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ABSTRACT Clustering, which is a commonly used tool, has been applied in machine learning, data mining
and so on, and has received extensive research. However, there are usually noise and outliers in the data,
which will bring about significant errors in the clustering results. In this paper, a robust clustering model with
adaptive graph regularization (RCAG) is proposed, on which, sparse error matrix is introduced to express
sparse noise, such as impulse noise, dead line, stripes, and `1 norm is introduced to alleviate the sparse noise.
In addition, the `2,1 norm is also proposed mitigating the effects of outliers, and it has rotation invariance
property. Therefore, our RCAG is insensitive to data noise and outliers. More importantly, the adaptive
graph regularization is introduced into the RCAG to improve the clustering performance. Aiming at the
optimization objective, we propose an iterative updating algorithm, named the Augmented Lagrangian
Method (ALM), to update each optimization variable respectively. The convergence and time complexity
of RCAG is also proved in theory. Finally, experimental results on fourteen datasets of four application
scenarios, such as face image, handwriting recognition and UCI, elaborate the superiority of proposed
method over seven existing classical clustering methods. The experimental results demonstrate that our
approach achieves better clustering performance in ACC and Purity, which is a little less impressive in other
ways.

INDEX TERMS Adaptive graph regularization, clustering, `2,1, noise and outliers, augmented Lagrangian
method.

I. INTRODUCTION
Clustering is the process of dividing the object set into mul-
tiple classes composed of similar objects. The cluster gener-
ated by clustering is a set of data objects, which are related
to objects in the same cluster but distinct from objects in
other clusters. Furthermore, data clustering is a valuable data
analysis tool in machine learning and data mining. However,
reducing the influence of noise and outliers in the clustering
of data is a major research topic.

In recent years, varieties of clustering methods have been
proposed, such as K–means [1], spectral clustering [2]–[4],
NMF [5]. K–means aims to learn c cluster centroids that
minimize thewithin cluster data distances. Spectral clustering
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is a kind of clustering method based on graph theory, which
achieves the purpose of clustering the sample data by clus-
tering the feature vectors of the Laplace matrix of the sample
data. It is a low-dimension embedding of the affinity matrix
between samples. There have been a lot of researches on
clustering. Reference [6] proposed a new clustering method
that toke sample invariance as priori. Reference [7] pro-
posed a subspace clustering based on Structured AutoEn-
coder (StructAE). Reference [8] proposed to project raw data
into one space in which the projection embraces the geomet-
ric consistency (GC) and the cluster assignment consistency
(CAC), and didn’t need to make intensive parameter selec-
tions. Reference [9] built the theoretical connection between
Frobenius-norm-based representation (FNR) and nuclear-
norm-based representation (NNR). This paper mainly stud-
ies the application of matrix factorization to clustering.
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FIGURE 1. The framework of RCAG.

Some forms of matrix factorization include low–rank repre-
sentation (LRR) [10], principal component analysis (PCA)
[11] and singular value decomposition (SVD) [12]. In the
past decades, many clusteringmethods based NMF have been
proposed [13], [14].

Non-negative matrix decomposition was proposed by
[15]. It makes all the components after decomposition non-
negative, and simultaneously realizes the nonlinear dimen-
sion reduction. The general form of NMF is: X ≈

WHT s.t W ≥ 0,H ≥ 0 [16]. Non-negative matrix
factorization is the most popular methods in this branch. In
the clustering setting of NMF, H ∈ Rn×c is the clustering
assignment matrix andW ∈ Rm×c is the clustering centroids,
where c is the number of clusters. Noting that the result
of clustering with non-negative matrix factorization can be
obtained by performingK -means or other clustering methods
on H .
Previous studies have proposed various regularized NMF

for clustering [17]–[19]. For instance, many researches have
been proposed NMF extensions with graph regularization.
The graph regularization constraint of data cluster assign-
ment matrix is applied to obtain the geometric structure
of data [18], [20]–[22]. Reference [23] proposed sparse
dual graph-regularized nonnegative matrix factorization, and
revealed the inherent geometric structure and distinguishing
structure of data space and feature space. Reference [24]
introduced hypergraph Laplacian regularization to consider
the intrinsic geometrical structure and introduced `2,1 norm
to reduce effects of the noise and outliers. Reference [25]
used hypergraph regularization to preserve the high-order
manifold structure. In the above work, the affinity matrix
usually adopts a predefined model, which may not be optimal

in practical applications. This can lead to lower-quality dia-
grams being built and parts of the work not dealing with noise
issues.

In order to improve the performance of NMF, many vari-
ants with various regularization have been proposed and vari-
ous methods are proposed to solve the noise and outliers [26].
Huber loss was proposed to handle non-Gaussian noise and
outliers, sparse terms and regularization terms were intro-
duced to enhance the sparsity of the matrix and capture the
data manifold structure [27]. Reference [28] focuses on the
complex noise problem by using finite mixture of exponential
power (MoEP) distributions. These work to deal with noise or
outliers, but also do not use adaptive graph regularization to
adjust.

Nevertheless, clustering based NMF still exist the
following problems: (1) The traditional matrix factorization
clustering method is easy to be dominated by noise and
outliers to produce large errors. (2) The quality of the original
graph–based NMFwill be affected if the distance between the
calculated data samples is not accurate enough.

To address the problems mentioned above, we propose
an adaptive graph regularization clustering (RCAG). In our
model, adaptive graph regularization is introduced to improve
the accuracy of clustering. In addition, we alleviate the influ-
ence of noise and outliers by taking `2,1 norm function [29],
and `1 norm is used to alleviate the influence of sparse
corruption. Figure 1 shows the algorithm process of RCAG.
The main contributions of the paper are summarized as
follows:
(1) We propose a joint learning framework for clustering.

By which, the adaptive graph regularization, sparse error
matrix and nonnegative low–rank matrix decomposition

171852 VOLUME 8, 2020



M. Zhao, J. Liu: Adaptive Graph Regularized Low–Rank Matrix Factorization

are integrated into a unified objective function shown by
Equation 3.

(2) In order to get better clustering performance, adap-
tive graph regularization is introduced. It is parameter–
insensitive, scale–invariant, and simple operation.

(3) To address the problem of data being corrupted by noise
and outliers, we utilize the `1 norm and `2,1 norm to
alleviate the influence of sparse noise and outliers, such
as impulse noise, dead line, stripes and image occlusion,
respectively.

(4) In order to solve the optimization problem, an effective
algorithm RCAG described by Algorithm 1 based on
the Augmented Lagrangian Method (ALM) is devel-
oped. More specifically, the convergence analysis of
the designed optimization algorithm is presented from
both theoretical perspective shown in Theorem 4 and
experimental perspective shown in Figure 3.

The rest of this paper is organized as following. Section II
gives the definition of algorithm related symbols and adaptive
graph regularization. We propose a new robust clustering
frame (RCAG) for clustering and present the theoretical prop-
erties of our proposed RCAG approaches in Section III. The
experimental environment, experimental procedure, experi-
mental results and analysis are introduced in Section IV.
Section V finally concludes RCAG algorithm and gives the
future study direction.

II. RELATED WORK
In this section, we introduce the related work of adaptive
graph regularization learning.

A. NOTATIONS
The notations description in Table 1. Matrices are written
in capital letters (e.g., X ), and vectors are written in bold
lowercase letters. X.j denotes the j-th column, Xi. denotes the
i-th row and Xij denotes the entry at the j-th column and i-th
row of X .

B. ADAPTIVE GRAPH REGULARIZATION
There are many graph regularized NMFs in existence, but
most do not capture the structure of the data effectively.
First, most graph constructors need to calculate the distance
between the data samples. But if the calculated distance is not
accurate enough, then you get a picture of very poor quality.

Then, once the graph is built based on the wrong calculation,
it stays the same in subsequent steps. Therefore, the input
graph is not optimal, and the clustering performance of NMF
will be affected. Therefore, it is very necessary to build a
high-quality graph.

We suppose that the probability of each sample xi being
connected to its neighbor xj is zij, where zij is an element of
the expected similarity matrix Z . Obviously, we suggest that
the similar sample pair with small distance ‖xi − xj‖22 should
be assigned a high probability zij [30]. Therefore, we have the
following objective function to optimize the Z which meets
our assumption:

min
zTi 1=1,0≤zi≤1

n∑
j=1

(‖xi − xj‖22zij + α‖Z‖F ), (1)

where α is the regularization parameter.
Note that the equation

∑
i,j ‖hi − hj‖

2
2zij = 2tr(HTLZH ).

Further, we add the rank constraint to it, rank(LZ ) = n − k .
But this rank constraint is hard to solve. Because the rank
constraint rank(LZ ) = n − k equals to

∑k
i=1 σi(LZ ) = 0.

Simultaneously, we have
∑k

i=1 σi(LZ ) = minH tr(HTLZH ).
We get Equation 1 as:

argmin
Z ,H

n∑
i,j

(‖xi − xj‖22zij + α‖Z‖
2
F ),

s.t. zTi 1 = 1, 0≤zi≤1, H ∈Rn×k , HTH= I , H≥0.

(2)

III. PROPOSED METHOD
In this section, we introduce the proposed RCAG method.
Firstly, the method is presented in three terms. Secondly,
the optimization and algorithmic code of RCAG is presented.
Thirdly, the time complexity and convergence analysis are
presented.

A. MODEL OF RCAG
To solve the sparse noise, outliers and improve clustering
performance, this paper proposes the novel robust clustering
algorithm model. This model is divided into three terms. As
shown in the following Equation 3.
By combining robust matrix factorization with `2,1, `1 and

adaptive graph regularization, the proposed RCAG can be
formulated as (3), shown at the bottom of the page.

argmin
H≥0,HTH=I ,W ,S,Z

‖

low−rank matrix factorization︷ ︸︸ ︷
X −WHT

− S ‖2,1︸ ︷︷ ︸
outliers removing regularization

+ λ‖S‖1︸ ︷︷ ︸
sparse noise matrix removing regularization

+ βtr(HLZHT )+ γ ( min
zTi 1=1, 0≤zi≤1

n∑
j=1

(‖xi − xj‖22zij + α‖Z‖
2
F ))︸ ︷︷ ︸

adaptive graph regularization

(3)
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TABLE 1. Key notational description.

FIGURE 2. The influence function of `2,1 norm.

1) OUTLIERS REMOVING REGULARIZATION
To solve some data entries that are corrupted by outliers,
X ≈ WHT

+S is low-rankmatrix factorization reconstruction
loss term. The Frobenius norm is known to be sensitive to
noise and outliers. In order to enhance the robustness, `2,1
norm is adopted to measure the loss of matrix factorization.
`2,1 adds the `2 norms of all columns of a matrix. `2,1 is
rotational invariant for rows: ‖XR‖2,1 = ‖X‖2,1 for any rota-
tional matrix R [31]. Rotational invariance is a fundamental
property of Euclidean spacewith `2 norm. Since the influence
function of `2,1 norm is bounded, this means that the effect
of outliers on `2,1 norm can be controlled [32]. But `2 norm
is unbounded, so `2,1 norm is more robust than `2 norm.

2) SPARSE NOISE MATRIX REMOVING REGULARIZATION
Noise matrix removing term is to solve the sparse corruption,
we introduce a sparse error matrix S ∈ Rm×n which con-
strains by `1 norm. ‖X‖1 =

∑m
i=1

∑n
j=1 |xij|where is the sum

of the absolute values of the elements in the vector. `1 norm
can reduce the impact of sparse noise. This term can remove
impulse noise, dead line and stripes.

3) ADAPTIVE GRAPH REGULARIZATION
The third term is adaptive graph regularization, and it
is parameter-insensitive, scale–invariant, and simple oper-
ation. Because adaptive graph regularization only contains
the parameter of the number of nearest neighbors. When
each point is scaled, zij stays the same, which make it

scale–invariant. Adaptive graph regularization only involves
the basic operations of addition, subtraction, multiplication,
and division, which make it simple operation [33]. Adaptive
graph regularization is described in detail in Section II-B.

B. SOLUTION OF RCAG
In recent years, many methods have been proposed to solve
this type of optimization problem, such as ALM [34] and
LADM [35], etc.. First of all, the introduction of three aux-
iliary variable E = X − WHT

− S, G = S and F = H . In
this paper, the objective function Equation 3 can be changed
to the following:

argmin
E,W ,H ,F,S,G

‖E‖2,1 + λ‖S‖1 + βtr(HTLZF)

+ γ

n∑
ij

(‖xi − xj‖22zij + α‖Z‖
2
F )

s.t. E = X −WHT
− S, F = H , G = S,

HTH = I , H ≥ 0

zTi 1 = 1, 0 ≤ zi ≤ 1. (4)

Then, the above objective function of the problem can be
obtained by ALM [34]. The ALM of the Equation 4 is

L(E,W ,H ,F,Z , S,G,C1,C2,C3)

= ‖E‖2,1 + λ‖S‖1

+βtr(HTLZF)+ γ
n∑
ij

(‖xi − xj‖22zij + α‖Z‖
2
F )

+〈C1,X −WHT
−S − E〉+〈C2,H − F〉 + 〈C3, S − G〉

= ‖E‖2,1 + λ‖S‖1 + βtr(HTLZF)

+
µ

2
(‖X −WHT

− S − E +
C1

µ
‖F

+‖H − F +
C2

µ
‖F + ‖S − G+

C3

µ
‖F ), (5)

C1,C2,C3 are the Lagrange multiplier. Namely, the loss
relative to one variable is minimized and other variables are
fixed. There are seven variables in total, and the following is
the iterative update method.
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Update E: Fix other variables to update E by asking the
following question:

L = argmin
E
‖E‖2,1 + 〈C1,X −WHT

− S − E〉

= argmin
E
‖E‖2,1 +

µ

2
‖X −WHT

− S − E +
C1

µ
‖
2
F .(6)

In order to solve Equation 6, we need the following Theo-
rem 1.
Theorem 1: ( [21]) Given a matrix A = [a1, . . . , an] ∈

Rm×n and a positive scalar λ, hence Q∗ is Equation 7 of the
optimal solution,

min
1
2
‖Q− A‖2F + λ‖Q‖2,1. (7)

And the i-th column of Q∗.

Q∗(:, i) =


‖ai‖ − λ
‖ai‖

ai if λ < ‖ai‖,

0 otherwise.

The Equation 6 can be written as follows:

argmin
E

1
2
‖E − Y‖2F +

1
µ
‖E‖2,1, (8)

where Y = X −WHT
− S + C1

µ
.

According to Theorem 1, the solution of the Equation 6 is
as follows:

E(:, i) =


‖yi‖ − λ
‖yi‖

yi if 1
µ
< ‖yi‖,

0 otherwise.
(9)

where yi is the i-th column of Y .
Update Z : Fix other variables to update Z . Firstly,we

denote dxij = ‖xi − xj‖
2
2, then Equation 5 becomes:

argmin
Z

∑
i,j

(dxijzij + αz
2
ij)+

β

γ
tr(HTLZF).

s.t ∀i,
∑
j

zij = 1, 0 ≤ zi ≤ 1 (10)

Denote dhfij = ‖fi − hj‖22, we can deal with following
problem individually for each i:

argmin
zi

n∑
j=1

(dxijzij + αz
2
ij +

β

γ
dhfij zij)

s.t ∀i,
∑
j

zij = 1, 0 ≤ zi ≤ 1. (11)

Denote di ∈ Rn is a vector with the j-th element as
dij = dxij +

β
γ
dhfij , then the above problem can be rewritten

as follows:

argmin
zi
‖zi −

1
2α

di‖22 s.t ∀i,
∑
j

zij = 1, 0 ≤ zi ≤ 1.

(12)

Update H : Fix other variables to update H by asking the
following question:

L = argmin
H

2βtr(HTLZF)+ 〈C1,X −WHT
− S − E〉

+ 〈C2,H − F〉

= argmin
H

2βtr(HTLZF)+
µ

2
(‖X −WHT

− S − E

+
C1

µ
‖
2
F + ‖H − F +

C2

µ
‖
2
F ). (13)

Let

N = F −
C2

µ
+

2β
µ
LZF + (X − S − E +

C1

µ
)TW . (14)

Rewrite optimization problem:

argmin
H
‖H − N‖2F . (15)

According to the constraint conditions, the Equation 15 can
be written as:

argmax
HTH=I

tr(HTN ). (16)

Theorem 2 was applied to solve this problem.
Theorem 2: ( [21]) Given that an equation is similar to

the target function in Equation 16, the analytic solution H
is defined as:

H = UV T .

So the solution to update H is:

H = UV T , (17)

where U and V are left and right singular values of SVD
decomposition of N .
Update W : Fix other variables to update W by asking the

following question:

L = argmin
W
‖X −WHT

− S − E +
C1

µ
‖
2
F . (18)

This is a classical regression problem. Let

M = X − S − E +
C1

µ
. (19)

The solution ofW becomes

W = MH . (20)

Update S: Fix other variables, variable S can be obtained
by solving the following problem:

L = argmin
S

λ‖S‖1 +
µ

2
(‖X −WHT

− S − E +
C1

µ
‖F

+‖S − G+
C3

µ
‖F ). (21)
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Define M1 = X − WHT
− E + C1

µ
, M2 =

C3
µ
− G,

then S can be obtained via the soft thresholding [34], [36] as
follows:

S = max
(
max

(
M1 +M2 −

λ

µ
, 0
)

+ min
(
M1 +M2 +

λ

µ
, 0
)
, 0
)
. (22)

Update F: Update F by fixing other variables to get the
following problem:

L = argmin
F

βtr(HTLF)+
µ

2
‖H − F +

C2

µ
‖F . (23)

Let

J = H +
C2

µ
−
β

µ
HTL. (24)

The solution of F is:

Fij = max(Jij, 0), i = 1, . . . , n, j = 1, . . . , k. (25)

Update G: Update G by fixing other variables to get the
following problem:

L = argmin
G

µ

2
‖S − G+

C3

µ
‖
2
F , (26)

Let

∂(LG)
∂G

= 0.. (27)

The solution of G is:

G = S +
C3

µ
. (28)

Update parameter C1,C2,C3, µ: After the variables are
updated, these ALM method parameters need to be updated.

C1 = C1 + µ(X −WHT
− S − E). (29)

C2 = C2 + µ(H − F). (30)

C3 = C3 + µ(S − G). (31)

µ = ρµ. (32)

The procedure of the algorithm is described inAlgorithm 1.

C. THEORETICAL ANALYSIS OF RCAG
In this section, the validity of the method is proved by
analysing the time required for calculation. We then pointed
out the advantages of RCAG over other approaches.

1) COMPUTATION TIME
The computation complexity of E includes the calculation
and update of Y is O(mn+ c3) and O(mn), respectively.
We need O(mn2) to obtain the matrix Z .
The computation complexity ofW is O(c2). The computa-

tion complexity of G is O(c2).
The computation complexity of S is O(m3

+mnc+mc2+
mc ·max(m, n)).

Algorithm 1: The Proposed RCAG Algorithm

Input: Data set X ∈ Rm×n, the number of data clusters
c, µ, ρ, maximum number of iterations T

Output: ConvergedW and H .
1 InitializeW and H , Z using K -means;
2 Step1 :
3 Computation of H .
4 while not converged and iteration less than T do
5 1. Update E using Equation 9;
6 2. Update Z using Equation 12;
7 3. Update H using Equation 17;
8 4. UpdateW using Equation 20;
9 5. Update S using Equation 22;
10 6. Update F using Equation 25;
11 7. Update G using Equation 28;
12 8. Update parameter C1,C2,C3, µ using

Equation 29-Equation 32;
13 end
14 returnW ∈ Rm×c, H ∈ Rn×c;
15 Step2 :
16 Clustering for H .
17 Record the column number of the maximum value of

each row of H .
18 return Clustering result .

The computation complexity ofF isO(m3
+mc·max(m, n))

The main computation complexity of H includes the calcula-
tion of N and its SVD decomposition, which are O(m3) and
O(nc2), respectively.

The overall cost for each iteration is O(m3
+mc2+mnc+

mn + mc · max(m, n)). The computational complexity of
RCAG is in polynomial time.

2) CONVERGENCE ANALYSIS
The convergence of ALM has been proved in [35]. However,
there are seven variables in the paper:W , H , E , Z , G, F , and
S. Also, the objective function Equation 4 is not absolutely
smooth. These factors do not guarantee that our method is
convergent. Fortunately, Theorem 3 proves three sufficient
conditions for convergence [10].
Theorem 3: Shaped like L(x) = f (x)+λh(x) can be solved

byALMmethod. The three conditions to be satisfied byALM
method convergence are as follows:

(1) Parameter λ of ALM problem is needed to be upper
bounded.

(2) Original data matrix is full column rank.
(3) The optimality gap produced in each iteration step is

monotonically decreasing, namely the error ϑk is monotoni-
cally decreasing.
Theorem 4: Algorithm 1 is convergence.
Proof: According to Theorem3, our proposed objective

function solving method satisfies the above conditions:
(1) Parameter µ of Equation 5 is needed to be upper

bounded.
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(2) Data matrix X is full column rank.
(3) The optimality gap produced in each iteration

step, i.e., ϑk = ‖(Ek ,Wk , Sk ,Hk ,Fk ,Zk ,Gk ) −
argminE,W ,S,H ,F,G ‖2F , monotonically decreases, where
Ek ,Wk , Sk ,Hk ,Fk ,Zk ,Gk represent the value of E,W , S,
H ,F,Z ,G at the k-th step, respectively.
The first two conditions have been met [10]. But the third

condition is hard to prove in theory. Nevertheless, we can
prove the third condition experimentally. The value of the
objective function in the k iteration is ϑk = ‖Ek −Ek−1‖2F +
‖Wk = Wk−1‖

2
F + ‖Sk − Sk−1‖2F + ‖Hk − Hk−1‖2F +

‖Fk − Fk−1‖2F + ‖Zk − Zk−1‖2F + ‖Gk − Gk−1‖2F . It can
be seen from Figure3 that the value of the objective function
dramatically decreases and then converges rapidly to a stable
value, indicating that the third condition has been satisfied to
some extent. The convergence of the third term can be proved
by [37]. In conclusion, the convergence of the algorithm is
guaranteed.

3) ADVANTAGES OF RCAG
From a theoretical point of view, RCAG combines matrix fac-
torization, `2,1, `1 norm and adaptive graph to data clustering.

–Interpretability:
Different from other matrix factorization methods, NMF

decomposes a non-negative datamatrix into two non-negative
matrices (one is the basis matrix and the other is the coeffi-
cient matrix) from the perspective of "individuals constitute
the whole and parts constitute the whole". Since the basis
matrix and coefficient matrix obtained by the non-negative
matrix decomposition method are non-negative, the results of
the decomposition are highly interpretable.

–Robustness:
RCAG is effective to remove spares noise in a dataset, and

it can handle the influence of outliers. `1 norm is introduced
to alleviate the sparse noise. `2,1 norm is also introduced
to handle outliers, and it has rotation invariance property.
Therefore, our RCAG is insensitive to data noise and outliers.

IV. EXPERIMENTS
In this section, we evaluate the clustering quality of RCAG
over fourteen datasets of four types of datasets, including
ACC, NMI, and Purity.

A. EXPERIMENTAL ENVIRONMENT
All algorithms were implemented using Matlab R2014a.
The experiment was performed on a computer with 3.2GHz
Intel Core CPU, 8.0GB RAM and the Windows 7 operating
system.

B. DATASETS DESCRIPTION
There are in total fourteen datasets of four types of datasets
used in our experiments. Our experiment was carried out on
four datasets: face image dataset, UCI dataset, handwritten
recognition dataset. Table 2 summarizes the characteristics
of these datasets used in the experiments.

FIGURE 3. Convergence curves of RCAG on COIL20 and PIE10P.

FIGURE 4. warpAR10P dataset samples.

• WarpAR10P contains 130 images of 11 people with
different facial expressions under different sunglasses
and scarf, and sunglasses and scarf occlusions are used
as two types of real world noise.

• Yale university is made up of 2,414 faces of 38 peo-
ple with various occlusions incurred by different light
conditions.

• ORL face database consists of a series of face images
taken by Olivetti laboratory in Cambridge, UK, with
40 objects of different ages, genders and races.

• COIL20 [38] contains 20 objects, each rotated
360 degrees horizontally and photographed every
5 degrees, making a total of 72 images for each object.
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TABLE 2. Description of datasets.

FIGURE 5. PIE10P dataset samples.

FIGURE 6. COIL20 dataset samples.

• PIE10P carries 10 frontal images from 10 subjects.
• Digit database of 250 samples from 44 writers.
We selected 1797 instances from 10 writers.

• MNIST contains 70,000 handwritten pen digits.We used
a subset of 1,884 in our experiment.

• USPS is composed of 9,298 handwritten digit images.
Each image is represented by a 256 dimensional vector.

• Ionosphere consists of 351 instances and 34 attributes.
• Wine contains 13 properties and three types of wine.

FIGURE 7. Yale dataset samples.

FIGURE 8. MINIST dataset samples.

• Segment has 2310 examples, 19 dimensions.
• Glass contains 6 types of glass and defines in terms of
their oxide content.

• GLIOMA consists of 50 instances and 4434 attributes.
• TOX_171 consists of 171 instances and 5748 attributes.

C. EVALUATION METRIC
The three evaluation indexes of ACC NMI and Purity were
used to evaluate the performance of experiment, and the
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TABLE 3. Clustering result measured by ACC.

specific definitions of these evaluation indicators are as fol-
lowing:

Accuracy (ACC) is defined as

ACC =

∑n
i=1 δ(map(ri), li)

n
, (33)

wheremap(ri) is a permutation mapping function for permut-
ing the cluster labels ri to match the equivalent labels in the
dataset. n denotes the number of the data points, ri is the
cluster predicted label of xi and li is the corresponding true
cluster label. δ(x, y) is the delta function that if x 6= y equals
1, otherwise it equals 0.

The normalized mutual information (NMI) measure
between two index sets is defined as following:

NMI (Y ,C) =
MI (Y ,C)
√
H (Y )H (C)

. (34)

H (X ) is given by:

H (X ) =
|X |∑
i=1

p(i) log p(i), (35)

where p(i) = |X |/N is the probability that an object selected
randomly from X falls into class Xi.
Themutual information (MI) between the grand-truth label

(Y ) and cluster results (C) is given by:

MI =
|Y |∑
i=1

|C|∑
j=1

P(i, j) log
P(i, j)
P(i)P(j)

, (36)

where P(i, j) = |Yi ∩ Ci|/N .
The cluster Purity is defined as following:

Purity =
1
n

c∑
i=1

max
j
(nji), (37)

where nji represents the number of data points of the i input
class assigned to the cluster Cj(1 ≤ j ≤ c), c is the number of
clusters.

D. EXPERIMENTAL PROCESS
In this section, we introduce the process and results of the
comprehensive experiment.

1) BENCHMARK ALGORITHMS
Many studies have shown that the matrix factorization-based
clustering method has strong clustering ability [18]. In
order to evaluate the clustering performance of the proposed
method, we compare our algorithm with the following seven
clustering algorithms, including K -means [1], robust prin-
cipal component analysis (RPCA) [39], NMF [15], GNMF
[18], RMNMF [21], RGNMF [40], LRRGR [41] to evaluate
the effectiveness of RCAG.

1) The K–means clustering method was one of the most
widely used clustering methods.

2) Robust principal component analysis (RPCA) was the
most widely used dimension reduction techniques.

3) Nonnegative matrix factorization (NMF).
4) Graph regularized nonnegative matrix factoriza-

tion (GNMF) took into account the nonlinear structure
of the data.

5) Robust manifold nonnegative matrix factorization
(RMNMF) was an improved graph-based which uses
`2,1 norm to improve robust.

6) Robust graph regularized nonnegative matrix factoriza-
tion (RGNMF) introduced a sparse error matrix and
apply the `1 norm to solve unreliable regularization.

7) Low-rank representation with graph regulariza-
tion (LRRGR) proposed a low-rank representation
method that incorporates graph regularization.

2) EXPERIMENTAL RESULT
Table 3, 4, 5 tabulates the clustering results of different
clustering methods. As we can see, our method achieves
good performance on most datasets. For example, on the face
image dataset, our method was superior to other comparison
algorithms in terms of ACC, NMI and Purity. According to
Figure 9 to 12, in some cases, our method dose not achieve the
best performance. For example, in handwritten recognition
dataset, our method is slightly lower than other comparison
methods in ACC, NMI and Purty. The reason may be that
the dependence of factorization may cause these steps to
lose some important connection. Our method does not per-
form well on the Biomedical dataset, probably because the
Biomedical dataset is too complex and needs preprocessing
due to its high dimension.

VOLUME 8, 2020 171859



M. Zhao, J. Liu: Adaptive Graph Regularized Low–Rank Matrix Factorization

TABLE 4. Clustering result measured by NMI.

TABLE 5. Clustering result measured by Purity.

FIGURE 9. Clustering measure on face image dataset.

For the rest, our method achieves good performance over
the comparison methods, which demonstrates the necessity
and advantage of the introduced `2,1 norm, `1 norm and
adaptive graph regularization. `2,1 norm and `1 norm makes
our methods robust to outliers and noise.

The advantages of RCAG are shown in the following two
aspects:

(1) The objective function uses the `2,1 norm as the discrep-
ancy measure, which alleviates the outlier problems common
in other clustering methods [42]. And we also apply `1 norm

to sparse error matrix to alleviate the impact of sparse noise
on clustering.

(2) The adaptive graph regularization can improve
the clustering precision. And it is parameter–insensitive,
scale–invariant and simple operation.

3) PERFORMANCE ON CORRUPTED DATA
In this subsection, we consider the dataset with corruption,
such as sparse noise and outliers. For this purpose, we use
ORL dataset and artificially vanish 20%, 40% entries.

171860 VOLUME 8, 2020



M. Zhao, J. Liu: Adaptive Graph Regularized Low–Rank Matrix Factorization

FIGURE 10. Clustering measure on UCI dataset.

FIGURE 11. Clustering measure on handwritten recognition dataset.

FIGURE 12. Clustering measure on Biomedical dataset.

From Table 6, 7, it is seen that RPCA achieve the best
performance in few case. While the RPCA performs best
in many cases with 20% corrupted data, in most cases our
approach is second best. Meanwhile on 40% corrupted data,
RCAG outperforms RPCA.

4) PARAMETER SENSITIVENESS
In this subsection, we test the influence of our method with
respect to parameters. Parameter λ is selected by searching
from [0.0001, 100], and parameter β varies from [0.0001,
100]. The choice of γ and α is based on [33].

Form Figure 13, we can observe that our method is not very
sensitive to the choice of λ, and is sensitive to the choice of β.
The RCAG achieves good performance when β varies from
1 to 100.

E. DISCUSSION
In the above subsections, several experiments on different
types of datasets have been performed to show the efficiency
of our proposed RCAG.
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TABLE 6. Clustering result on ORL with corropted data (20% missing).

TABLE 7. Clustering result on ORL with corropted data (40% missing).

FIGURE 13. Clustering result with varying λ and β on Yale dataset.

The adaptive graph regularization clustering method per-
forms better than the baseline K -means. Adaptive graph reg-
ularization not only capture the global structures of data,
but can preserve the local geometric structures, i.e., preserve
nonlinear structure.

Compared with NMF and GNMF, RPCA, etc., our
proposed model uses `2,1 norm and `1 norm. `2,1 norm
keeps feature rotation invariance and can alleviate the influ-
ence of outliers. `1 norm reduces the influence of sparse
noise includes impulse noise (salt and pepper), dead line,
stripes [43].

V. CONCLUSION AND FUTURE WORK
In this paper, a low–rank matrix factorization model with
noise and outliers based on adaptive graph regularization is
proposed. Our model can not only solve sparse noise and
outliers, but also improve clustering performance by adap-
tive graph regularization. We introduce spares error matrix
S and `1 norm to solve sparse noise problem. By using the
sparse error matrix, a large amount of data can be recon-
structed to obtain robust decomposition results. In addition,
the `2,1 norm is applied to the matrix decomposition, and a
robust solution for outliers. Therefore, RCAG approximates

the clean data reconstructed from sparse outliers, constrains
outliers by `2,1 norm, and constrains sparse noise by `1
norm to achieve robustness. It proposes an iterative updating
method to optimize problem, and proved to be convergent.
Experimental results show the effectiveness of the RCAG.
Nevertheless, there are still some limitations to our approach.
For example, because of the shrinkage effect, `1 norm usually
results in a biased estimator which affects the accuracy of the
matrix rank approximation.

Next, we will carry out follow–up work to study various
epidemic regulation to improve clustering performance [44],
[45]. Such as normalized ε-penalty solves sparse corruption,
include impulse noise, deadline and stripes [46], side infor-
mation and low rank constraint [47]. Normalized ε-penalty
can can replace the `1 norm, and can enhance the sparsity in
both the intrinsic low–rank structure and the sparse corrup-
tions. Semi-supervised clustering is realized by adding side
information. Adding a kernel norm constraint of the objective
functions.
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