequences of voluntary skeletal
muscle contractions at low force levels.

INDEX TERMS Motor unit, decomposition, ultrafast ultrasound, medical imaging, deep learning, mechan-
ical response, neural networks, recurrent neural networks.

I. INTRODUCTION
The motor unit (MU) is the smallest voluntarily activatable
unit in the skeletal muscles. Its function (and control)
is important to study for the diagnosis of neuromuscu-
lar diseases and understanding of skeletal muscle physiol-
ogy in sports sciences and rehabilitation [1], [2]. An MU
is defined as a motor neuron connected to a bundle of
muscle fibers located within a given territory (Fig. 1A)
[3]. The control of an MU is encoded in a firing pattern
(Fig. 1A) originating in the spinal cord mediated by the
motor neuron. The corresponding output is characterized
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by repeated electrical depolarizations of the fibers and sub-
sequent repeated shortening and thickening of the fibers
(mechanical twitch train) [4] (Fig. 1A and B).

Electromyography (EMG) is the gold standard technique
to study MUs where electrodes are used to record the fibers’
electrical activity either invasively or from the surface of
the skin [5]–[7]. This technique provides high-quality data,
but due to a low pass filtering effect of the tissue, there
is a restricted field of view [8]. Ultrasound imaging is
a non-invasive technique allowing mechanical information
from a large field of view [9].

Recently our group presented a method [10] to study
MU activity based on the mechanical response of individual
MUs using ultrafast ultrasound imaging (>2000 images per
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FIGURE 1. Illustration of principal skeletal muscle anatomy and recorded ultrasound image sequence. A) Shows three motor units, aligned
in parallel, and they are activated with unique neural firing patterns. An activated unit’s mechanical response results in a twitch - a
thickening and shortening of the unit’s fibers. B) An illustration of the spatio-temporal features of the recorded image sequence from the
cross-sectional plane. C) The main challenges of the data, including the overlap of motor unit territories. D) An overview of the proposed
deep learning approach comprising two modules of detection and segmentation and time signal detection.

second [11]). This method was based on a blind source sepa-
ration framework and decomposition of spatio-temporal com-
ponents. However, the performance was found to decrease
with an increasing number of active MUs in the con-
tractions. This problem’s challenge is that muscle acti-
vation is a highly complex physiological process, where
tens to hundreds of MUs with overlapping MU territories
can be active simultaneously with individual firing patterns
(Fig. 1A and C).

One interesting approach that has shown tremendous
potential to learn complex patterns is using deep learn-
ing models comprising neural networks with several layers’
architecture. In particular, in medical imaging, there is a
vast literature on deep learning applications for detection
and segmentation [12]. In this work, we hypothesize that a
deep learning methodology can improve the performance of
identification of individual MUs, by learning the underlying
complex interaction patterns using the full image sequence
information.

This work aims to develop and evaluate a deep learning
pipeline to 1) detect individual active MUs, 2) segment their
territories, and 3) estimate their activation twitch signal, using
ultrafast image sequences of voluntary skeletal muscle con-
tractions. The model is trained and evaluated using simulated
ultrasound data [10].

This work presents a deep learning-based method to iden-
tify individual MUs in spatio-temporal data of contract-
ing muscles. To the best of our knowledge, it is the first
deep learning approach to identify a varying number of
fixed-position objects with unique individual temporal pat-
terns of intensity changes.

The rest of the paper is organized as follows: In Section II,
we review related work. In Section III, we present the pro-
posed deep learning pipeline in detail and also present the
evaluation metrics. Section IV gives an overview of the sim-
ulation model and data sets generated. Section V presents the
results, and Section VI gives a discussion of the findings.
Finally, Section VII concludes the paper.

II. RELATED WORK
Deep learning [13]–[15] has greatly revolutionized many
different domains involving analysis of a large image, audio,
text, video, or tabular data. Of particular relevance to the
work reported in this article are the advancement made in
image and video processing using deep learning methods for
segmentation, identification, recognition [16], deep learning
for time-series data (e.g., speech) [17], and deep learning in
medical imaging [12], [18]. Hence, we present the relevant
details on deep learning for segmentation and signal detection
in the subsequent text.
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A. OBJECT DETECTION AND SEGMENTATION
The advancements made on instance segmentation tasks in
the computer vision field have paved the way for many
progress applications for deep learning applications in the
medical imaging domain. Traditionally, the classification
task was performed to categorize an image into a dis-
tinct class (e.g., cat vs. dog classification). For a more
realistic task, we are usually interested in the object’s
position within an image, referred to as the localiza-
tion task. When there are multiple instances of the same
object within an image, we perform object detection,
which localizes the object. For more practical use, we do
pixel level localization of the object referred to as the
segmentation.

In semantic segmentation, each class in the image is
masked with a different color. For example, all the pixels
containing dogs might be colored blue, and all the pixels
containing cats may be colored red. A problem with this
approach is when objects of the same class overlap, they
are merged under the same mask, and it is difficult to dif-
ferentiate between them. To solve this problem, one can use
instance segmentation where every object (instance) gets its
own mask [19]–[22].

One of the simplest methods to perform object detection
is to crop out multiple locations of an image and run a
Convolutional Neural Network (CNN) to classify the cropped
region. The problem with this approach is that it is extremely
slow. R-CNN (Region-based CNN) [19] tried to solve this
by first applying a non-learning-based algorithm called a
selective search that returned 2,000 likely region proposals
that a CNN then classified and predicted a more refined
bounding box around the object. This approach is considered
slow because CNN has to classify 2,000 regions. Fast R-CNN
[20] solved this problem by using a CNN to process the entire
image into a convolutional features map. Then, to classify
one of the region proposals, one can crop out a region of
this features map corresponding to the region in the image
using RoI pooling and then classify that data. This approach
is faster than R-CNN, but it still relies on the non-learning
based selective search to find interesting region proposals.
Faster R-CNN [21] replaced the selective search algorithm
with a new network called region proposal network (RPN)
that used the information from the convolutional features map
to generate region proposals.

Mask R-CNN [22] is an extension of the Faster R-CNN
architecture to introduce instance segmentation. To achieve
this, mask R-CNN modified some parts of the network.
The convolutional features map is replaced by a feature
pyramid network (FPN), which contains feature maps at
multiple scales of the image. RoI pooling is replaced with
a new method called RoIAlign, which works better when
pixel-level accuracy is required. A pixel map containing
the object is generated by adding a new head to the clas-
sifier and bounding box predictor heads for predicting the
mask.

B. TIME SIGNAL ESTIMATION
Typically, recurrent neural networks (RNN) have been pop-
ular with time-series data processing. Successful use cases
have been reported for sequential data, in particular in nat-
ural language processing. Comparative studies have shown
the benefit of RNN for time dependencies modeling and
signal tracking [17], [23]–[26]. For example, the work in
[17] achieved a state-of-the-art error reduction on the popular
TIMIT dataset for speech recognition. The Gate Recurrent
Unit (GRU) is a type of RNN that helps overcome the vanish-
ing gradient issue in training an RNN. This issue is typically
achieved by updating and reset gates controlling the inward
and outward flow of information from the neural network’s
memory states. This process effectively helps in removing
information that is redundant for the prediction task. For
additional details on RNN and GRU, we refer the reader to
[17], [27].

III. PROPOSED MODEL
A. PREREQUISITES AND OVERVIEW
Three key features characterize the mechanical response of
individual MUs that we want to identify:

1) Spatio-temporal characteristics of units: The mechan-
ical response of an MU is characterized by a fixed
location of a spatial territory with varying intensity
(Fig 1B). The time signal intensity variation of a unit
is unique due to an MU’s unique neural firing pattern
(Fig 1A) [3].

2) Unknown number of units: The number of active (and
thus visible) MUs in an image sequence is unknown
because the recruitment of units is highly complex
coordination by the central nervous system [3], [10].

3) Overlapping territories of the units: The territories
of two or more MUs may be overlapping [3], caus-
ing spatial and temporal interference of their activity
(Fig 1A and C).

NB: In the text, we sometimes write object for MU or unit,
and signal estimation for extraction of the mechanical twitch
train signal, to harmonize with the terminology in machine
learning and signal/image processing.

Given the spatio-temporal nature of the mechanical
response of an MU (Fig 1B), we split the problem into two
main modules (Fig 1D).

The first module is the detection and segmentation
model, which detects and segments the MU territories within
the image sequence. The second module, called the time
signal estimation model, determines the mechanical acti-
vation signal (the twitch train) caused by a specified MU.
As typical, the best parameters for the deep networks used
here are determined empirically and through a grid-search on
a finite set of parameters.

B. DETECTION AND SEGMENTATION MODEL
This module processes an image sequence to perform the
detection and segmentation of the MUs. This process is
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FIGURE 2. Detection and segmentation model architecture. Input data is the spatio-temporal image sequence of the complex activity of activated motor
units in a skeletal muscle (64× 64× 400 is Depth×Width× Frames and corresponds to 40× 40 mm and 1 second). The output is the segmented spatial
territories of identified motor units (right).

particularly challenging due to the spatio-temporal nature of
the mechanical response of MUs (as previously pointed out).
In short, we use a 3DCNN, which helps to retain the temporal
information while generating a 2D representation. The trans-
formed 2D representation is used for instance segmentation
using Mask R-CNN approach.

1) ARCHITECTURE
The first thing that takes place in the model is to convert
the data into a 2D representation using a series of 3D con-
volutions. The slow fusion approach [28] inspires this way
of processing image sequence data. The network preserves
the temporal information on the action potential. More global
information is made accessible to the higher layers in the
network, retaining both the ultrasound sequence’s spatial and
temporal aspects. During this transformation, we keep the
spatial resolution while reducing the temporal dimension.
This architecture is visualized on the left part of Figure 2.

The first layer receives the standardized image sequence of
size 64×64×400×1, and it has to reduce the size of the data
to make the computational problem feasible. It uses a strided
convolution of dimensions 2×2×5 (height×width×time) to
reduce the number of computations required and also reduces
the spatial dimensions by a factor of two and the temporal
dimension by a factor of 5. It uses a kernel size of (7× 7× 7)
and 8 feature maps followed by batch normalization (BN)
and the ReLU activation function. The strided convolution
reduces the size of the data to 32 × 32 × 80 × 8. A second
convolution is performed on this data, which uses a kernel
size of (3 × 3 × 7) and 16 feature maps followed by BN
and ReLU. Since performance is not as critical at this point
compared to the first layer due to the reduced data size,
max pooling is used instead of strided convolutions to reduce
the temporal dimension. A max pooling layer reduces the
temporal dimension by a factor of 5 to produce a data size of
32×32×16×16. The third convolution uses a kernel size of
(3×3×5) and 32 feature maps followed by BN, ReLU, and a
max pooling layer, reducing the temporal dimension a factor
of 4. This results in a data size of 32 × 32 × 4 × 32. At this
stage, the final convolution uses a kernel of size 3 × 3 × 5,

64 feature maps, BN, ReLU, and a max pooling layer that
reduces the temporal dimension a factor of 4 to create a data
size of 32× 32× 1× 64.
At this stage, the data gets a 2D representation with

32 × 32 pixels and 64 channels. We now employ a mask
R-CNN model [22], with implementation from [29] with a
ResNet–101 model used for features extractions [30] as the
feature extractor 1 (See Fig. 2). An issue that arises is that
ResNet is normally used for high-resolution images. The
ResNet network’s first stage reduces the spatial dimensions
by a factor of 4, which is unwanted when we already have
a low-resolution image and would result in a very poor seg-
mentation. In our work, this issue is addressed by removing
the first stage of the ResNet network.

The actual object detection and segmentation is then per-
formed by Mask R-CNN, which receives the features gen-
erated by ResNet-101 through a feature pyramid network
(FPN). The Mask R-CNN network in this model retains the
default parameters used in the implementation.

2) PERFORMANCE METRICS
We evaluate the detection and segmentation performances
through precision and recall measures.

An MU is considered correctly detected if the intersection
over union (IoU) measure for the MU mask is greater than
0.5. The detection step drives the segmentation performance,
as we would like to consider MUs that as classified as true
positives during the detection step.

3) TRAINING PROCESS
Ten thousand (10,000) simulated images sequenceswere gen-
erated for the training (see section IV. B Datasets). To further
increase the training data, we perform data augmentation
(random flipping) and get a total training set of 40,000 simu-
lated image sequences, containing 699,788 MUs.

To speed up the training process and achieve better con-
vergence, we used transfer learning. We use ResNet-101 [30]
and Mask R-CNN models [22], pre-trained on the Microsoft

1The implementation is in Python3 and uses the tensorflow and keras
frameworks.
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COCO dataset [31]. The following changes are introduced.
The COCO dataset has 80 different categories. So, the classi-
fier layer is modified to suit our task of binary classification.
The 3D CNN layers are trained from scratch with weights
initialized using the Xavier initialization method [32].

The model is trained using stochastic gradient descent
(SGD) with an initial learning rate of 0.001 and momentum
set to 0.9.2

For the first 20,000 mini-batches, the ResNet backbone
weights are kept fixed so that to preserve the knowledge from
the previous application and the other layers have to adjust to
it. Afterward, the learning rate is reduced by a factor of 10 for
training up to 200,000 mini-batches. Finally, the learning rate
is further reduced by a factor of 10 as the training continues to
the 500,000 mini-batch. The training takes a total of 67 hours
as we get the optimal weights. The training and validation
loss graphs can be seen in Figure 9 (in Appendix A). The
loss function used for training this model is the sum of five
different loss functions: the region proposal networks loss,
the bounding box loss, the Mask R-CNNs loss, bounding box
loss, and the mask loss.

In addition, to improve the model’s tolerance to noise,
the model is also further trained for an additional 100,000
mini-batches with a random noise level value between 30 to
10 dB SNR.

C. TIME SIGNAL ESTIMATION MODEL
The time signal estimation model is designed to learn to
estimate the MU twitch train signal from a detected and seg-
mentedMU from the first model. Thus it removes signals that
do not originate from the MU of interest. In short, with moti-
vation from the slow fusion approach by Karpathy et al. [28],
we first use a 3D CNN to transform the image sequences into
a time-series data and then train a GRU network to estimate
the twitch train.

1) ARCHITECTURE
The input to the model is a cropped version of the
spatio-temporal image sequence. It has a spatial resolution
of 16 × 16 pixels and 400 timesteps (corresponding to a
one-second sequence within a 10×10mmROI), which is suf-
ficient to encompass an MU size in the biceps muscles [33]).

Unlike the segmentation module, here we want to reduce
the spatial dimensions and retain the temporal dimension.
Similar to the segmentation module, a 3D CNN, inspired
by the slow fusion concept [28], is adapted to transform the
image sequences for subsequent time signal estimation. It is
processed through five layers of 3D convolutions to extract
spatio-temporal features.

The first convolution has a stride of 2 in two dimensions
(say, x and y) to reduce the spatial resolution to 8 × 8 and
thus reduce the computations.

2Themodel is trained on an Nvidia RTX 2070with 8GB ofmemory which
allowed for 8 examples per mini-batch.

Each convolution layer creates 16 filters and uses
a 3× 3× 15 kernel except the first layer, which has
a 5× 5× 15 kernel. Each layer is followed by batch
normalization and then the ReLU activation function.
The resulting data from these 3D convolutions is of
dimension 8× 8× 400× 16. The 3D CNN is visualized in
the top left of Figure 3. This data is then sliced by the time
steps and flattened so that each time step can be processed
individually. The idea behind processing each time step
individually is to create higher-level features that are spatially
invariant, e.g., the width of the MU at that timestep. This pro-
cessing is done in a fully connected neural network (FCNN).
First, a layer of 1,024 neurons is applied, followed by a layer
with 512 neurons, and finally, a layer with 256 neurons. The
fully connected layers use the ReLU activation function, and
all the time steps share the weights for the FCNN.

The data now consists of a feature vector of 256 numbers
for each time step passed to twoRNNs, each going in opposite
directions, forming a bidirectional RNN. The motivation of
using RNN here is to create a temporal signal based on the
information from all the timesteps. For example, suppose the
signal from an MU is unintelligible during an interval. In that
case, RNNs could be used to look at the previous and preced-
ing time steps to estimate the signal in the missing interval.
Each RNN consists of 512 gated recurrent units (GRU). The
RNNs are configured to return the entire sequence and not
just the last output. The output of the RNNs is then concate-
nated, resulting in 1,024 values for each timestep.

The data is run through a final FCNN at each time step
to produce the final result (the amplitude of the twitch train
signal of the MU at each time step). First, a layer of 1,024
neurons is applied, followed by a layer with 512 neurons,
and finally, a layer produces a single value (the amplitude).
All layers except the final layer use ReLU, and all time
steps share the weights. The data now consists of 400 values
representing the mechanical response (tissue velocity) at each
time step.

2) PERFORMANCE METRICS
We evaluate the extracted signals’ performance by comparing
the firing patterns of the estimated and simulated signals.
The performance metric selected for this task is the rate of
agreement (RoA), as it provides easy interpretation, captures
the information we are interested in [34], and was used in
previous work on similar signals [10]. The RoA measure
ranges between 0 and 1 where 1 is a perfect score, and it
measures the agreement between the firings of two signals.
The formula for RoA is:

RoA =
c

c+ A+ B
, such that 0 ≤ RoA ≤ 1 (1)

Here, c is the number of times when both the true firings
and the estimated firings have matched. A is the number of
times signal A had a firing but not signal B, and B is the
number of times signal B had a firing but not signal A. Two
firings are considered matched if they occur within 15 ms
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FIGURE 3. Time signal estimation model architecture. The input to this model is cropped image sequence data centered around the detected motor unit
territory as segmented in model 1 (16× 16× 400 is Depth×Width× Frames corresponding to 10 × 10 mm, and 1 second sequence). The output is the
corresponding motor unit twitch train signal (bottom).

(6 timesteps at 400 Hz) of each other. An example of how
RoA is calculated for a given MU firing can be seen in
Figure 11 in Appendix C.

The MU firings are extracted as the local maxima of the
estimated twitch train signals (Fig. 11). Before this, a low-
pass filter is applied to the signals using a running average
with a window of 11 timesteps (27.5 ms). Local maxima with
an amplitude (velocity) of less than 0 m/s were excluded.

3) TRAINING PROCESS
The twitch train estimation model uses the same training set
as the segmentation model. The model is trained for 100,000
mini-batches using Adam optimizer with a learning rate of
0.0001 and clipping the gradient norm to a maximum of 1.3

This model tends to quickly overfit the training data,
as shown in Figure 10. No regularization technique seems to
fix this problem without also regressing the validation perfor-
mance. Therefore, early stopping is used to choose the best
performing model (on the validation set) instead of the last

38GB of video memory on the RTX 2070 allows for 32 simulations per
mini-batch.

model. The training process took around 17 hours (although,
as per Figure 10 shown in Appendix B, only about 10 hours
were necessary to find the best performing model).

The loss function used for this model’s training is the
mean squared error between the predicted signal and the
ground truth signal. However, one issue found with this loss
function is that ground truth signals with large amplitudes
tend to get much greater losses than ground truth signals with
smaller amplitudes. This issue happens even though the pre-
dicted signals for the larger amplitude ground truth visually
followed the signal much better. This issue results in that
the optimizer primarily focusing on improving signals with
larger amplitudes and ignoring MUs with weaker signals.
This problem was solved by normalizing all the ground truth
signals to an amplitude of 1 when calculating the loss and
scaling the predicted signals using the same coefficient.

IV. SIMULATION OF MUSCLE ACTIVATION
A simulator [10] generated the data used for training and
evaluating the models in this work. Since the simulator knows
all the latent variables used to generate the data, it can also
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FIGURE 4. Object detection recall (A) and (B) and precision (C) and (D). The model’s result was evaluated on the test set with a
varying number of motor units and noise. Each data point shows the mean and standard deviation of 100 simulations. Figure 4(A)
and (C) correspond to the model trained with noise-free data. Figure 4 (B) and (D) correspond to the model trained on noisy data.

provide the labels for the example in the form of masks of the
cross-sectional territory encompassed by each MU and the
mechanical twitch train signal for each MU.

A. SIMULATION MODEL
The simulation model used in this work was previously
described in Rohlén et al. [10], and here we give a brief
description. The model generates the tissue velocity image
sequences of a contracting muscle based on a modified EMG
simulation model [35], were the electrical action potential
responses are replaced by mechanical spatio-temporal twitch
responses. The mechanical response, in the plane perpen-
dicular to the fiber direction (cross-sectional), is modeled
(Fig 1A). An MU territory is modeled as a circular region,
and the corresponding mechanical twitch response is mod-
eled using in vivo empirical MU tissue velocity waveform
from electro-stimulation experiments [36], [37]. It is assumed
that the force is transmitted along the fiber direction only
and that there is no mechanical connectivity between the
fibers of different MUs. Parameters were set to simulate a
biceps brachii muscle at weak isometric contraction levels.
The firing patterns of the MUs had a firing rate (FR) in the
range 8 and 13 Hz (randomly distributed) with an inter-pulse-
interval variation ofN (0, 0.2/FR) [3], [38]. Synchronization
of MU firings was simulated in the range of 0-10 % and
was computed as the percentage of MU firings synchronized
with (firings of) other MUs [39], [40]. The territories of
the MUs were randomly located within the simulated mus-
cle cross-section and had a diameter in the range 2.5mm
to 10 mm (randomly distributed) [33].

B. DATASETS
We generated three datasets - training, validation, and test
sets - consisting of 10,000, 1,000, and 600 simulated image
sequences.

The simulated (tissue velocity) image sequences were
64 × 64 × 400 pixels, corresponding to 40 mm × 40 mm ×
1 s with spatial resolution of 0.625 mm/pixel, and 400 Hz
frame rate. Each simulated image sequence in the training and
validation sets contains between 5 and 30 motor units. In con-
trast, the test set contains 100 simulated image sequences of
each of the following categories: 1, 5, 10, 15, 20, and 25MUs.

Gaussian white noise was added to the simulated signals
at 10, 20, and∞ dB.

V. RESULTS
Figure 12 and 13 of the Appendix present examples of the
image sequences of simulated mechanical response of skele-
tal muscle activity with 5 and 15 active MUs. Figure 7 and 8
show the true and estimated territories and twitch train signals
for these corresponding datasets. It can be seen that the com-
plexity of the mechanical response pattern increases with an
increasing number of active MUs. For example, when 5 units
were active, all MUs were detected, but when 15 units were
active, two units failed to be detected.

A. MOTOR UNIT DETECTION AND SEGMENTATION
PERFORMANCE
The object detection results for the segmentation model
trained, as described in the method section, can be seen
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FIGURE 5. Object segmentation recall (A) and (B) and precision (C) and (D). The segmentation model results when evaluated on
the test set with varying numbers of motor units and noise. Each data point is computed as the mean of 100 examples. Figure 5(A)
and (C) correspond to the model trained with noise-free data. Figure 5 (B) and (D) correspond to the model trained on noisy data.

FIGURE 6. Rate of agreement of the twitch train estimation model for evaluation on different noise levels and a different number of
motor units. (A) The model is trained with no noise data. (B) The model is trained with noisy data.

in Figure 4. When the model is trained on signals without
noise, it achieves high precision in the case when the data
has no noise, which means that the model rarely makes miss
predictions (i.e., lower false positives). When noise is applied
at 20 dB SNR, the model still correctly detects most of the
MUs, but it starts to fail to detect some MUs and detect some
false MUs as can be seen in the reduced recall and precision,
respectively. At 10dB SNR, the model performance is greatly
reduced with respect to recall and precision.

In general, training the model with noisy data significantly
improved the model (Fig. 4 B and D). The improvement
was modest for noise-free or high SNR data but was large
for low SNR data and precision. The recall decreased from
90% to 60% with an increasing number of MUs. Also,
the recall was approximately stable at >80% for all noise
levels.

The segmentation results are shown in Figure 5 (A) and (C)
for training with noise-free data and Figure 5 (B) and (D)
training with noisy data respectively. The number of MUs
did not significantly influence the segmentation performance.
Also, training with noise did not impact the segmentation
performance compared to when it was trained on noise-free
data.

B. TWITCH TRAIN ESTIMATION PERFORMANCE
The twitch train (signal) estimation model’s performance can
be seen in Figure 6. When trained without noise, the model
performs almost perfectly for low noise case, but performance
drops when noise is present, mainly when more MUs are
present (Fig 6 A). When the model was trained with noise,
the performance was over 90% independently on the number
of active MUs or the data’s noise level (Fig 6 B).
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FIGURE 7. Example of results from a simulated tissue velocity image sequence with five active MUs. The left panel shows the simulated
and segmented MU territories and an underlying map of the tissue velocity distribution within the image. The right panel shows the
simulated and estimated twitch train signals of the corresponding MUs.

FIGURE 8. Example of results from a simulated tissue velocity image sequence with 15 active MUs. The left panel shows the simulated and
segmented MU territories and an underlying map of the tissue velocity magnitude distribution within the image. The right panel shows the
simulated and estimated twitch train signals of the corresponding MUs.

VI. DISCUSSION
In this work, a deep learning pipeline is suggested to identify
MUs, segmentation of their territories, and estimate their
twitch train activation based on ultrasound image sequence
data of skeletal muscle contractions. The proposed model’s
performance is evaluated using simulated ultrasound data
mimicking the complex activation pattern of tens of activated
MUs with overlapping territories and partially synchronized
activation patterns. Performance evaluation shows that the
proposed pipeline can effectively identify individual MUs,

and estimate their territories and twitch train signal at low
contraction forces.

A. EVALUATION OF PERFORMANCE
First, the influence of including noisy signals in training
was large. When models were trained on noise-free data, the
performancewas significantly lower for noisy signals as com-
pared to noise-free signals (e.g., Figure 4 and Figure 6).When
training the models with noisy signals, the performance was
high independently of the noise level. These observations are
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FIGURE 9. Losses plotted over time (hours) when training the
segmentation model. Ten mini-batches of validation data are computed
for every 100 mini-batches of training data.

consistent with the results in the literature on the robustness
of CNNs on noisy images. The addition of noise during the
deep learning architecture training has been argued to have a
regularization effect and, thus, gives robustness to the model
[41], [42].

Second, the results showed that the detection recall
decreased with the activation level. For N=25 units active,
about 60% of the MUs could be detected. The recall and
precision of the territories’ segmentation were greater than
80%, and RoA was greater than 90% for all activation levels
(N=1 – 25 MUs) when trained with noisy signals. Compared
to the previous work by Rohlén et al. [10], who used the
same simulation method and evaluation metrics, the detec-
tion performance also decreased with increasing activation
level. However, at 25 MUs, their method achieved a higher
recall of 75%. The proposed deep learning pipeline consis-
tently outperformed Rohlén et al. [10] regarding the terri-
tory segmentation and firing pattern estimation, which had
a recall in the range of 50 to 60% and a declining pattern
for RoA vs. activation level, achieving 60% for 25 active
MUs. In summary, we observe that the deep learning pipeline
has better performance in terms of the segmentation and
twitch-train estimation. However, the detection task needs
further improvement.

FIGURE 10. Losses plotted over time (hours) when training the signal
estimation model. Ten mini-batches of validation data is computed for
every 100 mini-batches of training data.

B. LIMITATIONS
The deep learning pipeline was trained using simulated mus-
cle contraction data [10]. In this context, its performance
should be interpreted as a proof-of-concept and demonstra-
tion of the principle. A limitation of this approach is that the
method has learned the simulation data features compared to
the previously suggested approach using blind source sep-
aration [10], which does not rely on learning the data is a
more generalized approach. Consequently, we do not expect
that the present trained network should have necessarily high
performance on experimental data. There are three key sim-
plifications/differences of the simulated data compared to
experimental data: 1) superposition of mechanical responses
of multiple MUs, 2) no extracellular matrix (fascia) connect-
ing the fibers is included, and 3) non-physiological noise is
additive andwhite. The first assumption has been shown valid
at low force contractionswhere only a limited number ofMUs
are active as in our case [10], [43], [44]. The second assump-
tion is a simplification of the true anatomy. Still, it has been
indicated that in the cross-sectional view of the muscle, the
spatio-temporal pattern is highly similar, comparing image
sequences of simulated and experimental muscle contractions
[10]. The impact on the third assumption’s training was clear
in the results and shows that a relevant noise model will be
influential on performance.
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FIGURE 11. Illustration of an RoA computation. The red marks correspond to the predicted signal, and the black marks correspond to the simulated
ground truth signal. The dashed curves are the original signals, and the solid curves are smoothed versions of those. Vertical lines are the estimated
firings, and horizontal lines are the intervals within which firings are considered to match. In this example c = 7, A = 3 and B = 2 resulting in
RoA = 0.583.

FIGURE 12. Example of a simulated tissue velocity image sequence with five active MUs.
Approximately one cycle of the contraction of the units can be seen. White color means contraction
and dark color relaxation.

A potential solution to translate the pipeline to an exper-
imental application is to use the trained model from this
work and transfer learning. This translation can be done
by fine-tuning the model with labeled experimental data
from gold-standard measurements of invasive EMG methods
(needle-EMG) that can record the activation of individual
MUs [45].

From the computational perspective, implementing the
two key modules is based on a number of deep learning
architectures, essentially requiring GPUs to perform training
and inference. So, it would be useful to build methods with
lower computational complexity while attaining a compara-
ble performance. We can certainly hope that given the rising
popularity of deep learning methods for medical imaging in
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FIGURE 13. Example of a simulated tissue velocity image sequence with 15 active MUs. Approximately two cycles of the
contraction of the units can be seen. White color means contraction and dark color relaxation.

general, developing more computationally efficient methods
for motor unit detection and twitch train estimation is only a
matter of time.

C. APPLICATIONS
The ability to identify the activity ofMUs in thewholemuscle
(large field of view) would allow larger accessibility than cur-
rent EMGmethods that suffer from a small field of view. The
proposed technique hasmany interesting and important appli-
cations, given a successful translation training the pipeline
on experimental data. For example, for recording the neural
firing patterns of MUs to control prostheses [46], studying
strategies of the central nervous system onMU recruitment in
endurance/fatiguing tasks [47], or clinical diagnostics when
territories and/or firing pattern are altered due to pathological
processes e.g., [48]. Altogether, the proposed method could
allow the study of various questions that previously were
difficult or not possible to address.

VII. CONCLUSION
In this work, a deep learning pipeline is suggested to identify
the mechanical response of individual MUs, segmentation of
theirMU territories, and estimate their twitch train activations
based on ultrasound image sequence data in voluntary skele-
tal muscle contractions. The results show that the proposed
pipeline can effectively identify individualMUs, and estimate
their territories and twitch train signal at low contraction
forces. The proposed method is potentially useful to progress
with experimental data. The ability of an ultrasound imaging
based non-invasive large field of view of the active MUs
would make it possible to address a variety of questions that
were difficult to address before.
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APPENDIX A
LOSSES FOR SEGMENTATION MODEL
Losses for the segmentation model on the training and vali-
dation sets are shown in Figure 9.

APPENDIX B
LOSSES FOR TIME SIGNAL ESTIMATION MODEL
Losses for the twitch train estimation model on the training
and validation sets are shown in Figure 10.

APPENDIX C
RoA COMPUTATION
The computation of rate of agreement is illustrated in
Figure 11.

APPENDIX D
EXAMPLES OF SIMULATED IMAGE SEQUENCES
Examples of simulated tissue velocity image sequences
for 5 MUs and 15MUs are shown in Figure 12 and Figure 13,
respectively.
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