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ABSTRACT Flash floods can cause massive damages because of their rapid evolution. To reduce or
prevent harm caused by a flash flood, it is vital to have information about its formation and spread.
Hence, providing real-time surveillance flood is essential. Considering Hurricane Harvey and Hurricane
Irma as two case studies, six different data preparation approaches (DPAs) for flood detection based
on the Cyclone Global Navigation Satellite System (CYGNSS) data and the Random Under-Sampling
Boosted (RUSBoost) classification algorithm are investigated in this article. Taking flood and land as two
classes, flash flood detection is tackled as a binary classification problem. Eleven observables are extracted
from the delay-Doppler maps (DDMs) for feature selection. These observables, alongside two features from
an ancillary data, are considered in feature selection. All the combinations of these observables with and
without ancillary data are fed into the classifier with 5-fold cross-validation one by one. Based on the test
results, five observables with the ancillary data are selected as a suitable feature vector for flood detection
here. Using the selected feature vector, six different DPAs are investigated and compared to find the best one
for flash flood detection. Then, the performance of the proposed method is compared with that of a support
vector machine (SVM) based classifier. For Hurricane Harvey and Hurricane Irma, the selected method is
able to detect 89.00% and 85.00% of flooded points, respectively, with a resolution of 500m× 500m, and
the detection accuracy for non-flooded land points is 97.20% and 71.00%, respectively.

INDEX TERMS Flood detection, CYGNSS, global navigation satellite system reflectometry (GNSS-R),
random under-sampling boosted (RUSBoost), support vector machine (SVM).

I. INTRODUCTION
A flash flood is a surge of water that starts and develops in
a short period. The primary cause of flash flood is heavy
rain. Additionally, dam breakage, ice and snow meltdown,
and events in which a large amount of water is released to dry
areas can also cause flash flood. Even though a flash flood
dissipates quickly after the occurrence, it has consequential
damages such as death and severe injuries, water contamina-
tion, financial harms, infrastructure damages, and agricultural
losses [1], [2]. Hurricanes, which are a significant cause
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of flash floods, are tropical cyclones with high wind speed
(higher than 33ms−1 [3]) and capable of pouringmassive rain
over coastal regions during landfall [4]. Considering the pop-
ulation growth in coastal areas that are exposed to hurricanes,
flood detection and monitoring its extent are important to
reduce these damages and increase the speed of post-disaster
response [5].

Being able to monitor the surface of Earth continuously,
remote sensing technologies have been used as reliable
resources for flood detection. In order to observe the extent
of floods, different methods based on active and passive
remote sensing satellite systems operating at various frequen-
cies have been applied [6]–[9]. Different electromagnetic
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waves within the visible spectrum interact differently with
water bodies, depending on their wavelengths. For instance,
blue bands penetrate the water, while red bands are par-
tially absorbed and near-infrared bands are fully absorbed.
Therefore, by defining certain thresholds, the water bodies,
including flash floods, can be detected using optical sensors
[10]. The detected water extent are then compared with water
reference data sets to estimate floods extent maps [8]. The
water bodies detection algorithms are able to detect the sur-
face water including floods with an accuracy higher than 97%
[11], [12]. However, in an optical image, the cloud shadows
are classified as flood. Therefore, the cloud shadows are the
main challenges for flood extent estimation using optical sen-
sors [12]. Active microwave satellites such as synthetic aper-
ture radar (SAR) systems work in day or night providing high
spatial resolution data. They are able to see through obstacles
such as clouds and certain biomass. Similar to any other
classification problem, creating floods extent maps fromSAR
data can be solved by using supervised and unsupervised
methods [13]. In a supervised method, since, the classifier
is trained with labeled pixels from a region, the algorithm has
local dependence. Segmentation [14], threshold determina-
tion [15], and change detection [16] are three main methods
for unsupervised classification. Even though these methods
are able to detect floods effectively, they have drawbacks. The
segmentation method requires heavy computations compared
with the other two methods. Moreover, since it ignores small
flooded clusters surrounded by large non flooded ones and
vice versa, it is less precise [13]. In the threshold determi-
nation method, instead of a single threshold value, multiple
threshold values are considered for detecting floods on a large
scale [15]. Therefore, its accuracy is highly dependant on
how accurate the preset threshold values are. In the change
detection method, prior- and post-flood SAR images are
required, which is a big challenge due to the revisit time of
SAR systems [16]. Therefore, in recent works, combinations
of these techniques are used [17], [18]. Depending on the
region, the SAR based flood detection algorithms are able to
detect floods with an accuracy ranging between 80% to 95%
[19]–[21]. The SAR data requires geometric correction and
speckle reduction. Hence, compared to passive microwave
and optical sensors, the retrieval algorithms based on SAR
data are more complicated [13]. Moreover, since in active
SAR systems such as RADARSAT-1/2, TerraSAR-X, and
Sentinel-1 the transmitter and receiver are placed on the same
platform, obtaining a large constellation is costly and their
constellations are usually small [22]. Thus, due to the low
temporal resolution (several days), satellite might not even
be able to collect data over a flash flooded area in time. Some
of these remote sensing data and algorithms have been used
by observatories to create near real-time (NRT) flash floods
information. For example, the Dartmouth Flood Observa-
tory (DFO) and the NASA Goddard’s Hydrology Laboratory
employ the data collected by two MODIS sensors (aboard
the satellites Terra and Aqua) for flood monitoring [8]. By

computing the MODIS reflectance ratio of Band 1 (red) and
Band 2 (near-infrared) as well as a threshold on Band 7
(shortwave infrared) to estimate water extent and comparing
with reference data, they determine the flash flooded areas
[23]. Also, they employ microwave sensors data to mitigate
the cloud effect to increase flood detection accuracy [8].
The Global Flood Detection System (GFDS) uses AMSR-E
passive microwave remote sensing data to detect riverine
flooding globally. In this system, the value of calibrated
surface brightness is compared with a threshold to detected
riverine inundations [9].

The Global Navigation Satellite System Reflectometry
(GNSS-R) is a well-established technique for remote sensing
[24]. The GNSS-R receivers collect the Global Navigation
Satellite System (GNSS) signals reflected from the surface
of the Earth in a bistatic radar configuration. Since it takes
advantage of existing signals of opportunity, a GNSS-R sys-
tem does not require any onboard transmitter. Hence, they are
cost-efficient, whichmakes it possible to achieve a larger con-
stellation and, consequently, high temporal resolution (hours)
[25]. Since the GNSS-R receivers operate at L-Band, they can
see through clouds what exist whenmost flash floods happen.
Therefore, with a large operational constellation, the GNSS-
R data is ideal for flash flood remote sensing. The GNSS-R
has shown a great capacity for various applications such as
altimetry [26], sea surface wind [27]–[31], soil moisture (SM)
[32]–[34], target detection [35], tsunami [36], [37], sea ice
[38]–[43], inland water detection [44], and seasonal flood
classification [45]. However, its application for flash floods
detection is yet to be investigated.

Among GNSS-R data sets collected by different GNSS-R
receivers, only the Cyclone Global Navigation Satellite Sys-
tem (CYGNSS) GNSS-R data, which is collected by the
constellation of eight satellites [46], was shown to have the
potential for capturing the variations of surface reflectivity
caused by flash floods over affected regions [47], which are
consistent with the changes in precipitation data and bright-
ness temperature data [48]. Unlike seasonal floods, which
are developed in specific periods, and they last over more
extended time [49], the flash floods are difficult to monitor.
Therefore, it is vital to develop a method that can detect and
monitor flash floods. To the best of the authors’ knowledge,
the capacity of the GNSS-R technique for flash flood detec-
tion has not been quantitatively analyzed and this article is the
first one that investigates such a topic by using the CYGNSS
GNSS-R data. Therefore, the objective of this work is to
quantitatively investigate the ability of theGNSS-R technique
to detect flash floods. The flash flood detection problem
is a binary classification problem with two classes (flood
and land). Various ML algorithms can be implemented for
solving a binary supervised classification problem, such as
the Neural Networks (NN), Super Vector Machines (SVMs),
and Decision Trees, which are among the most commonly
used classifiers in remote sensing [50]. By combining deci-
sion trees as basic classifiers, a classifier that outperforms
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the constituent classifiers is created, which is called an
ensemble classifier. Stacking, blending, bagging, and boost-
ing are four main approaches for creating an ensemble
classifier [51].

Since floods are usually localized, when a large area is con-
sidered, the number of points collected over flooded regions is
smaller than those obtained from the non-flooded one, which
creates an imbalanced data set. For instance, the flood labeled
data points are only 4.38% and 8.37% of the Harvey and
Irma data sets, respectively. These two imbalanced factors
are calculated as the ratios of the number of flood labeled
data points (mf ) to the total number of data points (m) in
each data set. In an imbalanced data set, information provided
by the minor class is considered less important due to the
unequal ratio between major and minor classes. However,
the minor class results could be more vital at higher costs,
despite its smaller size. Various strategies for tackling imbal-
anced data sets have been developed [52]. At the data level,
the leading solutions for handling imbalanced data include
cost-sensitive learning and data sampling. In cost-sensitive
learning, each class is assigned with a misclassification cost
and the goal is to minimize the overall misclassification cost
instead of maximizing the accuracy of the model [52]. In
data sampling, by creating new instances in the minor class
(oversampling methods) or eliminating instances from the
major class (under-sampling methods), the imbalanced data
becomes balanced [52]. The Synthetic Minority Oversam-
pling Technique (SMOTE) and the Adaptive Synthetic Sam-
pling Method (ADASYN) are two renowned oversampling
methods, in which synthetic instances are generated from
existing instances in the minor class [53], [54]. As a powerful
tool, the Generative Adversarial Network (GAN) is another
method for creating artificial instances in the minor class
[55]. In such a method, two neural networks compete to
optimize their objective functions that are contradictory to
each other [56]. The Random Under-Sampling (RUS) is an
under-sampling method that balances the data via random
elimination of instances from the major class [52]. The bal-
ancing techniques are applied to different classifiers, such as
ensembles methods, leading to various developed algorithms
for classifying imbalanced data [52]. Among different meth-
ods developed for classifying imbalanced data, in this study,
the RandomUnder-Sampling Boosted (RUSBoost) algorithm
is selected for classification due to its efficient computational
time, accuracy, and widely available resources [57]–[59].
Moreover, the support vector machines (SVM) algorithm,
which is a representative ML method, is implemented for
comparison purpose.

In this article, six different data preparation approaches
(DPAs) for flood detection with high-resolution (500m ×
500m) are investigated using the RUSBoost based algo-
rithm. After comparison, the best technique is selected for
flash flood detection using CYGNSS data. The perfor-
mance of the proposed method is compared with that of a
SVM based classifier. The contributions of this study are as
follows

1) The first method for detecting flash floods using the
GNSS-R technique is proposed.

2) Based on the eleven different CYGNSS observables
and an ancillary data set, a suitable feature vector for
flash flood detection is determined.

3) Six different DPAs for detecting flash floods using the
CYGNSS data are investigated, showing Approach 3 as
the best one.

This study is a well-detailed follow-up of what has been done
in [60]. This work is outlined as follows: Section II introduces
employed data sets. In Section III, eleven different CYGNSS
observables, and the RUSBoost-based and SVM-based algo-
rithms are described. Section IV provides the results of fea-
ture selection, flood detection, and comparison with the SVM
classifier. Conclusions are provided in Section V.

II. DATA SETS
A. CYGNSS
In this work, we employed level 1 V2.1 of the CYGNSS data
[61] that are available for the public through [62].

In the CYGNSS constellation, each satellite is an
along-track scanner which collects the GNSS reflected signal
in the direction of the satellite passing over a region with an
onboard GNSS-R payload. Hence, when a disaster occurs in a
few days (5 to 10 days), the CYGNSS receivers are only able
to cover a portion of the flooded area and for some areas,
there is no data. Considering this limitation, among all the
floods that have happened since 2016 (the year CYGNSS
was launched) to 2019, we considered two significant events,
Hurricane Harvey and Hurricane Irma. These two hurricane
events are among the harshest and costliest ones that have
affected the United States significantly [63].

Hurricane Harvey reached the coast of the USA on
Aug. 25th, 2017, and according to media, the inunda-
tion lasted till Sep. 8th, 2017. Hurricane Irma landed
the coast of the USA on Sep. 10th, 2017 and caused a
6-day flood. The affected areas of Hurricane Harvey and
Hurricane Irma are located in geographic coordinates of
[26.7◦ N, 32.29◦N][91◦W, 100◦W] and [24.5◦ N, 29.2◦ N]
[79.2◦W, 93◦W], respectively. Since Hurricane Harvey
affected a larger area compared to Hurricane Irma, it has
more data points. In other words, the data of Irma might not
be enough to fully train a classifier, which may lead to an
underfitted model. Therefore, in Section IV-A, for feature
selection, both data sets are combined and used for classi-
fication by a 5-fold cross-validation evaluation. Furthermore,
in Section IV-B, we decided to use 50% of the Harvey data
for training and then validate the trained classifier with the
remaining 50%. This trained classifier is then tested with the
data of Irma, which is unknown to the machine.

The CYGNSS constellation collects the reflected GPS L1-
band signals and converts them into DDMs. A DDM is a
projection of the scattered signal from the surface around a
specular point (SP). In the CYGNSS data set, each SP has a
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17 delay bins in 11Doppler bins DDMwith a delay bin equals
249.4 ns and a Doppler bin equals to 500 Hz.

B. ANCILLARY DATA
In current work, the flood maps created by the DFO are used
as reference data for training and validation. The DFO is a
remote sensing research lab of Institute of Arctic and Alpine
Research (INSTAAR), at the University of Colorado Boulder.
As a part of the Global Disaster Alert and Coordination
System (GDACS) project, they create and provide floodmaps
using data from multiple sources, including NASA MODIS,
ESA Sentinel 1, ASI Cosmo SkyMed, Copernicus Sentinel 1,
and Radarsat 2 [8]. In this work, the regions impacted by
Hurricane Harvey and Hurricane Irma are considered as
two case studies, one flood map for each event is obtained
from the DFO geographic information system (GIS) data.
The GIS data of Hurricane Harvey and Hurricane Irma and
more details on them are available through [68], and [64],
respectively.

Since the water tends to move to places at low altitudes,
the elevation data can impact the accuracy of classification.
Therefore, altitude data of the Shuttle Radar TopographyMis-
sion Digital Elevation Model (SRTM90mDEM) is employed
as an ancillary data [65]. This data set alongside the extracted
GNSS-R observables are used as the input for training and
testing of the classifier.

The flood reference map is created based on the changes of
the surface during the flood. However, areas with water bod-
ies such as permanent waters and some regions of wetlands
might have similar characteristics to flood, but SPs over such
regions could be detected as either flood and land. One solu-
tion is to exclude the points that are located over such areas.
Therefore, for excluding such data points, the GlobalWetland
V3 data provided by the Center for International Forestry
Research (CIFOR) [66] and Global Surface Water (GSW)
Occurrence data [12], [67], are used. The CIFORGlobalWet-
land data set indicates the distribution of wetland, peatland
and peat depth that covers the tropics and subtropics. This
data set is created using products from the MODIS sensors,
the phased array type L-band synthetic aperture radar (PAL-
SAR) data, and other ancillary data sets [69]. Even though
this data set is not validated due to the unavailability of
ground truth, it agrees well with other commonly used data
sets [69]. The GSW data set is generated based on optical
images collected by Landsat [12]. The GSWOccurrence data
shows the extent of permanent water from 1984 to 2019.
Hereafter, we refer to the Global Wetland CIFOR and GSW
Occurrence data sets as CIFOR and GSW, respectively. The
key parameters of the employed datasets are listed in Table 1.
Although their accuracies were not available, the CIFOR and
CYGNSS data sets are benchmark data sets that have been
widely adopted for analysis in literature.

In this work, various georeferenced data sets with different
spatial resolutions are considered. Therefore, a comprehen-
sive approach for matching the flood reference and ancillary
data to each GNSS-R data point must be taken. Similar to

other GNSS-R systems, the coherent footprint of CYGNSS is
dynamic. In [45], it has been shown that DDMs can be grid-
ded into cells of size 500m×500m. Following the literature,
in this study, we assume that the DDM of each SP represents
a 500m × 500m region around it. Therefore, for assigning
a flood/land label to an SP, the number of flood pixels of
the reference flood map within an area of 500m × 500m
around the SP is counted. When the percentage of flood
pixels around the SP is higher than 75%, it is labeled as
flood; otherwise, it is labeled as land. We investigated all the
possible values for flood threshold and 75% is the optimum
value. For SRTM90m DEM, assigned value to each SP is the
average of the reference data within the area of 500m×500m
around each SP. Moreover, whether an SP is located within
wetlands or permanent water bodies is determined by the
value of a grid cell in CIFOR or GSW data sets that is closed
to the SP.

III. METHODOLOGY
In this section, first, eleven different observables for
CYGNSS data are discussed. Then, the RUSBoost algorithm
and a brief description of the SVM algorithm are presented.
The RUSBoost classification in this study follows the flow
chart depicted in Figure 1. Lastly, the six DPAs that are
investigated for flash flood detection are described.

A. CYGNSS OBSERVABLES
In GNSS-R technique, the received power is a combination
of coherent and incoherent scattered components. When the
surface is smooth, the reflection is mostly coherent. As the
surface roughness increases, the reflected signal becomes
more incoherent. Under stable and calm weather conditions,
inland surface water bodies are smooth. Thus, the reflected
signal from them is predominantly coherent. On the other
hand, during a severe condition such as a hurricane, the high
speed winds can increase the roughness of inland water bod-
ies. However, the presence of high speed winds of a hurri-
cane over land is shorter than the flash flood caused by its
landfall. In addition, as a hurricane reaches the land its wind
speed decreases gradually due to the higher roughness of land
[70], [71]. Moreover, as investigated in [48], during severe
typhoons (tropical storms in the Northwest Pacific Ocean) the
coherent components of reflected signal are still consistent
with flash floods. Therefore, following similar assumption
in the literature [34], [45], [48], in this study we regard the
reflected signals as coherent. The surface reflectivity (SR)
DDM can be calculated by [45]

0 =
(Rtx + Rrx)2

4πR2txR2rx
〈σ 〉. (1)

where Rtx and Rrx are the distances between SP and transmit-
ter and receiver, and 〈σ 〉 is the calibrated incoherent bistatic
radar cross section (BRCS) that is reported as DDM [72]. It
is worth mentioning that another approximation for coherent
reflected power from heterogeneous smooth surfaces is sug-
gested by [73], in which the reflected signal is described by
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TABLE 1. Summary of employed data sets.

FIGURE 1. Block diagram of the classification.

surface diffraction integral. The surface diffraction integral is
calculated over an area larger than the first Fresnel zone (FFZ)
whose radius varies from 300m to 800m depending on the
incidence angle [45]. However, our case studies consist of
both rough and smooth surfaces. In addition, in this study,
the coherent reflection comes from an area of 500m× 500m
around each SP, which is within the range of FFZ. Therefore,
here, (1) is considered.

In this study, instead of working with the whole DDM,
eleven different observables including corrected signal to
noise ratio (SNRC), trailing edge slope (TES), leading-edge
slope (LES), delay-Doppler map average (DDMA), the width
of the waveform (Wave-width), the first generalized linear
observable (GLO1), kurtosis, maximum, mean, skewness,
and variance are extracted for each SP. All the observables
except SNRC are computed using the SR DDM, which is
calculated as described in [45]. The first seven observables
(SNRC, LES, TES, DDMA, Wave-width, GLO1, and maxi-
mum) are obtained as follows [45], [74]

• Provided in the CYGNSS data set, SNRPeack is the ratio
between the maximum value in a DDM to its average
noise per bin (10log(Smax/Navg)). This value is then
corrected to SNRC [45]:

SNRC =
(Rtx + Rrx)2λ2〈σm〉

PrxmR2txR2rx(4π)3
SNRPeack (2)

where λ is the GPSwavelength that is 19.05 cm and 〈σm〉
is the maximum value of BRCS DDM and Prxm is the
maximum value in power DDM [45]. The maximum of
BRCS and maximum of DDM are computed using the
BRCS DDM and power DDM of each SP and vary with
different DDMs.

• LES and TES are computed as the slopes between the
maximum point and the points at two delay bins before
and after the maximum point in the SR delay waveform
(SR DDM integrated over Doppler axis) [45].

• The DDMA is the arithmetic mean of SR DDM within
a window around the maximum value. In this study the
size of window is chosen as 3 delay bins×5Doppler bins
[75].

• The width of the waveform is the number of Doppler
bins whose intensity is higher than 1/e of the maximum
of the SR Doppler waveform (SR DDM integrated over
the delay axis).

• The N th generalized linear observable (GLO) is defined
as [76]:

GLON =

imax+3∑
i=imax−3

aN (i)0del(i), (3)

where 0del is SR delay waveform, aN (i) is the N th
weight of SR in the delay bin i and it is computed by
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FIGURE 2. The box plots of the eleven observables (a): SPs labeled as land, and (b): SPs labeled as flood.

applying principal component analysis (PCA) to the SR
delay waveform. The summation is calculated consider-
ing±3 delay bins around the delay bin of the maximum
of SR delay waveform (imax). We only consider the first
GLO (GLO1), since it has been proven that it is more
correspondent to the inundation over land [45].

• The maximum (Maximum) that is the maximum value
of the SR delay waveform is also considered as another
observable.

A DDM represents the pattern of the scattered power from
a surface. When the surface roughness changes, the scat-
tered power and its pattern changes as well. These variations
impact the statistical characteristics and histogram of the
DDM. Moreover, a histogram can be described by statistical
moments such as mean, variance, kurtosis, and skewness.
Therefore, by considering the SR delay waveform as a ran-
dom variables (RV) and analyzing its statistical moments,
the impact of flood on a DDM can be studied [77], [78]. The
statistical moments considered are described as

• Mean shows the position of the central mass of an RV;
• Variance is the squared differences of an RV from its
mean. In other words, it measures how far values of an
RV are located from the mean in a histogram;

• Skewness is an indicator of the asymmetry of the prob-
ability distribution of an RV. When the distribution is
symmetrical, skewness equals to zero. However, when
the distribution is skewed to the values higher or lower
than mean the skewness is a negative or positive value,
respectively;

• Kurtosis is a value that estimates the tailedness of the
shape of a histogram by taking into account the outliers
values.

More explanation about statistical moments and their mathe-
matical formulas are given in [79]. It is worth mentioning that
the number of observables is not confined. Other observables

TABLE 2. Ranges of observables in normalization step.

can be defined and computed based on different aspects of
the GNSS-R data.

Since the ranges of observables are different, as a part
of the data cleaning step, they are normalized based on the
normalization ranges mentioned in Table 2. The value of each
parameter is projected to the interval of [0, 1] using its Min to
Max. These values are obtained based on self-observations.

Depending on the labels of the SPs, their observables
show different characteristics as depicted by the box plots
in Figure 2, for which the SPs located over permanent water
bodies and wetlands are excluded using the GSW and CIFOR
data sets. Comparing Figure 2(a) with Figure 2(b) indicates
that the values of SNR, LES, TES,mean,maximum, variance,
skewness, and kurtosis of the flood labeled SPs are higher
than those labeled as land. On the other hand, the flood
labeled SPs have lower values in DDMA, Wave-width, and
GLO1.
The DDMs whose maximum is not between delay bins

4 and 14 are discarded as noise. The discarded DDMs include
high altitude measurement and noisy DDMs. This range is
determined by observing DDMs and comparing the delay
bins of their maximum values. Moreover, when the inci-
dence angle is between 15◦ and 60◦, the reflected signal
is more correlated with the water extent around an SP, as
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shown in [80]. Since we intend to detect flash flood that is
a type of surface water body, the SPs with incidence angles
out of this range are removed. In addition to these conditions,
quality flags, mentioned in [81], are also considered in the
preprocessing step. It is worth mentioning that the speckle
noise impact is negligible since each DDM is obtained from
1 s incoherent integration of 1000 DDMs [82].

B. CLASSIFICATION ALGORITHM
1) RUSBoost
Flood detection is a classification problem with two classes
(land/flood). Since the DFO reference maps include flooded
areas and only some/incomplete permanent water bodies
but no wetland, both permanent water and wetland are not
included in the training and testing. The class of each SP
is determined by using the trained RUSBoost based clas-
sifier and its GNSS-R extracted observables and ancillary
features. After selecting the features, all the observations
in the Harvey data set, which is allocated for training and
testing the classifier, are shuffled together. Then by a random
selection, two separate equal sets for training and testing
are generated. This unit that contains random shuffling and
random selection is added to the RUSBoost classifier. For
better perception, the pseudo-code of the RUSBoost classifier
recreated from [83] is depicted in Figure 3. The training data
set, is the imbalanced set S = {(xi, yi) | i = 1, . . . ,m}, in
which xi = [xi,1, . . . , xi,J ] is a vector in the J dimensional
feature space and yi ∈ {0, 1} is its respective class label. In
our case, xi is a vector containing selected observables and yi
can be either land (0) or flood (1). At the first step, each point
in S is assigned with an initial weight of D1(i) = 1/m prior
to the first iteration (step 1).

Using the RUSBoost method, at iteration t , balanced tem-
porary subset S ′t = {(x′p, y′p)| p = 1, . . . , 2n} ⊂ S is
created containing all the n points of minor class and n
randomly selected points from major class. Knowing the
indices of the selected data points from S that are members of
S ′t , another temporary subset containing their corresponding
weights D′t ⊂ Dt is obtained. These two temporary sets are
then employed for training weak learners based on the idea
of reducing the classification error iteratively (step 2a) [83].

When the data points in S ′t are passed to the tth decision
stump, it divides them into two splits which in this work
are referred to as right and left. Having a decision threshold
for the feature j, (j = 1, . . . , J ), the observation p in S ′t
is positioned into the right or left split based on whether
x ′p,j is higher or lower than the value of decision thresh-
old, respectively. Hence, the performance of decision stump
depends on the feature and its decision threshold. Since all
the employed features except Wave-width have continuous
values, the decision threshold can take an infinite number of
values. However, these thresholds do not necessarily result in
different results. When 2n points of S ′ are sorted regarding
their values of the same feature, between every two adjacent
points, infinite thresholds can be considered. However, since

FIGURE 3. The Pseudo-code of the RUSBoost algorithm recreated
from [83].

they all have a similar result, only one of them should be
considered. Therefore, instead of trying infinite numbers of
thresholds, 2n − 1 values between sorted points plus 0 and
1 are enough to be considered as the values of the decision
threshold. Hence, (2n + 1)J combinations of thresholds and
features can be used for examining all the possible outputs.
Considering the combination of jth feature and its qth deci-
sion threshold cjt (q), (q = 1, . . . , 2n + 1), the weighted Gini
impurity factor (GIt ) of the decision stump t is obtained as:

GIt (q) = �r
t (q)2

r
t (q)+�

l
t (q)2

l
t (q) (4)

where �r,l
t (q) is the probability of right or left split and

2
r,l
t (q) is the Gini impurity factor of right or left split. For

the right split �r
t (q) and 2

r
t (q) are defined as:

�r
t (q) =

2n∑
p=1

D′t (p)[[x
′
p,j > cjt (q)]] (5)

2r
t (q) = 1−

∑
y

θ rt (y), (6)
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where

θ rt (y) =


2n∑
p=1

D′t (p)[[y
′
p = y]][[x ′p,j > cjt (q)]]

2n∑
p=1

D′t (p)[[x
′
p,j > cjt (q)]]


2

(7)

and [[·]] is a Boolean-valued function, with [[true]] = 1 and
[[false]] = 0. Similarly, for the left split, �l

t (q) and 2
l
t (q)

are computed by changing the condition [[x ′p,j > cjt (q)]] in

Equation (6) and (5) to [[x ′p,j ≤ c
j
t (q)]] [84].

Moreover, in boosting methods, the performance of a weak
learner needs to be slightly better than the random guess (Gini
impurity factor of 0.5) [85]. Hence, by randomly selecting a
limited number of pairs of thresholds and features, the one
thatminimizes theGini impurity factor is selected for creating
the weak hypothesis. It should be mentioned that since S ′t
is balanced, minimizing the Gini impurity factor translates
to maximizing the Gini gain. We assume that among all
features, xi,k ∈ xi, with decision threshold ckt (qk ), meets
the requirements (step 2bi). From the feature, its decision
threshold, and the number of points in each split regarding
S ′ (step 2bii), the weak hypothesis is constructed as (step 2 d)

ht (xi, y) =

{
πr (y) if xi,k > ckt (qk ),
πl(y) otherwise

(8)

where πr,l = Nr,l(y)/Nr,l is the label proportion, which is
the ratio between number of y ∈ {0, 1} labeled points within
a split Nr,l(y), and its total number of points Nr,l (step 2c).
The pseudo loss of the weak hypothesis for all the points in S
is calculated as (step 2e)

εt =

m∑
i=1

Dt (i)(1− ht (xi, yi)+ ht (xi, 1− yi)), (9)

where 1− yi is the incorrect label of observation i. A weights
updating factor, αt , is calculated as (step 2f)

αt =
εt

1− εt
. (10)

Then, a new set of weights are computed and normalized as
(step 2g-2h)

Dt+1(i) = Dt (i)α
1
2 (1+ht (xi,yi)−ht (xi,1−yi))
t , (11)

Dt+1(i) =
Dt+1(i)
m∑
i=1

Dt+1(i)
. (12)

When the hypothesis of the weak learner is correct for the
training data set, which means that the weak learner was able
to classify all of the training data points correctly, εt will
be equal to zero, and the new weights will be equal to the
previous ones. Otherwise, the weights of the misclassified
points will be higher than the ones of correctly classified
points. Therefore, in the next iteration, the weak learner will
be biased to classify the misclassifications of the previous

decision tree, which translates to increasing the variance step
by step.

The procedure of random undersampling, creating a weak
hypothesis, and updating observations weights is repeated for
T iterations. At the last iteration, when the training of all of
T weak learners is finished, the output hypothesis is created
as a weighted vote of weak hypotheses (step 3):

H (x) = argmax
y∈{0,1}

T∑
t=1

ht (x, y) log
1
αt
, (13)

where x is a feature vector of the test data. The criteria
for the trained RUSBoost classifier is to find the label that
maximizes the summation of the hypothesis of weak learners
with respect to αt [83], [86]. Since the number of weak
learners affects the structure of the trained classifier and
its performance, the number of weak learners (T ) is the
hyperparameter of our model. Also, the learning rate, which
determines the step size at each iteration, is another important
parameter of our model.

In this article, the RUSBoost-based classification is imple-
mented in MATLAB R2018 using the Statistics and Machine
Learning Toolbox. A total number of 150 of weak learners are
trained with a learning rate of 0.1. We investigated different
combinations of the number of weak learners and learning
rate values in terms of classification error and the selected
combination gives the minimum error. Each weak learner
is a decision stump. At each iteration, among 150 random
combinations of different features and decision thresholds,
one of them is chosen. The trained classifier is used for testing
and evaluation.

2) SVM
In this article, the SVM classifier is considered for compari-
son with the proposed method. As a well-known supervised
ML algorithm, SVM has been used in various remote sensing
applications [38], [87]–[89]. SVMs classify data by deter-
mining the optimal hyperplane for maximizing the margin
between classes [90], [91]. For nonlinear data, computing the
hyperplane is achieved by using the kernel trick, which maps
the data in a higher dimensional space. More details on the
SVM ML algorithm can be found in [90], [91].

In this article, an SVM based classifier is implemented
using the Statistics and Machine Learning Toolbox of MAT-
LAB R2018. As in Section III-B1, selecting training data
points from Harvey consists of random shuffling and random
selection. For balancing the imbalanced data sets, RUS is
applied to the training data set since it requires a much lower
computational load compared to oversampling methods (e.g.,
SMOTE) [57], [58]. The radial basis function (RBF) kernel
is selected as the kernel function. The values of hyperparam-
eters are optimized using the sequential minimal optimiza-
tion (SMO) algorithm proposed in [92].

Since the selected training data from Harvey is random,
for having a better perception of the performance, the classi-
fication was repeated 20 times for both SVM and RUSBoost
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classifiers as shown in the block diagram of the RUSBoost
classifier depicted in Figure 1.

C. DATA PREPARING APPROACHES
In this section, six different DPAs for flash flood detection
are described. As mentioned in Section II-B, water bodies
that are not caused by flash floods, e.g., permanent water
bodies and some regions of wetlands, can be mislabeled as
flood. Two main DPAs could be taken for solving this issue.
One solution is to use reference data sets and exclude SPs
that are located over water bodies. Another one is to use the
variation between the CYGNSS data during flood and the
CYGNSS data collected during a period that flood did not
happen. Therefore, six different DPAs are investigated in this
study that are described as

• In Approach 1, all inland SPs collected during floods are
used. Even though some SPs are located over wetlands
or permanent waters, in order to investigate the errors
caused bywater bodies other than flood, the non-flooded
SPs are labeled as land.

• In Approach 2, based on the GSW and CIFOR data
sets, SPs located over wetlands and water bodies
are excluded. This method was previously used in
Section IV-A for feature selection.

• In Approach 3 GSW data set is used for excluding the
SPs located over permanent waters.

• Approach 4 consists of three steps: detecting water bod-
ies, excluding the SPs associated with water detection
results, and flood detection. Using the 2018 CYGNSS
data and inland water detection method described in
[78], water bodies over Harvey and Irma are detected.
The detected water extent is then used as a reference for
corresponding excluding SPs.

• In Approach 5, the impact of flood is investigated by
considering the changes caused by flood with respect to
the CYGNSS data collected one month prior to flood.

• Similar to Approach 5, in Approach 6, the varia-
tions caused by flood are considered. In this DPA,
the CYGNSS data of three months dry season of the year
2018 are considered as background data.

In Approach 5 and Approach 6, for calculating the changes of
selected observables, each SP in the CYGNSS flood data set
is matched with the closest data point from the background
data set. The distance between SP in the flood data set and
its match from the background data set is to be less than
1.5km. When the distance between two points is higher than
1.5km, the SP is excluded. We investigated different values
for determining this distance and 1.5km was the optimum
value with respect to data exclusion amount and classification
error. Since in Approach 1 all data points collected during
floods are used for classification, its result includes possible
misclassifications. Comparing the classification results of
other DPAs with Approach 1 can indicate the advantages and
disadvantages of them. The coverage of the CYGNSS is low
and in some DPAs, a portion of data is not even considered

TABLE 3. Accuracies for five best combinations with and without
ancillary data obtained from 5-fold cross-validated classification with
150 weak learners.

due to the data exclusion. Hence, the percentage of excluded
data points alongside the accuracy of the classifier are two
factors that are used in Section IV-B to evaluate the overall
performance of each DPA. Since the amount of excluded data
for each DPA is different, it is not possible to evaluate them
using exactly same validation data.

IV. RESULTS AND DISCUSSION
In Section IV-A, all the combinations of eleven observables
and two features from SRTM90mDEMare separately used as
inputs of a RUSBoost classifier with 5-fold cross-validation
to select a suitable combination of features. With the selected
features, the detecting flood performances associated with the
six DPAs are evaluated in Section IV-B. By comparing their
results, the best method for flood detection is selected. The
performance of the recommendedRUSBoost classifier is then
compared with that of an SVM based classifier.

A. FEATURES SELECTION
In this section, we want to select the features that are proper
for flood detection. Therefore, by using GSW and CIFOR
data sets, SPs located over wetlands and permanent water are
excluded. This ensures that the remaining SPs used in feature
selection are either flood or bare land.

The eleven observables described in Section III-A and the
surface elevation and terrain from the SRTM90 DEM data
set are considered as thirteen features. In this section, both
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TABLE 4. Accuracies of Approach 1 to Approach 6.

Harvey and Irma data sets are combined and the idea of
recursive feature elimination is implemented to determine a
suitable feature combination out of all the 8191 different com-
binations. For each combination, the accuracy of the classifier
with 150weak learners is evaluated by 5-fold cross-validation
in which same subsets of data are used for all combinations.
The accuracies of the best five combinations with andwithout
the two features from SRTM90 DEM are shown in Table 3.
From Table 3 it is clear that using the elevation and terrain
from SRTM90 DEM (combinations 1 to 5 in Table 3) has
improved the accuracy (around 10% for flood and 2.5%
for land). Due to the gravity, water accumulates in lower
altitudes. Hence, it is unlikely that flood would occur in an
area located on the slope. Overall, knowing the elevation and
terrain of an area gives a better insight into the regions with a
higher possibility of flooding.

In terms of land detection, features combination 4 in
Table 3 has the best accuracy. However, it has a lower
flood detection accuracy compared to features combination 5,
which has the best performance for flood detection. There-
fore, features combination 5 in Table 3 has a better perfor-
mance overall.

Here, the hyperparameter (i.e., the number ofweak learners
(T )) of the RUSBoost classifier is set to 150 after eval-
uating the classification error for various values of T by
considering all the features as the input feature vector. Next,
the top five combinations in terms of classification error
are found based on the selected hyperparameter. Since the
value of T can impact the classification results, we fur-
ther investigated the variation of the overall classification
error with T for the other four feature combinations listed
in Table 3. As shown in Figure 4, as the number of weak
learners increases, the classification errors decrease. After a
certain value of T (140 here), the accuracy will not change
significantly. The optimal values of T are 150 for Combina-
tions 1, 3, and 5 and 149 for Combinations 2 and 4. Although
there is a small difference between the optimal and selected

FIGURE 4. The classification error of the classifier with 5-fold
cross-validation with respect to the number of weak learners (i.e. the
value of the hyperparameter, T ).

values for Combinations 2 and 4, the results obtained from
T = 150 are still appropriate since the difference between the
accuracies with the selected and optimal hyperparameters is
less than 0.1%.

B. FLOOD DETECTION
By knowing the best feature vector from Section IV-A, in this
section we intend to find the best DPA for flood detection
using the CYGNSS data through evaluating the six DPAs
mentioned in Section III-C.

Unlike Section IV-A where a classifier with 5-fold
cross-validation was used, here, the RUSBoost based clas-
sifier depicted in Figure 1 is trained and tested by using the
features combination 5 in Table 3 for each DPA.
The results shown in Table 4 are the accuracies and the

percentage of excluded data for both Harvey and Irma.
For choosing the best method, first, the percentage of the
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FIGURE 5. Maps of Harvey (a): GSW water, and CIFOR reference maps, (b): DFO flood reference map, (c): RUSBoost-based classification result
map, (d): SVM-based classification result map, (e): RUSBoost-based classification error map, and (f): SVM-based classification error map. In (c)-(f)
the results are obtained via data exclusion of Approach 3.

discarded data of each DPA is compared with other DPAs.
Then, suitable method for flood detection is selected based
on the accuracy. Among all the DPAs, Approach 1 and
Approach 6 have no data exclusion. The excluded data points
in Approach 3 are located over permanent water. This is

reasonable since permanent water area does not need to be
determined to be flooded or not, i.e., there is no overlap
between permanent water and the reference flooding regions.
Due to the overestimation of detected water extent, Approach
4 has the highest data exclusion. Even though Approach 2,
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FIGURE 6. Maps of Irma (a): GSW water, and CIFOR reference maps, (b): DFO flood reference map, (c): RUSBoost-based classification result map, (d):
SVM-based classification result map, (e): RUSBoost-based classification error map, and (f): SVM-based classification error map. In (c)-(f) the results
are obtained via data exclusion of Approach 3.

Approach 4, and Approach 5 have an acceptable accuracy
in some occasions, they do not seem to be proper options
for flash flood detection due to their high percentage of data
exclusion. It should be pointed out that unlike Section IV-A,
where we intended to find a suitable feature vector for detect-
ing flood, here, we are investigating different DPAs for flash
flood detection.Moreover, as shown in Table 4, the accuracies
of Approach 2 and Approach 3 are comparable, but Approach
2 is not suggested since more data points are excluded.
Approach 5 has the lowest flood detection accuracy for Irma.
Among Approach 1, Approach 3, and Approach 6, Approach
3 has the highest land detection accuracy and Approach 1 has
the highest flood detection accuracy for both Harvey and

Irma. The flood and land detection accuracies of Approach
6 are less than those of Approach 1 and Approach 3. There-
fore, Approach 1 and Approach 3 are the final candidates. In
terms of flood detection, Approach 1 outperforms Approach
3 by 1.9% in Harvey and 2.3% in Irma. However, Approach
3 is able to detect landwith a higher accuracy (3.2% inHarvey
and 8% in Irma). The intention in this study is to detect flash
flood. However, since the land points outnumber the flood
points, the overestimation of flood is also crucial. Hence,
Approach 3 seems like the proper method for flash flood
detection.

The maps of employed reference data sets, classification
result and error maps of Harvey and Irma are depicted
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in Figures 5 and 6, respectively. The GSW and CIFOR
references shown in Figures 5(a) and 6(a) are used for
data exclusion in Approach 2. For Approach 3, discarded
SPs are selected by using the GSW reference data that is
depicted in Figures 5(a) and 6(a) in blue colour. Based
on the high-resolution DFO flood reference maps depicted
in Figures 5(b) and 6(b), in each DPA, considered SPs are
labeled as flood/land. Due to data exclusion, the flood ref-
erence map of each DPA could be different from others. As
shown in Figures 5(b) and 6(b) the area flooded by Hur-
ricane Harvey is concentrated over the coastline, and most
of the inland areas were not impacted. While in Hurricane
Irma, affected areas are scattered over the land. Furthermore,
in order tomake the flash flood detectionmethod independent
of other data sets such as the GSW and CIFOR, in Approach
4, we attempt to detect the water extent over Harvey and
Irma and use the results as a water extent reference for
excluding data. Considering the CYGNSS data of the year
2018, three observables, including Kurtosis, Maximum, and
Variance, are extracted. Using these observables, a RUSBoost
classifier trained with data from the Congo basin is used for
detecting water bodies of Harvey and Irma [78]. The water
detection method overestimates the presence of water bodies,
which leads to excluding a large portion of data. The two
investigated regions consist of various dynamic water bod-
ies, to which the CYGNSS is sensitive, including wetlands,
permanent waters, and farmlands. Therefore, water overesti-
mation is inevitable. Comparing the classification results of
Approach 3 and flood referencemaps depicted in Figures 5(c)
and 6(c) and Figures 5(b) and 6(b), respectively, shows that
even with small coverage, Approach 3 is capable of identify-
ing the flash flood extent.

C. COMPARISON TO SVM CLASSIFIER
For comparison, an SVM-based classifier is trained using
the selected features in Section IV-A and same data that is
produced by Approach 3 and employed for building the RUS-
Boost classifier. As mentioned in Section III-B2, the parame-
ters of the SVM-based classifier are optimized using the SMO
algorithm.

As shown in Table 5, compared to the RUSBoost classifier
with Approach 3, the SVM classifier can detect flash floods
with an accuracy of 6.1% and 11.3% higher for Harvey
and Irma, respectively. However, in terms of land detection,
the RUSBoost-based classifier is 8.98% and 32.2% more
accurate for Harvey and Irma, respectively. The SVM clas-
sifier overestimates flash floods as depicted in Figures 5(d),
5(f), 6(d) and 6(f). For the SVM based classifier, due to the
disproportion of imbalanced data sets, the number of misclas-
sified land points is much higher than correctly detected flood
points. Therefore, the RUSBoost classifier withApproach 3 is
better than the SVM classifier.

It is worth mentioning that the overall run-time of the
RUSBoost and the SVM classifiers are 12.10 s and 0.48 s,
respectively.

TABLE 5. Results of SVM and RUSBoost classifiers.

V. CONCLUSION
In this article, a flood detection method based on CYGNSS
data has been conducted using the RUSBoost based classi-
fication. Eleven different features have been extracted from
the CYGNSS data, and each point is labeled as land/flood,
as discussed in Section II-B. For feature selection, by exclud-
ing wetland and permanent water, the CYGNSS flood data
set only includes SPs that are either flood or land. Using this
data, after investigating the accuracies of all the combina-
tions of thirteen features via a classifier with 5-fold cross-
validation, the most effective features were selected. Even
though the accuracy of various combinations is roughly in the
same range, the combination of Kurtosis, DDMA,Maximum,
Variance, Wave-width, and SRTM90m DEM has the best
performance overall. The selected feature combination might
not be the best one, but the classification results indicate that
it is a suitable option for flash flood detection.

By using the selected features combination, six different
DPAs for detecting flash flood were investigated, among
which Approach 3 gives the best performance in terms
of accuracy and data exclusion. Moreover, the comparison
between the RUSBosst-based and SVM-based classifiers,
which were trained using data exclusion in Approach 3, indi-
cates that the RUSBosst-based classifier has a better overall
performance. Therefore, it is recommended as the method for
flood detection using CYGNSS data.

The GSW and SRTM90m DEM data sets are the only
ancillary data sets employed in the recommended DPA,
i.e., Approach 3. Both of them are available for the public
with global coverage. In addition, unlike GLO1, the selected
observables do not require any heavy preprocessing, and for
each SP, they are computed based on provided parameters
in the CYGNSS data for that SP without any dependency
on a region or time period. As mentioned in Section II-A,
all classifiers in Section IV-B were trained with half of the
Harvey data, which was randomly selected. Then the trained
classifiers were tested with the remaining half of the Harvey
data and all of the data of Irma.

The CYGNSS data set involves non-geophysical uncer-
tainties. The effective isotropic radiated power (EIRP) of
GPS transmitters that is used in the CYGNSS data process
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is not subtle [93]. Due to the different designs of space
vehicles and the transmitting antenna panel, the EIRP of GPS
transmitters fluctuates that leads to inaccuracy of CYGNSS
measurements and impacts the results of this study. Since
August 2018, by monitoring the transmitted power of GPS
satellites, the fluctuations are compensated [94], [95]. How-
ever, due to the limitation of available CYGNSS data that is
associated with significant flash flood, we selected the two
representative events that happened in 2017.

The main drawback of the proposed method is flood over-
estimation with respect to the DFO reference data. This
problem was also reported in [96], where data from Soil
Moisture Active Passive (SMAP) was employed for flood
detection. This may be because both CYGNSS and SMAP
use L-band signals which are sensitive to SM. Flash flood is
a complicated matter, and it depends on various conditions.
In addition to the massive surge of water, various factors
such as soil moisture, soil type, vegetation, subsurface flows,
elevation, etc. can impact the development of flood [49], [97],
[98]. Moreover, the scattering from the surface at L-band pri-
marily depends on two factors: roughness and soil moisture,
as investigated in [99]. Due to heavy precipitation during a
flash flood, the SM increases till the soil becomes saturated.
This increase in SM can be an explanation for this problem
since the reflected signal from an SP with high SM can be
as coherent as the reflection from a flooded SP, which causes
flood overestimation. The low accuracy of flood over Irma
in Approach 5 shows the impact of SM on flood detection.
Both Hurricane Harvey and Hurricane Irma occurred during
the high season (July to November) [100], [101] and during
the month prior to flood, several precipitations happened in
those areas especially for Irma [102]. Since having high SM
does not necessarily indicate that an SP is flooded [103],
SM is not the only source of error. Another parameter that
also has a major role in the reflected signal is the rough-
ness [104]. The coherent reflection from a smooth surface
can lead to flood overestimation. Therefore, the regions that
are relatively flat with high SM, such as Irma, are overes-
timated by the proposed method. Moreover, as mentioned
before, the high-speed wind of a hurricane would increase
the surface roughness of water in flooded regions. As the sur-
face becomes rougher, its root-mean-square-height increases.
Consequently, surface reflectivity decreases exponentially
[105]. In other words, the incoherent components become
more dominant. Therefore, in the early stages of our case
studies where a high-speed wind is present, there are flood
points whose scattered power is predominantly incoherent,
which leads to flood underestimations. Furthermore, some
flooded areas are heterogeneous, meaning that there is a
diversity of land and flood in them. The heterogeneity can
impact the scattering pattern. which results in overestimation
or underestimation of flood. Despite the overestimation and
underestimation, based on the obtained results, the proposed
method is able to detect a flash flood with high accuracy. It
is worth mentioning that similar to other microwave systems
[106], [107], the turbidity of the water does not significantly

impact the scattering of the GNSS signals from the water
bodies since the signals cannot penetrate into the water too
much. Thus, the turbidity of water may not be a major source
of error in our work.

Compared to optical satellites, similar to other spaceborne
microwave systems, CYGNSS is not affected by clouds,
which makes it a reliable source for monitoring flash floods.
Compared to other remote sensing satellites such as SAR and
optical, the GNSS-R technique has a lower quality in terms
of spatial resolution and accuracy [108]. On the other hand,
the revisit time of the CYGNSS satellites is shorter than SAR
systems, hence it is able to detect flash floods. Moreover, due
to the less expensive receiver of GNSS-R, larger constella-
tions can be obtained that leads to better coverage.

The proposed method has two main limitations. Firstly,
it cannot detect urban flash floods since the impacted regions
include various human-made obstacles causing incoherent
reflection. Moreover, due to the gap between CYGNSS con-
stellation tracks, it is unlikely to have enough collected data
for flash flood monitoring when a small flash flood happens.
Hence, the proposed method is more suitable for observing
extensive flash floods. However, this limitation can be solved
by having more GNSS-R receivers.

The parameters, such as high-speed winds during hurri-
canes and soil type, were not included in this study. These
parameters should be considered in future studies. Moreover,
in this study, the proposed method was only evaluated over
two case studies and it was compared with an SVM-based
classifier. In addition, feature selection was based on the
optimal hyperparameter found for one combination rather
than the corresponding optimal value of each combination.
In the future, more advanced feature selection methods could
be investigated. Also, other oversampling (e.g. GAN, Varia-
tional Autoencoder (VAE), and SMOTE) and undersampling
methods developed for tackling imbalanced data along with
other ML algorithms such as the random forest, Extreme
Gradient Boosting (XGBoost) may be investigated for flash
flood detection from the CYGNSS GNSS-R data.
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