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ABSTRACT A high number of studies have already demonstrated an electroencephalography (EEG)-based
emotion recognition system with moderate results. Emotions are classified into discrete and dimensional
models. We focused on the latter that incorporates valence and arousal dimensions. The mainstream
methodology is the extraction of univariate measures derived from EEG activity from various frequencies
classifying trials into low/high valence and arousal levels. Here, we evaluated brain connectivity within and
between brain frequencies under the multiplexity framework. We analyzed an EEG database called DEAP
that contains EEG responses to video stimuli and users’ emotional self-assessments. We adopted a dynamic
functional connectivity analysis under the notion of our dominant coupling model (DoCM). DoCM detects
the dominant coupling mode per pair of EEG sensors, which can be either within frequencies coupling (intra)
or between frequencies coupling (cross-frequency). DoCM revealed an integrated dynamic functional
connectivity graph (IDFCG) that keeps both the strength and the preferred dominant coupling mode.
We aimed to create a connectomic mapping of valence-arousal map via employing features derive from
IDFCG. Our results outperformed previous findings succeeding to predict in a high accuracy participants’
ratings in valence and arousal dimensions based on a flexibility index of dominant coupling modes.

INDEX TERMS Affective computing, computational neuroscience, emotion in human-computer interaction,
graph theory, modeling from video, modeling human emotion, music, neuroscience, video.

I. INTRODUCTION
In the last thirty years of active research, even before the
mass commercialization of personal computers, the study
of music and how it affects the human brain enjoyed much
attention and drew researchers from the different inter-
disciplinary fields [1]. Emotions play a key role in daily
human communication and can be expressed either ver-
bally [2] or via non-verbal cues like gestures, voice, and facial
expressions [3]. [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ting Li .

Emotion detection systems via electroencephalogram
(EEG) opens a large variety of important applications for
medicine and scientific research [5] and to the field of
affective computing [6]. There are multimedia environments
designed to recognize human emotional states like recom-
mendation and tagging systems, films, games, and also
biofeedback systems based on headsets that might help tar-
get groups with, e.g. depression to control their emotional
states [7].

Music can induce emotions and impact the mood of indi-
viduals [8]. Implicit (generating subjective and emotional
tags) tagging of music videos using affective emotional infor-
mation can benefit a recommendation and retrieval system to

170928 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1551-9940
https://orcid.org/0000-0002-0000-5392
https://orcid.org/0000-0001-5145-3024


A. D. Marimpis et al.: Multiplex Connectivity Map of Valence-Arousal Emotional Model

improve its performance [9], and for the design of a person-
alized music recommendation system [10].

Specifically, users’ emotions while watching amusic video
clip will train a recommender system to recommend suc-
cessfully a music clip that matches users’ current emotional
state. Patterns of EEG activity succeeded in discriminat-
ing at some level the different valence and arousal levels.
For example, asymmetrical patterns of frontal EEG activ-
ity have been shown to distinguish between high and low
arousal levels [11]. A famous multimodal dataset called
DEAP (Database for Emotional Analysis using Physiological
Signals) attracted the scientific interest of many research
studies to present their results as an attempt to define the best
EEG-based descriptors of human emotion induced by music
video clips [11].

DEAP database contains the electroencephalographic
(EEG) activity and peripheral physiological signals of
32 participants who were recorded while watching
40 one-minute-long excerpts of music videos. Participants
rated each video in terms of the levels of arousal, valence,
like/dislike, dominance, and familiarity.

The original article presented the DEAP database reported
a 62.0 % for low-high arousal and a 57.6% for low-high
valence classification. A recent study reported an improve-
ment with 74.3 % for low-high arousal and 77.2% for
low-high valence classification tasks [12]. Another study
reported the first results from a static connectivity analy-
sis incorporating the richness of spatiotemporal EEG brain
activity from 1 min into a single functional brain network.
Reported classification results at around 78% [13]. In [14],
the authors studied another aspect of the emotion activated
patterns, their stability. Working on the DEAP dataset, and
another in-house dataset, they proposed that the emotional
state is defined in a continuous space and emotional states
are dynamically evolving. For that reason, the employed a
smoothing technique over their numerous selected features
(a linear dynamic system), to filter out components which
are not associated with emotional states. In the end, they
compare multiple, multiclass classification methods with the
maximum reported score of 69.67% accuracy.

Recently, many research studies attempted to adapt
brain connectivity as a proper framework to explore the
dimensions of emotion and to improve emotion recogni-
tion [15]–[17]. Brain connectivity can inform us about how
different brain areas communicate [18] and are encapsulating
complementary information compared to brain activity [19].
Brain subnetwork over frontal brain areas plays a control role
for emotions [20]. Increased delta activity (synchronization)
has been reported in both pleasant and unpleasant stimuli [21]
while increased delta connectivity has been found after lis-
tening to music [22]. Functional phase connectivity in both
beta and gamma bands has been associated with auditory and
motor functions linked to listening to music [23]. However,
most studies so far analyzed EEG recordings across different
experimental paradigms focusing solely on within-frequency

coupling, leaving unexplored the notion of cross-frequency
coupling.

Several researchers explored the contribution of frontal
EEG asymmetry to the understanding of emotional process-
ing [24]. Frontal EEG asymmetry refers to the hemispheric
difference of brain activity in various frequencies between
EEG sensors located over the left or right frontal area. They
reported emotion recognition under this framework [25].
Positive emotions are associated with a left-hemispheric
asymmetry of brain activity, while negative emotions with a
right-hemispheric activity [26], [27]. Frontal asymmetry has
been reported in a brain connectivity context [18]. In other
studies, they reported no change in functional asymmetry
after an auditory stimulus [28].

In other words, research about the brain mechanisms asso-
ciated with frontal asymmetry is necessary.

At the same time, a few papers that adopted a brain
connectivity analysis restricted their analysis in static brain
networks instead of dynamic functional connectivity analy-
sis [13], [29], [31]. Secondly, the emotion recommendation
system was designed as two separate two-class binary clas-
sification problems instead of a four-class problem or better
as a regression analysis that can predict the valence-arousal
personal assessment more accurately. Third, the scientific
results so far have not provided to the community of affecting
computing and emotional BCI systems an accurate emotional
recommendation system. Classification results are too low to
support a real application scenario [29].

Here, we adopted a dynamic functional connectivity anal-
ysis incorporating into an integrated dynamic functional con-
nectivity graph (IDFCG) both the dominant coupling mode
and the strength of functional coupling [30]. We searched
for dominant coupling mode for each pair of EEG sensors
and across temporal segments among within frequencies cou-
pling modes (intra) and between frequencies coupling modes
(cross-frequency coupling -CFC). Finally, the IDFCG keeps
the type of dominant coupling mode, either intra or CFC and
their strength. Our analysis focused on creating for the very
first time a high accurate chronnectomic mapping of EEG
brain connectivity into a valence-arousal 2D map. At first
place, we focused on predicting participants’ ratings of videos
following a two-stage regression analysis for valence and
arousal dimensions.

The rest of the paper is organized as follows: Section 2
describes the materials and section 3 describes the nov-
elty of our advanced analytic pipeline. Section 4 is
devoted to the results of the present study and, finally,
section 5 discusses our findings in relationship with current
literature.

II. MATERIALS
We studied the publicly available dataset, ‘‘DEAP: A Dataset
for Emotion motion Analysis using Physiological Sig-
nals’’ [11]. It is a multimodal dataset for the analysis of
human affective states.
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FIGURE 1. From Prominent Coupling Modes into Dominant Coupling Modes. An example from subject 1, first trial and for EEG pairs
of Fp1 – Cp5.A) We demonstrated in three consecutive temporal segments the phase oscillations of the seven frequency bands for every EEG
sensor. We denoted with red the dominant coupling mode between specific brain frequencies from the two EEG sensors. Below, every pair of
plots of the phase time series, we tabulated in the so-called comodulograms the within and between frequency coupling index estimated via
iPLV estimator. The dominant coupling mode in every temporal segment is denoted with ‘∗’ where in the first two temporal segments, the
dominant coupling mode is stable α1 − α2 while in the third temporal segment it transits into α2 − β1. B) The fluctuation of the functional
coupling between Fp1 – Cp5 is illustrated as a time series. From this time series, we estimated detrended fluctuation analysis (TMDFA). C) The
transition behavior of dominant coupling mode across experimental time for Fp1 – Cp5 is demonstrated while the below comodulogram
tabulates the probability distribution of the dominant coupling mode.

Thirty-two (32) Healthy participants (50% female), aged
between 19 and 37 (mean age 26.9), were recruited to partic-
ipate in the experiment.

The electroencephalogram (EEG) and an array of eight
other peripheral physiological signals (including galvanic
skin response, skin temperature, blood volume pressure,
respiration rate, electromyogram and electrooculogram
(horizontal and vertical) facial videos) were recorded while
each one of subjects watched forty (40) one-minute long
excerpts of music videos (Figure 1A). For some of the
subjects, the facial videos were also obtained. The EEG setup
included 32 active electrodes (channels) according to the
international 10-20 system.

Afterwards, the subjects were assigned with the task of
rating each video in terms of the levels of arousal, valence,
like/dislike, and dominance by moving a computer mouse
strictly horizontally over a scale of numbers from 1 to 9.
A set of self-assessing manikins was displayed in the middle
of the screen to help visualize these scales. For valence,
this scale ranges from unhappy or sad to happy or joyful.
For arousal, it ranges from calm or bored to stimulated or
excited. For dominance, it ranges from submissive (or ‘‘with-
out control’’) to dominant (or ‘‘in control, empowered’’). The
liking index measures the participants’ tastes, not their feel-
ings. For a comprehensive discussion about the experiment
setup and protocol, the selection of the music videos, etc.,
the interested readers are encouraged to review the original
paper [11].

Besides all the raw data and the original metadata (such
as scores and demographics), the authors are kind enough
to further provide a preprocessed alternative to the dataset,
with downsampling to 128Hz applied and reordering of the
electrodes already in place. We gained access to these data
by following the given instructions; print, sign, and scan the
provided EULA (End User License Agreement) and then
return it via e-mail.

III. METHODS
The dynamic functional connectivity was estimated using a
window sliding over a subject’s EEG recording. It was exam-
ined for the following seven brain frequencies (δ, θ , α1, α2,
β1, β2, γ ), defined respectively within the ranges (0.5-4 Hz;
4-8 Hz; 8-10 Hz; 10-13 Hz; 13-20 Hz; 20-30 Hz; 30.-45 Hz).
We adopted a 3rd order Butterworth filters applied in a
zero-phase mode to extract these characteristic brain rhythms
using filtfilt MATLAB function.

A. CONSTRUCTION OF AN INTEGRATED DYNAMIC
FUNCTIONAL CONNECTIVITY GRAPH (IDFCG)
To capture the multiplexity of human brain dynamics induced
from music video clips, we adopted our DoCM model pre-
sented in our previous studies [30]–[34]. We first adopt a
sliding window of 1sec moving its center by 5 ms towards
the experimental time. As a proper functional connectivity
estimator, we employed the imaginary part of phase clocking
value (iPLV; 30-32) to estimate both within and between
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frequencies functional interactions (Figure 1). During this
process, we constructed seven within frequencies DFCG per
trial and subject of size [trials x temporal segments x sen-
sors x sensors]. To capture these cross-frequency couplings,
we employed a very well-known and established method,
namely phase-to-amplitude coupling (PAC) [35]. It quanti-
fies the modulation between the oscillations of a lower fre-
quency’s phase and a higher frequency’s amplitude. These
interactions can be estimated within and between the sen-
sors [36]–[41] based on the contents of the power-power,
amplitude-amplitude, and amplitude-phase.

The steps to estimate PAC has been described in detail
elsewhere [32], [39]. Shortly, we filtered the activity from one
EEG sensor to a low-frequency (i.e. θ ), and we extracted its
instantaneous Hilbert phase. The EEG brain activity from the
second sensor is filtered in a high-frequency (e.g. lower β1)
and computed its instantaneous Hilbert envelope. Subse-
quently, we filtered the instantaneous Hilbert envelope of the
high-frequency signal within the range of the low-frequency
range (θ component within the lower β1), and we extracted
its Hilbert phase dynamics. Finally, we adopted iPLV as
a connectivity estimator to quantify the phase-locking that
will reflect the PAC-interaction between the two involved
brain rhythms. This phase-locking represents the degree to
which the lower β (β1) amplitude is comodulated with the
θ phase. The outcome of this procedure is the construction
of 21 DFCG between pairs of frequencies DFCG per trial
and subject of size [trials x temporal segments x sensors x
sensors]. This will give a total of 28 DFCG per trial and
subject (Figure 1C).

The original phase-locking value is computed as:

PLV =
1
T

∑T

t=1
ei(ϕk (t)−ϕl (t)) (1)

and the iPLV is computed using the following:

iPLV =
1
T
|I

(∑T

t=1
ei(ϕk (t)−ϕl (t))

)
| (2)

In both cases, T denotes the number of samples under
consideration and ϕ (t) t the instantaneous phase of the signal,
as computed from Hilbert Transformation.

To detect the DoCM per pair of EEG sensors and temporal
segments, we must adopt a proper surrogate analysis. In our
previous studies [30]–[32], [39], we created 1.000 surrogate
signals per EEG sensor, temporal segment, and for each of
the seven frequency bands. Then, we estimated the 1.000 4D
graphs (for each frequency band) to create a baseline distri-
bution for each pair of EEG sensors, temporal segment, and
potential couplingmode (28). Then, a p-value was assigned to
each EEG sensor pair, temporal segment and coupling mode.
Practically for every EEG pair at every temporal segment,
we will get 28 p-values. By applying a Bonferroni-adjusted
statistical threshold of p< 0.01/28= 0.000357 to control for
family-wise Type I error, we can get the DoCM. However,
three cases must be taken into account: 1) only one DoCM
survived the statistical threshold, 2) more than survived the

statistical threshold, and we decided to keep the one with the
maximum iPLV value and 3) none of the potential coupling
modes survived. In the end, we constructed personalized in
a trial basis two IDFCG, one that kept the DoCM using
numbers from 1 up to 28 {1 for δ, 2 for θ ,. . . , 7 for γ , 8 for
δ− θ , . . . , 28 for β2− γ } (Figure 1C), and a second one that
kept the iPLV value (Figure 1A).

B. DESCRIPTORS DERIVED FROM IDFCG
The application of our DoCM in a dynamic perspective
provides us with an enriched description of the brain’s con-
nectivity within and between all frequencies’ contents (cross-
frequency coupling). This mapping captures the different
underlying, unknown processes.

The outcome of our DoCM model can be tabulated
in two 4D matrices M , of size coupling modes ×
temporal segments × sensors × sensors. The first one
stores the strength of the DoCM model, and the second
the type of dominant coupling mode encoded with integers
from 1 up to 28.

1) FLEXIBILITY INDEX
The Flexibility Index (FI) has been defined as the rhythm
of change of dominant coupling mode between a pair of
brain areas (here EEG pair of sensors) across experimental
time [32], [33]. FI was estimated based on the second 4D
matrix that keeps the dominant couplingmode. The following
formula estimates it:

FI =
number of transitions

number of temporal segments− 1
(3)

Which results in a matrix FI trial is of size [sensors ×
sensors] (Figure 2A). Based on our previous positive expe-
rience [30], [31], we selected FI as the leading component of
our analysis. It is depicted in Figure 2C. The outcome of this
analysis is a matrix of size [sensors×sensors] per trial FI trial .

2) DETRENDED FLUCTUATION ANALYSIS (DFA)
To analyze the fluctuation of the temporal coupling strength,
we adopted DFA. DFA is a robust descriptor unsusceptible
to non-stationary processes. Specifically in our study, the
temporal autocorrelation structure of encephalographic activ-
ity and the functional coupling strength. Additionally, DFA,
has been proven to be useful in untangling the long-range
correlations in time series. DFA was estimated based on the
first 4D matrix that stores iPLV coupling strength of the
dominant coupling mode.

In a nutshell, to estimate the autocorrelation property of a
signal Y(t), the time series is divided into non-overlapping
segments Yi(t), with t = 1,. . . ,n being discrete time steps
and i = 1,. . . ,M indexing the temporal segments. M =

N/n denotes the number of non-overlapping segments of
length n. In each segment the linear trend ytrendi (t) is
removed (detrended) providing an estimate of fluctuations in
terms of:

Fi(n) =

√
1
N

∑
t=1

(Yi (t)− Y trendi (t))
2

(4)
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FIGURE 2. The data acquisition and feature extraction methodology applied to each subject and each music video. A) The electroencephalogram (EEG) of
a subject is recorded while it watches a short excerpt, one minute, of a music video. B) We estimated dynamic functional connectivity graphs (DFCG) for
each of within frequency bands (7 in total) and also for cross-frequency coupling modes between every pair of the basic frequency bands (21 in total),
resulting into twenty-eight (28) potential coupling modes. This analysis was followed for every trial and independently for each subject C.1) Following a
proper surrogate analysis, we revealed the dominant coupling mode (DoCM) for every pair of EEG sensors and for every temporal segment. The type of
DoCM is stored in a 4D graph of size [trials × temporal segments × sensors × sensors] C.2) The Flexibility Index (FI) is then computed from all temporal
segments by polling each EEG sensor about its DoCM index’s transitions between consecutive temporal segments. D.1) Similar to step (C) but we keep
track of the connectivity iPLV value per pair of EEG sensors and temporal segments stored in a second 4D graph of size [trials × temporal
segments × sensors × sensors] and in D.2) we compute the Variance (VAR) of the fluctuations of functional connectivity strength across temporal
segments per pair of EEG sensors as a simple index of the non-stationarity of dynamic functional connectivity.

This definition captures a set of fluctuations Fi that,
in the presence of a power law are described with the
equation Fi(n·τ ) = nα·Fi(τ ), which is equivalent to
log(Fi) = α·log(n)+ const. A linear relationship on a log-log
plot indicates the presence of power law (fractal) scaling. The
fluctuations can be characterized by a scaling exponent α, the
slope of the line relating log F(n) to log n. For further details
regarding the estimation of DFA see the related article [40].

DFA has been estimated over the 1D time series that
describe fluctuations of connectivity coupling across tempo-
ral segments for every pair of EEG sensors (Figure 1C). This
feature constructs a matrix DFAtrial of size sensors× sensors
(Figure 2D). We have previously used this estimator for
dynamic functional connectivity analysis [41].

C. GRAPH CLUSTERING APPROACH FOR FEATURE
SELECTION
In this section, we will describe the methodological approach
we followed to construct the proposed graph-based feature
selection.

We established a feature engineering process, that automat-
ically extracts the most comprehensive features for each sub-
ject. First, we estimated the Pearson’s correlation coefficients
between all pair of sensors FIs across trials (Figure 3A),

resulting in a high-order, distance-like matrix MHO of size
1024× 1024 (Figure 3B).

Next, due to the size and nature of this distance matrix,
we employed a topological filtering method based on Min-
imum Spanning Tree (MST) [43], called Orthogonal Mini-
mum Spanning Tree (OMST) [33], [42]. MST has its roots
in graph theory and has found its way to Neuroimaging with
great impact [29]. It is an unbiased, assumption-free method
that identifies significant links within a weighted graph,
diminishing the need for statistical methods. OMST is an
iterative, optimization procedure that computes an MST and
estimates the Global Cost Efficiency. The objective function
is given by:

JOMSTsGCE = GE − cost (5)

where GE denotes the Global Efficiency of the network,
a measure (as its name imply) of efficient information
exchange. The cost , is the ratio of the sum of aMST’s weights
over the total sum of the initial, fully weighted graph.

This new, filtered graph is prone to contain another latent
structure, in the form of a network community (Figure 3B).
We probe this aspect with Newman’s spectral community
detection [44]. In short, it creates subdivisions of a network
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FIGURE 3. Model construction outline. A) The Flexibility Index is computed for each trial (music video). B) The lower layer depicts
a distance matrix estimated from all the FIs, resulting into a high order graph. Subsequently, we use Orthogonal Minimum
Spanning Trees and modularity to cluster the FIs. From each grouping, the FIs with the maximum distance correlation with
Arousal or Valence are selected. C) The group average FI. D) The resulting FI topology of the robust selected FI-based connections
across the 10 folds tailored to valence dimension. Thickness of the line connected a pair of EEG sensors decodes the number of
times a feature is selected across the 10 - fold cross validation. Our results showed a high stability across the 10 folds ranging
between 8 and an absolute 10 times selection.

into several groups so as the edges within a group are
maximized while the ones between the groups are mini-
mized [45]; it can be employed as a clustering method for
graphs (Figure 3B).

Here, we detected associations between participant’s
valence and arousal scores with either FIs or DFAs.
We adopted Distance Correlation, denoted by R, which holds
an important property that R(x,y) = 0 if and only if x and y
are independent [46]. R index satisfies 0 ≤ R ≤ 1, and it
can estimate linear and non-linear relationships between two
vectors in contrary to trivial Pearson’s correlation coefficient
which can detect only linear associations.

Finally, from each grouping of pairs of edges, the FIs
or DFAs with the maximum distance correlation [46] with
arousal or valence are discovered. The accumulation of the
selected FIs across all subjects and trials produce a compre-
hensive cohort map; as shown in Figure 3C and are back-
projected as a topology in Figure 3D. Some features are more
pronounced than others, hinting the possible existence of a

common underlying process. This mapping will be used to
decide which features to include in the regression.

D. EXTREME LEARNING MACHINES
In the current study, the prediction of subjective participant’s
valence and arousal score was realized as a regression prob-
lem. This model will map connectomic features derived from
dynamic functional connectivity analysis (FI and DFA) to
the subjective valence arousal evaluation. Here, we adopted
extreme learning machines with kernels (RBF specifically in
this study), as a highly efficient choice to handle difficult
tasks without needing an extensive and demanding training
session [47].

The ELM is an artificial feedforward neural net-
work (ANN) with a single layer of hidden nodes. Weights
of links connecting inputs to hidden nodes are randomly
assigned while they never updated [48]. We adopted an RBF
kernel for the regression analysis with ELM.
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E. PREDICTION WITH REGRESSION
To construct an unbiased model, we separated the features,
namely the Flexibility Index and the DFA, into a train and
test set. Here, we built a ten-fold cross-validation on the
integrated number of trials from the whole cohort. The
total number of trials is equal to subjects × trials = 32 ×
40 = 1280 trials.

Eventually, we followed the feature selection scheme
described in section 3.3 for every training fold indepen-
dently for valence/arousal and FIs/DFAs. From the extracted
FI/DFA features, we built an ELMRBF regression model, for
both the Arousal and Valence parameters. Finally, we com-
puted the correlation (as well as their p-values) and the
mean square error between the true values and the predicted
ones.

F. STATIC NETWORKS AND FRONTAL ASYMMETRY INDEX
To compare the proposed scheme simultaneously with static
brain networks, frontal asymmetry and within frequency
interactions, we estimated the one frequency-dependent static
FCG per frequency. Then, a laterality index (LI) was esti-
mated by summing the functional strength between every
possible pair of EEG sensors located over either left hemi-
sphere (Fp1,F7,F3) or right hemisphere (Fp2,F8,F4) to inves-
tigate the hemispheric dominance associated with either
frontal asymmetry of emotions:

LI =
L − R
L + R

(6)

where L and R represent the total functional strength between
the three frontal EEG sensors located over left or right hemi-
sphere. LI values ranged between −1 and 1.
A positive value of LI indicates left-hemisphere dom-

inance, whereas a negative value OF LI indicates right-
hemisphere dominance. This approach leads to a total
of 8 LI per trial per subject. We followed the same vali-
dation approach as for FI and DFA, which is described in
sections D and E.

G. THE MULTIPLEX CONNECTOMIC BIOMARKER OF
VALENCE–AROUSAL MAP
The connectomic biomarkers related to valence and arousal
have been extracted based on the spatiotemporal evolution
of both the type (FI) and the strength (DFA) of dominant
coupling modes. We aimed to define a robust and universal
connectomic biomarker for both dimensions of the valence–
arousal map. Towards this strategy, we extracted two basic
features to quantify the fluctuations of dominant coupling
mode and its functional strength between every pair of EEG
sensors across experimental time. To the best of our knowl-
edge, this is the very first study in emotional BCI systems that
adopted a dynamic integrated (multiplex) dynamic functional
connectivity analysis. Here, the adopted scheme integrates
both within and between frequencies couplings in a single-
layer integrated dynamic functional connectivity graph under
DoCM model [30], [31].

FIGURE 4. Topological layouts of the robust FI and DFA based connections
that contributed the most to the overall prediction of valence and arousal
emotional dimension. FI based connections for the best prediction of
A) valence and C) arousal dimension. DFA based connections for the best
prediction of B) valence and D) arousal dimension.

Figure 4 illustrates the topology of selected FI and DFA
based connections as features that best predict both valence
and arousal dimensions. FI-based connections are located
over fronto-central, parietal, and occipital brain areas for
valence (Figure 4A) and frontal, centroparietal, and occipital
for arousal (Figure 4C). DFA-based connections are located
over frontal, fronto-central, centro-parietal parietal, temporal,
and occipital brain areas in both valence and arousal dimen-
sions. A few connections are distributed between brain areas
located over both hemispheres (bilateral) (Figure 4 B, D).

H. DISTANCE CORRELATION BETWEEN SELECTED
FEATURES AND SUBJECTIVE AFFECTIVE RATINGS
Figure 5 demonstrates the distance correlation between sub-
jects’ ratings and the ones predicted by the proposed pipeline.
The FI outperformed DFA; meaning that the transition of
dominant coupling mode is more informative than the fluc-
tuations of functional strength. Figure 6 depicts the distance
correlation of FI and DFA. Figure 4 shows the FA and DFA
topological features with the subjects’ subjective rating of
valence and arousal. Figure 7 illustrates quantitatively and
schematically the performance of FI and DFA to the predic-
tion of 2D affective space. FI outperformed DFA across the
whole 2D affective space.

I. EVALUATION OF THE PROPOSED SCHEME
The averagemean squared error across 10 folds was: a) for FI,
0.56 and 0.58 for valence and arousal, correspondingly and
b) for DFA, 1.92 and 1.96 for valence and arousal, accord-
ingly and c) for LI, 1.65 and 1.78 for valence and arousal,
accordingly. To enhance the visualization of the proposed
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FIGURE 5. Histograms depicting the correlation scores between the true values and the values predicted from our model per fold, when
trained with the FI and DFA features for both the A) Arousal and B) Valence.

FIGURE 6. Distance correlation between the FI and DFA selected features shown in Figure 5 with the
subjective ratings of valence and arousal from the participants. A) FI – Valence, B) FI – Arousal, C) DFA
– Valence and D) DFA – Arousal (R – Distance Correlation).

predicted scheme under DICM model, we illustrated every
trial in the 2D affective map as a circle with its radius to be
analogous to the sum of MSE in both dimensions (Figure 7).
FI outperformed DFA in both emotional dimensions.

IV. DISCUSSION
Our paper reports in detail out attempts to create an accurate
multiplex connectomic mapping of 2D affective model under
the framework of dynamic functional connectivity analysis
and EEG recordings. It is also a proof of concept for the
potential feasibility of emotional BCI systems that support

an interface between a subject for a specific application or
disease groups (e.g. depressive, schizophrenic etc.) and a
personal computer.

Our results support the efficacy of the multiplexity inte-
grated framework presented here. Regarding, the small num-
ber of EEG sensors, it further attributes the our framework
that it can be computed fast enough to support neurofeedback
BCI systems [40], [50]. The main advantage of the current
approach is that it can be evaluated in EEG wearable devices
like emotive, Muse EEG portable devices supporting a low
cost personalized in house treatment.
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FIGURE 7. Illustrating the predicted valence and arousal values as 2D circles with their dimension corresponding to the mean square error
between subjective ratings and predicted via FI and DFA. A) Predicted affective score with FI and B) Predicted affective score with DFA.

This study is the first one that attempted to approach the
difficult problem of identifying EEG connectomic biomark-
ers under a dynamic functional connectivity framework.
Additionally, we adopted our DoCM model that integrates
into a single dynamic functional connectivity graph the dom-
inant coupling modes from both within and between fre-
quency coupling modes [30], [31]. Estimating the transition
rate of dominant coupling modes across experimental time
via FI proved a more efficient chronnectomic biomarker
compared to the long-range autocorrelation behaviour of the
fluctuations of coupling strength estimated via DFA descrip-
tor (Figure 7). The LI, as estimated over static frequency-
dependent FCGs, performed poorly. Frontal asymmetries
were not evaluated in our project. Our whole-brain, dynamic
and integrated approach proved valuable for valence and
arousal recognition.

However, in the present study, we analyzed EEG record-
ings without addressing the contribution of potential artifacts.
Before the application of such a system in a real scenario, the
issue of artifact suppression should be addressed, for exam-
ple, using independent component analysis [51] or empirical
mode decomposition [52].

Nowadays, we live in the era of digital technologies that
are part of our daily activities from preventive medicine to
interconnectedness of devices in our homes. However, the
missing piece of this highly complex technology is people.
To enable scenarios like the one proposed here tomove from a
lab-oriented environment to a daily clinical or not applicable,
wemust present realistic BCI scenarios that can ideally adjust
subjectively to every target scenario and group [53].

V. CONCLUSION
In this study, we have presented a framework of study-
ing emotions elicited while subjects were viewing music
videos via electroencephalographic recordings. Our analysis
focused on dynamic functional connectivity approach with
the incorporation of both within frequencies and between

frequencies coupling modes the so-called cross-frequency
coupling. Adopting our recent dominant coupling mode
(DoCM) model, we untangled the preferred coupling mode
per pair of EEG sensors and across experimental time. Then,
a flexibility index was defined to capture the fluctuation of
the dominant coupling mode between consecutive temporal
segments. Fluctuations of temporal coupling strength of dom-
inant coupling modes have been studied via detrended fluc-
tuation analysis. Our research focused on identifying the best
set of EEG pairs of sensors across the cohort that can predict
valence and arousal personalized ratings with high accuracy.
Flexibility index proved a more informative descriptor of
nested oscillations compared to its counterpart the detrended
fluctuation analysis.

We live in the digital age of designing human-centered
products and services from consumer electronics, medical
devices to medical and entertainment applications. Exploring
affective responses elicited by music and studying through
electroencephalography can support personalized music rec-
ommendation systems via an adaptive loop between music
libraries (e.g. Spotify) and dynamic consumer rating. Our
framework could benefit researchers that explore how emo-
tions are elicited from positive-negative emotional images
in depression, in Alzheimer’s disease and other target brain
disorders in multiple ways. In the future, we would like to test
the whole analysis in a similar study recorded with a low-cost
device like the emotive EEG headset.
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