IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 20, 2020, accepted September 9, 2020, date of publication September 21, 2020, date of current version October 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3025344

Resource-Efficient Image Buffer Architecture for
Neighborhood Processors

MAJIDA KAZMI“1, ARSHAD AZIZ2, HASHIM RAZA KHAN'#, SAAD AHMED QAZI“14,
AND LAMPROS K. STERGIOULAS 3, (Member, IEEE)

!Faculty of Electrical and Computer Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
2Department of Electrical Engineering, PNEC, National University of Sciences and Technology (NUST), Karachi 75350, Pakistan
3Faculty of IT and Design, The Hague University of Applied Sciences, 2521 EN The Hague, The Netherlands
4Neurocomputation Lab, National Center of Artificial Intelligence, Karachi 75270, Pakistan

Corresponding author: Lampros K. Stergioulas (l.stergioulas@hhs.nl)

This research received funding from the Neuro-Computation Lab, National Centre of Artificial Intelligence, NED University of
Engineering and Technology, Karachi, Pakistan (PSDP.263/2017-18).

ABSTRACT Neighborhood image processing operations on Field Programmable Gate Array (FPGA)
are considered as memory intensive operations. A large memory bandwidth is required to transfer the
required pixel data from external memory to the processing unit. On-chip image buffers are employed
to reduce this data transfer rate. Conventional image buffers, implemented either by using FPGA logic
resources or embedded memories are resource inefficient. They exhaust the limited FPGA resources quickly.
Consequently, hardware implementation of neighborhood operations becomes expensive, and integrating
them in resource constrained devices becomes unfeasible. This paper presents a resource efficient FPGA
based on-chip buffer architecture. The proposed architecture utilizes full capacity of a single Xilinx Block-
RAM (BRAM36 primitive) for storing multiple rows of input image. To get multiple pixels/clock in a user
defined scan order, an efficient duty-cycle based memory accessing technique is coupled with a customized
addressing circuitry. This accessing technique exploits switching capabilities of BRAM to read 4 pixels
in a single clock cycle without degrading system frequency. The addressing circuitry provides multiple
pixels/clock in any user defined scan order to implement a wide range of neighborhood operations. With
the saving of 83% BRAM resources, the buffer architecture operates at 278 MHz on Xilinx Artix-7 FPGA
with an efficiency of 1.3 clock/pixel. It is thus capable to fulfill real time image processing requirements for
HD image resolution (1080 x 1920) @103 fps.

INDEX TERMS Image buffering, neighbourhood operations, FPGA, embedded block RAM (BRAM),

memory accessing technique, resource constrained applications.

I. INTRODUCTION

Recent technological advancements open new avenues in
mobile and portable imaging devices. These devices are
progressively becoming more compact with emphasis on
autonomous power supply [1]. In such resource (area, power)
constrained devices, it becomes very challenging to integrate
various computationally intensive low-level image process-
ing units, which are indispensable for improving the quality
of captured images. The neighborhood operations are widely
used low level image processing operations, to enhance the
visual quality of captured images [2], [3]. These operations

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S Raval

181964

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

use a two-dimensional window that shifts pixel by pixel,
in a fixed scan order over the complete image. At each
shift operation, image pixels within the window are pro-
cessed either by a linear or non-linear operation [4]. Although
these neighborhood operations are theoretically simple, their
hardware implementation is computationally expensive and
memory intensive [5]. A (NxN) window processes (NxN)
neighborhood input pixels per output pixel, thus leading to
high pixel data transfer rate of N2 pixels, between external
memory and processor unit that eventually requires a large
memory bandwidth.

For the parallel hardware implementation of such Neigh-
borhood Image Processors (NIPs), the use of hardware
devices such as FPGAs is gaining momentum due to their

VOLUME 8, 2020

https://orcid.org/0000-0002-2767-3139
https://orcid.org/0000-0002-1522-0677
https://orcid.org/0000-0002-8615-2253
https://orcid.org/0000-0002-3895-1448

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

IEEE Access

parallelism, power efficiency and re-configurability [5].
Inherently, the parallel execution capabilities of FPGAs are
particularly suitable to exploit the tempo-spatial parallelism
of NIPs. Therefore, image processing applications can be
greatly accelerated by placing its computationally expensive
neighborhood operations on FPGA. However, the high data
transfer rate over the limited memory bandwidth (usually
32 bits per clock [6]) is a main barrier in accelerating the per-
formance of parallel NIP on FPGA. For this reason, the fre-
quently accessed pixel data is temporary buffered on FPGA
to reduce the data transfer rate and thus external memory
bandwidth requirements [7]-[10].

The conventional on-chip data buffers can be divided into
two main groups: Partial Buffers (PBs) [7]-[9], [9]-[11] and
Full Buffers (FBs) [5], [71, [12], [20], [21]. The PBs [7]-[11]
store only partial input image pixels, and therefore they are
resource efficient but their bandwidth requirement increases
proportionally with the window (kernel) size. Therefore,
fixed and limited memory bandwidth restricts their capacity
to up-scale for larger NIPs [6]. On the other hand, the FBs
store full image rows which are required for calculating
an output pixel. It provides an efficiency of 1 clock/pixel
(in row scan order only) at a constant external memory
bandwidth of 1 pixel/clock. However for buffering the full
rows, it utilizes considerable FPGA memory resources in
the form of FPGA Configurable Logic Blocks (CLBs)
[71-[10] or embedded Block RAMs (BRAMs) [13]. There-
fore, unlike these conventional FB and PB schemes, it is of
great interest to provide a low cost image buffering solu-
tion without elevating the permissible memory bandwidth
limit for implementing parallel NIPs in a resource con-
strained environment such as portable and mobile imaging
devices [14]-[17].

The rest of the paper is organized as follows. Section II
discusses existing relevant work. Section III explains the
methodology. Section IV presents the timing analysis and
Section V demonstrate the implications of our work on prac-
tical image processing applications. Section VI discusses
the results and makes a comparison with existing methods.
Section VII summarises the conclusion of this work.

Il. RELEVANT WORK

A comprehensive literature review on FPGA based image
buffers for NIP, revealed that most of the reported full
buffers consume significant resources in terms of CLB based
Distributed RAM (DRAM) [7]-[10] or sequential BRAMs
[12], [13], [18] to fulfill the memory requirement of NIP.
Bosi et al. [7] have proposed high speed convolver processors
on FPGA. In order to execute parallel computations, they
employed on-chip data buffering. They proposed two buffer-
ing schemes, i.e. FBs and Single Window Partial Buffers
(SWPBs). In FB, N-1 full rows of input image were stored in
row buffers for (NxN) convolver. They configured LUTs of
Xilinx CLBs to implement these row buffers. It consumed a
lot of logic resources, especially for higher image resolutions.
Alternately, they implemented a SWPB scheme which con-

VOLUME 8, 2020

sumes fewer Xilinx CLBs but at the cost of extensive utiliza-
tion of external memory bandwidth. The resulting external
memory bandwidth requirement for SWPB is N pixels/clock
for a (NxN) convolver, leading to sharply raised external
memory bandwidth for larger kernels.

Cardells-Tormo and P.-L [8] have proposed three variants
of the conventional PB method and compared them with
other available existing methods for FPGA resource utiliza-
tion against throughput (clock/pixel). The three proposed
PB schemes were Column Major Moving Window, Row
Major Moving Window and Moving Window with Rotation
Stage. These three architectures were realized by using Shift
Registers and on-chip SRAM. The major drawback of these
architectures was their extensive memory bandwidth utiliza-
tion. Also, they occupied more resources as compared to
the SWPB method. Only the third architecture i.e. Moving
Window with Rotation Stage achieved 1, the ideal clock/pixel
rate [8]. Joginipelly and Charalampidis [9] proposed a variant
of [8] for separable convolver kernel with a reduction in
external memory bandwidth requirement. Zhang et al. [10]
have proposed a hybrid buffering approach termed as Multi
Window Partial Buffering (MWFB). It was based on shift
registers matrix of sizes larger than the convolver kernel. The
same number of input pixels were shared among adjacent
convolvers, which results in lowering the memory band-
width requirement. This method was a compromise between
the SWPB and FB methods described in [7]. The reported
throughput was 1 clock per pixel at reduced FPGA resource
utilization as compared to the FB method. However, this
buffering scheme may not be feasible for larger NIPs in case
of limited available bandwidth.

Besides the above discussed CLB based image buffering
schemes, a few other embedded BRAM based image buffer-
ing schemes have also been reported in literature [6], [12],
[13], [18], [20], [21]. Liang et al. [12] theoretically proposed
a full parallel buffering scheme by using BRAMs. However,
in this work BRAM has been employed as FIFOs and in this
way, it was not able to utilize the full storage capacity of
BRAM. Schmidt et al. [13], Moore et al. [18], Licciardo et al.
[20], [21] have also implemented FB by using sequential
BRAMs. Cao et al. [6] proposed a fast buffering scheme
which is based on a horizontal buffer and a vertical buffer,
equivalent to the BRAM based row buffers and shift regis-
ters of FB scheme respectively. All of these BRAM based
approaches result in inefficient utilization of a large number
of partially filled BRAMs.

All of the above discussed conventional on-chip buffers
were either configured CLBs as DRAM or used dedicated
embedded BRAMs sequentially. The DRAM based buffering
architectures require large number of CLBs and the inter-
connection requires significant routing resources. Therefore,
overall resource consumption of these buffering schemes is
considerably high. On the other hand, the BRAM based
buffers [6], [12], [13], [18], [21] are also resource inefficient
as they occupy one BRAM per image row. For example,
the frequently used 320 x 256 gray scale images require only

181965

IEEE Access

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

2.5 Kbits space to store a single row of 320 gray scale pixels
(3208 bits = 2.5 Kbits) which is just 6.9 % capacity of
latest Xilinx BRAM whereas 93% BRAM capacity remains
underutilized. Similarly 640 x 480 gray scale image requires
5 Kbits space to store a single row of 640 gray scale pix-
els (640x8 bits = 2.5 Kbits) which is just 13.8 % capac-
ity of latest Xilinx BRAM whereas 86 % capacity remains
underutilized. Therefore, in most of these buffers, a major
percentage of BRAM capacity remains underutilized. All of
these resource inefficient implementations exhaust limited
hardware resources on a FPGA device quickly, making NIP
expensive and thus unfeasible for resource constrained appli-
cations. Moreover, all of the above reported implementations
are restricted to provide pixels in only row scan order which is
required by limited NIPs. To overcome these limitations, this
work proposes a FPGA based image buffering solution with
saving of up to 83% valuable BRAM resources. Operating
at high speed of 278 MHz, it meets real time image pro-
cessing requirements for HD image resolution (1080 x 1920)
@103 fps. At the same time, the proposed architecture has an
added advantage of accessing pixels in different user defined
scan orders for implementing a wide range of parallel NIP in
resource constrained applications.

lll. METHODOLOGY
This work presents an efficient BRAM based image buffer-
ing architecture on FPGA with an additional pre-fetching
attribute. For proof of concept, a 7 x 7 NIP has been selected
to process an 8-bits gray scale image of size 128 x 128. The
7 x 7 NIP is chosen because mostly up to a 7 x 7 kernel
provides a reasonable tradeoff between noise removal and
feature preservation while enhancing the quality of images.
The block diagram of the proposed buffer architecture is
depicted in Fig. 1. It is comprised of one BRAM [27], Address
Generator Module (AGM), Clocking Circuitry (CC), Clock
Selector (CLK SEL) and a set of eight Registers (R0O-R7).
The design is initialized by a ”START” signal. It enables
AGM for fetching 32 Kbits packed image pixels from external
memory and writing it on a single BRAM. The proposed
32 Kbits size of buffer fulfills requirement of NIP as well as
fully occupies a single BRAM36 primitive. Write operation
is performed via 32-bit wide data input bus of port A i.e.
DI-A [31: 0]. Once the pixels data is completely written on
BRAM, the AGM starts reading data from BRAM via 8-bit
wide data output bus of both ports A and B i.e. DO-A/B [7:
0] in a user defined scan order. It accesses 4 pixels/CLK from
each port (A and B) by using an efficient duty-cycle based
pixels accessing technique. Therefore, it reads altogether
8 pixels/CLK from both ports (A and B) and temporarily
stores them in eight Registers (RO-R7) for synchronization
purpose. These registers are operating at x2 CLK to deliver
7 out of 8 valid pixels to the 7 x 7 NIP simultaneously per
CLK cycle. After completely reading and reusing the stored
input pixels data by NIP, the BRAM is re-loaded with the next
32 Kbits pixels data, and continues further processing. Our
main contributions in this work include:

181966

« Utilize full storage capacity of a single 32 Kbits BRAM
for storing multiple rows of input image. It eliminates
the requirement of partially filled multiple BRAMs.

« Read 8 pixels from both ports (A and B) of a true dual
port BRAM within a single clock cycle without using
x4 over clocking. A mechanism is devised to exploit
switching capabilities of BRAM. It effectually utilizes a
combination of two 25% duty-cycle clocks with reduced
ON time, for reading 4 times per clock (CLK) from
each port of a single BRAM with conforming its timing
constraints.

o Access pixels in a user defined scan order from different
BRAM locations. An efficient addressing circuitry is
devised to provide strongly patterned pixels for imple-
menting a wide range of NIPs.

A. PIXELS FETCHING AND BUFFERING IN BRAM WITH
DIFFERENT PORT ASPECT RATIO

The proposed design fetches input image pixels from
secondary memory elements available on FPGA boards
/ imaging devices as an external resource in form of
SRAM or DRAM. These external memories are generally
available with 32-bit bandwidth [6]. For minimizing the
latency of data fetching operation, the design fetches the
data from external memory in standard packed pixels format.
It writes four packed 8-bit gray scale pixels (4*8 =32 bits)
per clock cycle on consecutive BRAM locations, completely
utilizing the standard 32-bit external memory bandwidth.
For accessing multiple buffered pixels per clock cycle in a
requisite scan order, the design reads pixel wise data (8 bits)
per clock cycle at a higher clock rate from multiple BRAM
locations.

The desired design functionality is achieved by using
BRAM as a True Dual Port (TDP) RAM and configured with
different port aspect ratio for read and write operations. This
configuration allows to control the BRAM access for read
and write operations independently. For writing packed pixels
(4 pixels/clock), the write width of BRAM for port A is set to
32 bits i.e. DI-A [31: 0] and for reading pixel wise data from
both ports, the read width is set to 8-bit i.e. DO-A/B [7: 0]
for port A and B respectively. Since, the storage capacity of
BRAM remains same i.e. 32 K bits for both write and read
port as shown in Fig. 2, therefore depth of BRAM is to be
different with respect to the reads and writes width of ports.
From perspective of write port, BRAM is 32 bit wide and
1024 locations deep (total capacity is 32*1024=32,684 bits)
and from perspective of read port, BRAM is 8 bit wide and
4096 locations deep (total capacity is still 8 x 4096 = 32, 684
bits). Width of address bus ADDR for both ports is selected as
12 bits so that it can support wider of the two ports depths, i.e.
ADDR A/B [11: 0] is used for read addresses and the same is
partially used ADDR A/B [11: 2] for write addresses.

B. PIXELS SCANNING IN DIFFERENT SCAN ORDERS
The parallel implementation of NIP requires multiple pixels
concurrently in a fixed scan order. The pattern of pixels

VOLUME 8, 2020

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

IEEE Access

DATA 2 {
BRAM36 —T g OUTI
0 DO_A[7:0] & >CLK OUT-2
EXT MEM E-Mem-Addr < write BRAM LA 3| R & 5
| ADDRy i (Port A/B) J%ZAADDU/H:W —>|cLk, >
A WA >
7| START W-Control | WRAddr REGCE_A —|en R2 s OUTS ,
s (Port A) EN_A —
g Data Fetcher (DF) —>|CLK A —— [, R3] g OUT4 | a
MRy
é’) WeR Add St —lak | Z
5 r 1 8
—_ DO_BI7:0] |7 ~
g Scan Read BRAM N (P.ort B) 2 25351’«3_11}%1:0/ [s R4 g OUTS > l5
5 | scan Type (Port A/B) Write-Read w8 —
b~ ORDER Selector /,‘7/{(’/",’ B Engs RS g, OUT-6
= Scan Pattern Generator (SPG) (WRS) Slok s — LK, 7
port B E— T g, OUT7
Address Generator Module (AGM) (Port B) —rr
{BUFFER FULL or| T R7
CLK|__BUFFER EMPTY; CLK SEL Engg Eng,
CLK2 R Eng;, Engs
CLK
»p CLK2) CLK A/B CLK Engy Engg
CLK2 CLES) 5
2_180) — SEL Eng., En
R;' R7
Clocking Circuitry (CC) FPGA Based On-chip Buffer

LK2,

FIGURE 1. Proposed on-chip buffer architecture on FPGA.

Xilinx BRAM36 from perspective of Write port ‘w’
31 0

1024x32 = 32,684

1023
\ /) 7 0
\ 1
\ ’ .
\ ’ . e
\ ;.
V31 0 .7 4096x8 =
7 07 07 07 0 32684
)
w,| "2 o I I
N
N
wy| M7 fe fs Ty .
N
/\/ N
\.
o~ 4095
W, | T091 | Faoo0 | Yaoss Faoss Xilinx BRAM36 from
1022 N -
perspective of Read port ‘r
W3 F4095 | Fa09a Faoes | Faos2

FIGURE 2. Memory mapping of BRAM36 with different W/R port widths.

depends on the NIP. Fig. 3 illustrates scan patterns such as row
scan, column scan, row prime scan, or column prime scan,
which are widely used by different NIP applications [32].
Our proposed design is capable to deliver pixels in any of
the above-mentioned scan patterns. A customized addressing
module i.e. AGM is devised. It fetches 4 packed pixels per
clock from consecutive rows of input image, and write these
packed pixels on consecutive write locations of BRAM (w,

VOLUME 8, 2020

> Eng, Eng,

> Eng;, Engs

—D
A

3 H> Ere B
——D

> Engs, Eng,

wi - -+ wi023). Once, BRAM is filled completely, it starts
reading pixel wise data in any of the above-mentioned scan
order from corresponding read locations of BRAM (ry, 11,
- 14095). The AGM comprises of three sub-modules, Data
Fetcher (DF), Scan Pattern Generator (SPG) and Write Read
Selector (WRS). The DF fetches 32 Kbits pixels data in terms
of 4 packed pixels per clock from consecutive input image
rows and stores it in 32 Kbits BRAM. It also keeps a track
of address location for next pre-fetching operation. Once
32 Kbits image data is fully buffered in BRAM, it becomes
available to NIP for processing. The design reads these
buffered pixels data in a user defined scan order by using
SPG. This module is flexible to support different scan patterns
selected by user at SCAN ORDER pin. Pseudo code for SPG
for an exemplary nxn block of pixels data is given below.

C. MULTIPLE PIXELS ACCESSING

The chosen size of NIP is 7 x 7 that requires 7 pixels per
CLK. However, due to the synchronous behavior of BRAM,
the design can access each of its port only once per CLK.
Therefore, to get 7 pixels/CLK, conventionally multi-rated
memory accessing technique is used to read from each port
of TDP BRAM at 4 times higher clock speed (x4 CLK)
than rest of the system [23]. Though this method can save
the number of BRAMs but at the expense of reducing overall

181967

IEEE Access

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

I — —
"“\-X\ = [T S B
e~ ‘Ls_ \\4\ X|
_F>< —)
SR E= X x X 1 x
= =V
(— *ﬁ_ *_x_ X
o et [X X
e N . i iy

(c)

FIGURE 3. Scan Orders: (a) Row Scan, (b) Row Prime Scan, (c) Column Scan, (d) Column Prime Scan.

Procedure Pseudo code for Scan orders

Input: Operation, Scan order

Output: ADDR
For Column, Column Prime: a=x; b=y:
For Row, Row Prime: a=y; b=x :

1: if (Pre — fetching) then

2 fory=0;y<(mn—-1);y=y+1do

3 ADDR <=y

4 end for

5: else if (Buffering) then

6 fora=0;a<(mn—1);a=a+1do

7 If (@ = odd) then

8: forb=0;b<(n—1);b=b+ 1do
9: ADDR <=ab

10: end for

11: else if (a = even) then

12: forb=mn—-—1);b<0;b=>b—1do
13: ADDR <=ab

14: end for

15: end for

16: end if

17: end if

system frequency by the same factor of }1. Therefore, instead
of x4 CLK, we used a combination of two x2 CLKs with
25% duty cycle to switch the TDP BRAM, 4 times in a single
CLK. It results in improving frequency twice as compared to
the conventional multi rated technique.

1) DUTY CYCLE BASED BRAM ACCESSING TECHNIQUE

Timing diagram of the proposed design with the proposed
duty cycle-based memory accessing technique is shown
in Fig4. It is comprised of a system clock CLK, and
clean daughter clocks (x2 variants i.e. CLK2{, CLK2; and
CLK2;_180). The daughter clocks are generated by using
Clock Management Tile (CMT) as Phase Lock Loop (PLL).
PLL uses CLK as input and efficiently generates three
glitch free clock variants having different duty cycles and
phase shifts. The clock CLK and CLK2; has 50% duty
cycle whereas CLK2; and CLK2,_ g0 clocks has 25% duty-
cycle. Usually, BRAM is triggered at positive edge of 50%

181968

duty cycle clock i.e. CLK2;. During OFF time of CLK2,
it remains idle. This OFF time of CLK2; is much higher
than the hold time of BRAM. We devised a 25% duty cycle-
based memory accessing technique [30] to utilize this OFF
time. Combination of two 25% duty cycle-based clocks i.e.
CLK2; and CLK2;_gq are deployed with 0° and 180° phase
shifts respectively. These clocks have reduced 25% ON time
and prolonged 75% OFF time. First, BRAM is switched at
positive edge of first clock CLK2;. During its prolonged OFF
time, BRAM is switched once again at positive edge of sec-
ond clock CLK25_1g0. A multiplexer (M1) selects between
CLK2; and CLK2;_1g0 to create a switching clock CLKS.
This CLKS switches BRAM twice in a single clock period of
CLK21, to get an additional output of BRAM within the rated
time limits.

For better understanding, we numerate our memory access-
ing technique on our target Xilinx Artix-7 (XC7A35T) FPGA
device with speed grade -3 [34]. Based on operating fre-
quency of our design i.e. 278 MHz, time period of the CLK is
3.597 ns (1/278 MHz) whereas time period of other variants
of CLK i.e. CLK21, CLK2; and CLK2,_;gq is 1.7985ns. The
clock CLK21 with 50% duty cycle has 0.89925 ns ON time
and 0.89925 ns OFF time whereas CLK2, and CLK2;_1g9
clocks with 25% duty-cycle have 0.45 ns ON time and
1.349 ns OFF time. CLK2,_;g9 is 180° phase shifted with
respect to the CLK2; for providing an additional positive
edge of clock during the OFF time of CLK2;. The time
difference between the two consecutive positive edges of
CLK2; and CLK2;_13gp is 0.899 ns.

For proper switching of BRAM, the above-mentioned
clock timings must conform BRAM timing constraints
imposed by three parameters: Setup time (Tyezp), hold time
(Thota) and clock to out time (Tejock —r0—our) [24]. The Tyenyp,
Thota, and Teock—t0—our Of BRAM for Artix-7 is 0.45 ns,
0.31 ns and 0.64 ns respectively [34]. Following conditions
must be fulfilled for proper switching:

e The 0.45ns ON time of CLK2, and CLK2;_1g9 clocks
must remain greater than both the Tsenp and Theq i.e.
0.45 ns and 0.31 ns respectively.

o The 0.899 ns time difference between the two consec-
utive positive clock edges should remain higher than
Tetock—to—out 1.€. 0.64 ns.

VOLUME 8, 2020

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

IEEE Access

o The resultant output of CLKS has a delay (M1 internal
delay) to meet the Ty time for a valid input data.

This way, by using CLKS, BRAM is switched 4 times per
CLK to read 8 pixels from both ports A and B (4 pixels per
port) and at the same time meet all the timing requirements,
without using conventional x4 multi-rated clocking.

IV. TIMING ANALYSIS

To systematically understand the overall operation and syn-
chronization of the proposed design, we elaborate the timing
analysis of each operation.

A. FETCHING PACKED PIXELS DATA (BRAM DATA
WRITING)

The timing analysis for fetching packed pixels data is illus-
trated in Fig. 5. It reads 4 packed pixels wise data from
external memory and writes it on BRAM i.e. 4 gray scale
pixels per CLK. The EXT MEM ADDR [12: 0] is address
bus for external memory whereas W-A, ADDR A [11: 0] and
DI-A [31: 0] are the write bus, address bus and input data bus
of BRAM for port A. The design reads consecutive image
rows from external memory, starting from first packed pixel
of first row Ri_(1404) (i.e. Ri_1 Ri_2 Rj_3 Rj_4 where R, _,,
represents p* pixel of row 1™ row) at point 0 and write this
data on BRAM via port A at point 1. It continues to write
till last packed pixel of Row 32 R32—(125t0128) (i.e. R3p_125
R37-126 R32-127 R3o_128 registered in port A at point 1024
(in 1024 clock cycles) as shown in Fig.5.

B. ACCESSING PIXEL WISE DATA IN COLUMN-SCAN
PATTERN (BRAM DATA READING)

The timing analysis for data accessing (from port A) by
NIP is illustrated in Fig. 6. It shows that how the proposed
buffer design delivers 7 valid output pixels/CLK from a sin-
gle BRAM. Once the first data fetching cycle is completed,
the design starts reading buffered image pixels from both
ports of BRAM at CLKS and thus delivers 8 output pixels
in one CLK cycle. For reading pixels in column scan order,
address of the first pixel i.e. Rj—1 (where R,_, represents p
pixel of row ' row) is applied to address bus ADDR-A [11:
0] of port A at the positive edge of CLKS at point 0. This
pixel is delivered via DO-A [7: 0] at the next positive edge
of CLKS at point 1. This output pixel is registered in RO at
point 2. The RO is enabled by Engg signal at positive CLK24
cycle and negative CLK cycle. This pixel data remains valid
in RO for a complete CLK cycle as shown in Fig. 7. At the
same time at point 1, next address is applied to port A i.e.
address of Ry_1 and it is delivered at point 2. This output is
registered in R1 at point 3. The R1 is enabled by Eng; signal
at negative CLK2; and CLK cycle. This pixel data remains
valid in R1 for a complete CLK cycle. Similarly, next pixel
R3_ is delivered at the next positive edge of CLKS at point
3. This output is registered in R2 at point 4. The R2 is enabled
by Eng, signal at positive CLK2; and CLK cycle. This pixel
data also remains valid in R2 for a complete CLK cycle. Then,

VOLUME 8, 2020

the next pixel Rq—1 is delivered at the next positive edge of
CLKS at point 4. This output is registered in R3 at point 5.
The R3 is enabled by Eng3 signal at negative CLK2; cycle
and positive CLK cycle. This pixel data also remains valid in
R3 for a complete CLK cycle as shown in Fig. 6.

The data flow for port B is similar to port A. The first
output pixel Rs_1 of port B is registered in R4 at positive
CLK2; cycle and negative CLK cycle at point 2. Second
output pixel R¢_1 is registered in RS at negative clock cycle
of both CLK2 and CLK at point 3. Third output pixel R7_
is registered in R6 at positive clock cycle of both CLK2; and
CLK at point 4. Forth output pixel Rg_ is registered in R7 at
negative CLK2; cycle and positive CLK cycle at point 5. The
flow of all signals which systematically enables these eight
registers (RO-R7) are tabulated in Table 1.

TABLE 1. BRAM output pixels read by Registers (R0-R7).

BRAM Port CLK CLK2; CLKS Active Active Pixels Data
Enable Signal Register
Port A 0 1 1 Enpg RO Ri_1
0 0 1 En R1 R1 R27 1
1 1 1 En R2 R2 R3, 1
1 0 1 En R3 R3 R4, 1
Port B 0 1 1 Enpy R4 Rs_1
0 0 1 En R5 RS Re—1
1 1 1 En R6 R6 R7_1
1 0 1 Engy R7 Rg—1

In this way the NIP gets all 7 valid pixel (our design
produce 8 outputs per clock but NIP uses only 7 pixels data)
simultaneously in one complete system clock CLK from both
ports of BRAM.

The complete pre-fetching and pixel accessing operations
for a 128 x 128 input image is shown in Fig. 7. At point 0 our
system is initialized with a valid START signal and starts
fetching first 32 Kbits image data from external memory into
BRAM. When BRAM is completely filled with pixels data,
it generates a BRAM FULL signal. At point 1, the system
starts delivering buffered data to NIP in a user-defined scan
order until BRAM is empty. At point 2 it generates a BRAM
EMPTY signal which restarts fetching process again for the
next 32 Kbits chunk of image data. This process continues
until the complete image is fetched from external memory and
provides a complete buffered output to NIP at point 10. Once
the complete processing is done it then restarts the system for
the next image available in the external memory.

V. DEMONSTRATION OF PROPOSED IMAGE BUFFERING
ARCHITECTURE FOR PRACTICAL APPLICATIONS

We have proposed a compact image buffering solution
on FPGA platform. This solution is suitable for imple-
menting on-chip buffers for several practical applications.
To evaluate its effectiveness in practical designs, let us con-
sider three exemplary applications from literature [23], [24].
Table 2 shows the implementation outcomes in terms of
number of BRAM required by our design to buffer pixels
data for the chosen applications along with its total power

181969

IEEE Access

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

3.597 ns (278 MHz)

j 1.7985 ns

1.7985 ns

K

3.597 ns
clk __/
1.7985ns
CLK2, . / \ 1.7985 ns
0.45 ns 1.349 ns
CLK2,
0.45 ns 1.349 ns
CLK227180 T
Ml (Mux) X0 1 0 1
| 045ng 0.45 ng
CLKS Tsetup 0.31 ns \Tsetup T \—/ﬁ\ /“ 7/1
Thold
0.75 ns
ADDR-A™ X R, R, Ry, Y Ry
0.64 ns 0.64 ns
Tclock—to-out% Tclock-to—out
DO-A :>< XRI—I R2—1 >< R3-1 >< R4—1 ><

FIGURE 4. Numerating accessing technique for our design on Artix-7.

SRONC

CLK ' ' M

EXT.MEM.ADDR Ri*(l to4 Rl—(s tosXRl—(‘)to 1? ********** Rz—(1m4 Rz—(s to 8 R32-(125 to 198y——
ADDR_A[11:2]: Ri_(1toa IR1—(5 toSXle(‘?fU 1¥ ””””” Ro—(1 04 Ro—(5 tos o (Raz—125 10 130

DIN_A[31:0] ! Ri-a t04)><R1—(5 tos)iR1-(9 t0 12> ””””” Ra—(1to 4><Rz—(5 T G R32-(125 :01%)

Row 1

A A

>
»

—_—
Row 32

Prefetching Row 1 to Row 32 from External Memory

FIGURE 5. Timing analysis of data fetching operation.

consumption, and also compares the result with conventional
methods reported in [18], [25].

The first application is taken for improving quality of X-ray
images [23]. This task is comprised of implementing a 3 x 3
Laplacian filter, a 5 x 5 image Smoothening filter and two
3 x 3 Sobel filters. The 3 x 3 Laplacian filter requires 2 full
row buffers, 5 x 5 image Smoothening filter requires 4 full

181970

row buffers whereas two 3 x 3 Sobel filters requires total 4
(i.e. 2x2) full row buffers. Conventionally, these row buffers
are implemented on BRAMs less efficiently by configuring
them as FIFOs [18], [25]. It requires 1 BRAM per row buffer
therefore 10 BRAMs for 10 row buffers are required alto-
gether as shown in Table 2. However in our proposed buffer
architecture, the pixel rows for up to 7 x 7 NIP are confined

VOLUME 8, 2020

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors IEEEACC@SS

CLK2,

ADDR_A[11:0]
DO_A[7:0]

RO[7:0]

Eng,

R1[7:0]
R2[7:0]

R3[7:0]

FIGURE 6. Timing analysis of data accessing operation (Port A).

® 0

. T

Pre-Fetching { Row1-32}———————————————
; '
; '

Buffering

:
;

;

— Row1 - 32 »
b :

!
W_BRAM |/ (W_Aorw_B)
'

|
START {|_

cNoloNoNoNoRoNolNo

0 :/ 1

1 0

)
=
=

oV 1

AN RN AR A

:\ 0 1

i3
o

:
{Row26 - 57
| .

\

T
/ (W_Aor W_B)}
1

1 1 1
Rys X Riaz XRz—z . Rs_, ; Ry—p *I Ri_3 XI Ry3 j—
1 1 i § 1
R3_1 Y Ryy XRioa X Raz XRs X Riz XRi3)——
1 ; 1 1
1 | | |
1 I — |
' 1 1 1
! 1 1 1
Ri-; —
1 I T T T
1 1 I 1
| 1 1 1
1 \ 1 ! |
T T I T
1 1 1 : 1
Rz,
| - [1
1 1 1 : 1
1 1 1 1
I
| o o
1] '} 1 1
L R34 X Rs—2
| 1 I 1
I | 1
| — 1 1
!]
v .
i
1
1

c
©
®

\!

\
\

X

Row26 - 57 —‘\‘7 Row101- 128

(W_A&W_B) | / (W_Aor W_B)} (W_A&W_B)

R

\
\

\
\

X

A
BRAM_EMPTY | \
(Enable Pre)i \ \,—ﬂ
BRAM_FULL |
(Enable i —‘ \ —‘
\

FIGURE 7. Timing analysis of complete operation.

within a single BRAM. Thus for this specific application [23]
it requires total 4 BRAMs (i.e. 1#4; 1 to buffer rows fora3 x3
Laplacian filter, 1 for a 5 x 5 image Smoothening filter and
2 for two 3 x 3 Sobel filters). In comparison to conventional
approach our design results in saving the number of BRAMs
by 60%. Considering the power consumption of each BRAM
equals to 15.8mW [26], the conventional full buffer approach

VOLUME 8, 2020

consume 158mW (i.e. 15.8 * 10mW) whereas our proposed
buffer architecture consume 60 % less power i.e. 63.2mW
(i.e. 15.8 x 4mW).

Let us consider another application for implementing a
vision pre-processing task [24]. This pre-processing task
is comprised of four 7 x 7 Gabor filters. These four fil-
ters require 24 (i.e. 6x4) full row buffers. Conventional

181971

IEEE Access

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

TABLE 2. Power and resource comparison for practical applications.

Application

Required Conventional [18], [25]

Proposed Percentage Reduction

Row buffers BRAMs Power (mW) BRAMs Power (mW)

Image Enhancement [23] 2+2+2+4=10 10
Vision Pre-processing [24] 6+6+6+6=24 24
Image segmentation [24] 4+2+2=8 8

158 4 63.2 60%
379.2 4 63.2 83.30%
126.4 3 47.4 62.50%

approaches reported in [18], [25] consume 24 BRAMs
sequentially for implementing 24 row buffers whereas our
proposed compact buffer architecture requires just 4 BRAMs
(i.e. 1x4; 1 for each 7 x 7 Gabor filter). It results in saving on
the number of BRAMs by 83.3% and the power consumption
by the same factor as shown in Table 2. Similarly a third
application is when implementing image segmentation task
as reported in [24]. This task is comprised of a 5 x 5 Gaussian
filter and two 3 x 3 Sobel filters. The 5 x 5 image Gaussian
filter requires 4 full row buffers whereas two 3 x 3 Sobel
filters require total 4 full row buffers. Conventional approach
[18], [25] consumes 8 BRAMs sequentially for implementing
8 row buffers altogether whereas our proposed compact buffer
architecture requires just 3 BRAMs (i.e. one for each filter).
It results in saving on the number of BRAMs by 62.5% and
the power consumption by the same factor.

The above discussed on-chip buffer realization for the three
chosen practical applications by using our proposed image
buffering architecture as well as conventional full buffer
architecture [18] supports the effectiveness of the design
proposed in this paper for all such image processing tasks,
especially in an area and power constrained environment.

VI. RESULTS AND COMPARISON

This work has presented an efficient on-chip buffering archi-
tecture on FPGA for resource-constrained NIP applications.
A 7 x 7 NIP kernel and an 8-bit gray scale 128 x 128 image
was considered as a Case Study for our Proof of Concept.
The design was implemented on a low power Xilinx Artix-
7 (XCT7A35T) FPGA device using Xilinx Integrated Soft-
ware Environment (ISE) 14.6. Post place and route results of
our implemented buffer design and its comparison with the
other similar works reported in recent literature are presented
in Table 3 and Table 4 respectively. This design occupies only
1 BRAM with minimal overhead of the supporting circuit, i.e.
only 113 logic Slices at an operating frequency of 278 MHz.

TABLE 3. Implementation results on Artix-7 (XC7A35T).

Resources Utilized
BRAM 36 1
Slices 113
CMT 1
Frequency 278 MHz
Frame rate 13052 fps

The work presented in [7]-[10], [9] was based on PB
methods, while [7], [13], [18] were based on the FB method.
It is evident that all the reported PBs [7]-[10] have a strong
reliance on external memory bandwidth usage for achieving

181972

throughput of 1 clock/pixel. For a (NxN) NIP, usually they
require N pixels/clock from external memory for achieving
throughput of 1 clock/pixel, therefore this is not suitable
for large windows/kernels due to the standard 32-bit avail-
able bandwidth of external memories [6]. The variants of
PB design proposed in [10] and [9] perform better than
conventional PB design of [7] by the factor of S, only if
S windows are computed simultaneously, which is usually
not applicable in resource constrained environments. On the
other hand, all previously proposed FBs have an efficiency
of 1 clock/pixel at the bandwidth usage of 1 pixel/clock.
They achieved throughput of 1 clock/pixel at the expense of
partially utilizing several FPGA resources. Therefore, these
resource inefficient FBs implementations consume hardware
resources quickly and make NIP very expensive and unfeasi-
ble for resource constrained applications. Moreover, deliver-
ing pixels in row scan order is a major shortcoming of these
designs which supports only limited NIPs.

As compared to these previously reported buffering
schemes, our design provides a compact full buffering solu-
tion with an efficiency of 1.3 clock/pixel at a standard band-
width requirement of 32-bits (i.e. 4 pixels/clock). Unlike to
the PBs, which sharply raise memory bandwidth usage for
larger kernels, our design uses a fixed memory bandwidth
which is within the permissible bandwidth limit. It exploits
the fact that when external memory bandwidth (32 bits) is
higher than the pixel precision (8 for gray scale image),
it can be used to fetch packed image pixels from external
memory per clock cycle. This approach results in reducing
I/O latency of pre-fetching operation in our design. With
the achieved operating frequency of 278 MHz and efficiency
of 1.3 clock/pixel, it is capable to support high frame rates for
HD images (1080 x 1920) @103.

Before proceeding to compare the proposed design with
the previously reported methods in terms of device uti-
lization, we need to consider the following facts: In most
of the conventional implementations, FPGA logic Slices
[7]1-[10], [9] are configured as large memory elements- this
is not an appropriate approach as FPGAs have dedicated
memory elements present in the form of BRAM. Hence,
this is an inappropriate resource usage for implementing
large memory functions when memory elements like BRAM
remain unutilized. On the other hand, those implementations
[12], [13], [18] that use BRAM as FIFO do not utilize it to
its full capacity, which results in partial utilization of several
BRAM units.

Secondly, in various previously reported conventional
implementations, the memory requirement is calculated in

VOLUME 8, 2020

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

IEEE Access

TABLE 4. Result and comparison.

Work Device Size Application Buffering method External Memory Resource Utilization Throughput

Bandwidth
Pixel/Clock Slices BRAM Clock/Pixel

[7] XC4013 5x5 2D convolver PB 5 376 0 1

[8]1 Spartan3 7x7 2D convolver PB 7 120(FF) - 7

[8]11 Spartan3 7x7 2D convolver PB 7 T84(FF) - 1

[8] IIT Spartan3 7x7 2D convolver PB 7 784(FF) - 1

[10] Spartan3 5x5 2D convolver PB 1.8 686 0 1

[9] Virtex 5 7x7 1D convolver PB 1.86 632 (FF), 328 LUT 0 1

[10] Spartan3 5x5 2D convolver PB 1.8 686 0 1

[13] Spartan3 3x3 Morphology FB 1 857 12 1

[18] - NxN 2D convolver FB 1 Not Given N-1 1

[7] XC4013 5x5 2D convolver FB 1 2129 0 1

Proposed Artix-7 7x7 Diversified NIPs FB with Pre-fetching 4 113 1 1.3

TABLE 5. Device utilization comparison.

Work Buffering method Equivalent Slices
Bose et al [7] PB 93
Cardells et al [8] 1 PB 15
Cardells et al [8] IT PB 98
Cardells et al [8] IIT PB 98
Zhang et al [10] PB 169
Arjun et al [9] PB 240
Schmidt et al [13] FB 1644
Moore et al [18] FB 768
Bosi et al [7] FB 583
Proposed FB with Pre-fetching 241

terms of Flip Flops (FFs), which is a conservative approach
on actual FPGA devices. The actual parameter to estimate
FPGA based system resources is logic Slices rather than
FFs. In reality, the Xilinx Synthesis Tool (XST) places and
routes the design on target FPGA device by using mapping
algorithms [29]. These algorithms partially utilize CLBs to
limit the required FFs count. Considering the above findings,
in Table 4 we compare our design with previous schemes
in terms of Slice count. Moreover, since the reported results
are available on different FPGA devices, therefore for a fair
comparison of device utilization, we provide results in terms
of equivalent Slice count which is calculated by multiplying
the reported results with a normalizing factor. A factor of 8 is
applied as normalizing factor for comparing Xilinx Spartan-
3 and XC4013 with Xilinx Artix-7 [31] i.e. 1 Slice of Artix-
7 is equivalent to 8 Slices of Spartan-3 and XC4013; while a
factor of 4 is applied as a normalizing factor for comparison
of those results which were given in terms of FFs count
on Spartan-3 and XC4013. Also, 1 BRAM36 is considered
to be equivalent to 128 Slices [32]. By comparing device
occupancy in terms of equivalent logic, we eliminated the
impact of technology difference and ensured fair comparison
results. Finally, since all the reported results are available for
different kernel sizes therefore, they are scaled to a 7 x 7
kernel for a fair comparison.

Table 5 shows that the functionally inefficient PBs pro-
posed in [7] and [10] which are considered as low cost
approaches have utilized 93 and 169 equivalent Slices
for partial pixel data buffering respectively. On the other

VOLUME 8, 2020

hand, functionally efficient FBs proposed in [7] consumed
583 equivalent Slices as memory elements and underuti-
lized dedicated memory element (BRAM) which cannot be
further used for implementation of other logic functions.
However, [13] utilized 1644 equivalent Slices for mem-
ory function in an inefficient way, failing to exploit the
full potential of BRAM. As compared to all of these pro-
posed buffering approaches, our functionally efficient yet
compact design occupies 241 equivalent Slices for full row
buffering.

It is evident from these results that the proposed design
offers performance comparable to the FB method and utilizes
hardware resources comparable to the low cost PB method
[7]. Another advantage of the proposed on-chip buffer design
is its flexibility to provide pixels in different scan order,
so that it can be used to fulfill the buffering requirements of
diversified NIPs; while all previously reported buffers have
limitations in providing pixels in a fixed row scan order which
constrains them to be used only for those specific NIPs which
require pixels in that specific scan order.

Our proposed design is able to cater for any image
size. Images that are larger than the chosen size of
128 x 128 can be partitioned into vertical bands [7] of W width
(W<128). These vertical bands are buffered by using the
same number of BRAMs as a narrow but complete image
at a time.

VIi. CONCLUSION

This paper proposed an efficient and compact BRAM based
on-chip buffer architecture with an additional feature of pre-
fetching and user defined scan ordering for a wide range of
neighborhood operations. The proposed buffering solution
eliminates the linear requirement of BRAM with respect to
the NIP size for full rows buffering by confining multiple
image rows within a single BRAM without compromising
on system performance. It operates at 278 MHz to sup-
port real time image processing requirements (1080 x 1920)
@ 103fps. The proposed efficient on-chip buffer methodology
out-merits previous conventional implementations in terms of
area, making it suitable for portable, low power and mobile
imaging devices.

181973

IEEE Access

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

REFERENCES

(1]
[2]

[3]

[4]

[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Al Najjar, M. Ghantous, and M. Bayoumi, Video Surveillance for
Sensor Platforms. New York, NY, USA: Springer-Verlag, 2014.

R. C. Gonzalez and R. E. Woods, Digital Image Processing.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

C. Solomon and T. Breckon, Fundamentals of Digital Image Processing:
A Practical Approach With Examples in MATLAB. Hoboken, NJ, USA:
Wiley, 2011.

M. Holzer, F. Schumacher, 1. Flores, T. Greiner, and W. Rosenstiel, ““A real
time video processing framework for hardware realization of neighbor-
hood operations with FPGAs,” in Proc. 21st Int. Conf. Radioelektronika,
Apr. 2011, pp. 1-4.

D. G. Bailey, Design for Embedded Image Processing on FPGAs.
Hoboken, NJ, USA: Wiley, 2011.

T.P.Cao, D. Elton, and G. Deng, ‘‘Fast buffering for FPGA implementation
of vision-based object recognition systems,” J. Real-Time Image Process.,
vol. 7, no. 3, pp. 173-183, Sep. 2012.

B. Bosi, G. Bois, and Y. Savaria, “Reconfigurable pipelined 2-D con-
volvers for fast digital signal processing,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 7, no. 3, pp. 299-308, Sep. 1999.

F. Cardells-Tormo and P.-L. Molinet, “‘Area-efficient 2-D shift-variant con-
volvers for FPGA-based digital image processing,” IEEE Trans. Circuits
Syst. I, Exp. Briefs, vol. 53, no. 2, pp. 105-109, Feb. 2006.

A. K. Joginipelly and D. Charalampidis, “Efficient separable convolution
using field programmable gate arrays,” Microprocess. Microsyst., vol. 71,
Nov. 2019, Art. no. 102852.

H. Zhang, M. Xia, and G. Hu, ‘A multiwindow partial buffering scheme for
FPGA-based 2-D convolvers,” IEEE Trans. Circuits Syst. I, Exp. Briefs,
vol. 54, no. 2, pp. 200-204, Feb. 2007.

F. Cardells-Tormo and P. Molinet, “Area-efficient 2-D shift-variant con-
volvers for FPGA-based digital image processing,” in Proc. IEEE Work-
shop Signal Process. Syst. Design Implement., Nov. 2005, pp. 209-213.
X. Liang, J. Jean, and K. Tomko, “Data buffering and allocation in map-
ping generalized template matching on reconfigurable systems,” J. Super-
comput., vol. 19, no. 1, pp. 77-91, 2001.

M. Schmidt, M. Reichenbach, A. Loos, and D. Fey, “A smart camera
processing pipeline for image applications utilizing marching pixels,”
Signal Image Process., Int. J., vol. 2, no. 3, pp. 137-156, Sep. 2011.

L. Gasparini, R. Manduchi, M. Gottardi, and D. Petri, “An ultralow-power
wireless camera node: Development and performance analysis,” IEEE
Trans. Instrum. Meas., vol. 60, no. 12, pp. 3824-3832, Dec. 2011.

M. Imran, N. Ahmad, K. Khursheed, M. A. Waheed, N. Lawal, and
M. O’Nils, “Implementation of wireless vision sensor node with a
lightweight bi-level video coding,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 3, no. 2, pp. 198-209, Jun. 2013.

M. Imran, K. Shahzad, N. Ahmad, M. O’Nils, N. Lawal, and B. Oelmann,
“Energy-efficient SRAM FPGA-based wireless vision sensor node:
SENTIOF-CAM,” IEEE Trans. Circuits Syst. Video Technol., vol. 24,
no. 12, pp. 2132-2143, Dec. 2014.

C.-L. Sotiropoulou, L. Voudouris, C. Gentsos, A. M. Demiris,
N. Vassiliadis, and S. Nikolaidis, ‘“Real-time machine vision FPGA
implementation for microfluidic monitoring on lab-on-chips,” IEEE
Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 268-277, Apr. 2014.

C. T. Moore, H. Devos, and D. Stroobandt, “Optimizing the FPGA mem-
ory design for a sobel edge detector,” in Proc. 20th Annu. Workshop
Circuits, Syst. Signal Process. (ProRISC), 2009, pp. 496-499.

M. Imran, K. Khursheed, N. Ahmad, M. O’Nils, N. Lawal, and
M. A. Waheed, “Complexity analysis of vision functions for comparison
of wireless smart cameras,” Int. J. Distrib. Sensor Netw., vol. 10, no. 1,
Jan. 2014, Art. no. 710685.

G. Licciardo, C. Cappetta, and L. Di Benedetto, “Design of a convolu-
tional two-dimensional filter in FPGA for image processing applications,”
Computers, vol. 6, no. 2, p. 19, May 2017.

G. D. Licciardo, C. Cappetta, L. Di Benedetto, A. Rubino, and R. Liguori,
“Multiplier-less stream processor for 2D filtering in visual search appli-
cations,” [EEE Trans. Circuits Syst. Video Technol., vol. 28, no. 1,
pp. 267-272, Jan. 2018.

S.Jin, J. Cho, X. D. Pham, K. M. Lee, S.-K. Park, M. Kim, and J. W. Jeon,
“FPGA design and implementation of a real-time stereo vision system,”
IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 1, pp. 15-26,
Jan. 2010.

S. Perri, M. Lanuzza, P. Corsonello, and G. Cocorullo, “A high-
performance fully reconfigurable FPGA-based 2D convolution processor,”
Microprocess. Microsyst., vol. 29, nos. 8-9, pp. 381-391, Nov. 2005.

181974

[24] B. Zhang, K. Mei, and N. Zheng, “Coarse-grained dynamically recon-
figurable processor for vision pre-processing,” J. Signal Process. Syst.,
vol. 79, pp. 45-61, Jul. 2013.

[25] C. Johnston, K. Gribbon, and D. Bailey, “Implementing image process-
ing algorithms on FPGASs,” in Proc. 11th Electron. New Zealand Conf.
(ENZCon), 2004, pp. 118-123.

[26] A.A.M.Kazmi, P. Akhtar, and D.-E.-S. Kundi, “FPGA based compact and
efficient full image buffering for neighborhood operations,” Adv. Electr.
Comput. Eng., vol. 15, no. 1, p. 10, 2015.

[27] 7 Series FPGAs Memory Resources, User Guide V1.10, Xilinx, Inc.,
Albuquerque, NM, USA, 2013.

[28] LogiCORE IP Block Memory Generator V7.3, Xilinx, San Jose, CA, USA,
2012.

[29] V. G. Oklobdzija, The Computer Engineering Handbook. Boca Raton, FL,
USA: CRC Press, 2001.

[30] 7 Series FPGAs Overview, DS180, Xilinx, San Jose, CA, USA, Jul. 2013.

[31] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, vol. 497. New York, NY, USA: Springer, 2012.

[32] S. Drimer, T. Giineysu, and C. Paar, “DSPs, BRAMs, and a pinch of
logic: Extended recipes for AES on FPGAs,” ACM Trans. Reconfigurable
Technol. Syst., vol. 3, no. 1, p. 3, 2010.

[33] D.-E.-S. Kundi, A. Aziz, and M. Kazmi, “An efficient single unit T-box/T-
1-box implementation for 128-bit AES on FPGA,” Secur. Commun. Netw.,
vol. 8, no. 9, pp. 1725-1731, Jun. 2015.

[34] Artix-7 FPGA Data Sheet: DC and Switching Characterstics, Xilinx,
San Jose, CA, USA, 2014.

[35] S. Perri and P. Corsonello, “Efficient memory architecture for image
processing,” Int. J. Circuit Theory Appl., vol. 39, no. 3, pp. 351-356,
Mar. 2011.

MAIJIDA KAZMI was born in 1983. She received
the B.E. and M.E. degrees in electrical engineer-
ing from the NED University of Engineering and
Technology, Karachi, Pakistan, in 2009, and the
Ph.D. degree in electrical engineering from NUST
University, Pakistan, in 2017. She is currently an
Assistant Professor with the Department of Com-
puter and Information Systems Engineering, NED
University of Engineering and Technology. Her
research interests include digital systems design,
system on a chip, digital image processing, and computer vision.

ARSHAD AZIZ received the Ph.D. degree in elec-
trical engineering from the National University
of Sciences and Technology, Karachi, Pakistan,
in 2007. He is currently a Professor with the
Electrical Engineering Department, National Uni-
versity of Sciences and Technology and the Direc-
tor of the Embedded Systems Laboratory. His
research interests include digital systems design,
network security, and edge computing.

HASHIM RAZA KHAN received the B.E. degree
in electrical engineering from the NED University
of Engineering and Technology, Karachi, in 2002,
the M.Sc. degree in communications engineering
from RWTH Aachen, Germany, in 2006, and the
Ph.D. degree in electronic engineering from the
NED University of Engineering and Technology,
in 2014. He was involved in research with Agi-
lent Technologies, Germany, Infineon Technolo-

o gies, and Link6ping University, Sweden. He is
currently an Assistant Professor with the NED University of Engineering and
Technology, where he is also responsible with the Instrumentation Centre,
the RF Laboratory, Electronics Design Centre, and the Neuromorphic Circuit
Design Activities with the National Centre of Artificial Intelligence. His
research interests include circuits and system design for wide range of
applications, including AI, robotics, multistandard transceivers, computer
vision, and power electronics.

VOLUME 8, 2020

M. Kazmi et al.: Resource-Efficient Image Buffer Architecture for Neighborhood Processors

IEEE Access

SAAD AHMED QAZI received the B.E. degree
in electrical engineering from the NED University
of Engineering and Technology, Karachi, in 2001,
the M.S. degree in digital signal processing appli-
cations from Lancaster University, U.K., in 2002,
and the Ph.D. degree from Brunel University Lon-
don, U.K., in 2006. He is currently with the NED
University of Engineering and Technology as a
Meritorious Professor and the Dean with the Fac-
ulty of Electrical and Computer Engineering. He
is also a Principal Investigator with the Neurocomputation Laboratory,
National Centre of Artificial Intelligence. He has several international publi-
cations in major areas of technology. He is also working on several national
and international research projects. His research interests include digital
signal processing, joint time frequency analysis, data analytics, and decision
support systems.

VOLUME 8, 2020

LAMPROS K. STERGIOULAS (Member, IEEE)
received the M.Sc. (Eng.) and Ph.D. degrees
in electrical engineering from the University of
Liverpool, UK. He was a Chaired Professor
in business analytics with the Surrey Business
School, University of Surrey, and a Chaired Pro-
fessor in computer science with Brunel University
London, U.K. He is currently a Professor of data
science with The Hague University of Applied
Sciences, where he also leads the Data Science
Research Group, Faculty of IT and Design. He is an Expert Evaluator for
various programmes sponsored by the European Commission and EU Mem-
ber States. He has been a Principal Investigator of more than 30 international
projects and a Coordinator of four European research projects, in which
he collaborated with EU and national public organizations, such as the
European Centre for Disease Prevention and Control (ECDC), the European
Medicines Agency (EMA), the European Commission, the National Health
Service (NHS), U.K., and national and regional authorities around the world.
He is also active with the European Commission as an Expert in artificial
intelligence, data science, and research ethics. He has written more than 200
scientific publications, supervised, and examined many Ph.D. theses in data
science, human-centered computing, health informatics, modeling and simu-
lation, and intelligent systems. His current research interests include applied
Al/data science and analytics, health informatics, data-driven management
and innovation, system modeling an simulation, and data ethics.

181975

