
Received August 31, 2020, accepted September 13, 2020, date of publication September 18, 2020, date of current version October 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3024974

Prufer Coding: A Vectorization Method
for Undirected Labeled Graph
LIN YANG AND YONGJIE WANG
College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
Anhui Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, Hefei 230037, China

Corresponding author: Lin Yang (yanglin0815@nudt.edu.cn)

ABSTRACT Prufer algorithm is a powerful method for topology vectorization, but the traditional prufer
algorithm method can only encode a rootless labeled tree, and no prior work has studied the method of
applying it to the graph vectorization. This paper proposes a vectorization method for undirected labeled
graphs based on the prufer algorithm, including graph encoding and decoding algorithms. A particular case
was discovered by preliminary experiments, which will reduce the accuracy of the coding algorithm (when
the node size reaches more than 150, the accuracy can only reach about 60%), so a connectivity check
mechanism that based on the Warshall algorithm is proposed and added to the coding algorithm. A large
number of experimental verifications show that the accuracy of the coding algorithm can reach 100% after
introducing this mechanism. Then the length of the vector generated by the coding algorithm is analyzed,
and the results show that graph vectorization can improve the efficiency of partial topology calculation.
Finally, the defects of the algorithm are discussed. The most significant defect is that the length of the
vector generated by the encoding algorithm is uncertain, which will prevent it from being applied to more
topological calculations.

INDEX TERMS Graph vectorization, topology calculation, prufer algorithm, Warshall algorithm, algorithm
design.

I. INTRODUCTION
With the explosive growth of the nodes of the system,
the complexity of the connected network has increased.
Graph vectorization is introduced to simplify the graph rep-
resentation, thus further simplify graph topology calculation.

Graph vectorization refers to representing the topology
information of a graph as a vector through a graph transfor-
mation algorithm. This vector is generally one-dimensional.
A graph is a mathematical abstraction that is useful for solv-
ing many kinds of problems. If we only need to solve the
connectivity problem, we can only discuss the undirected
graph model of the system. An undirected graph refers to a
graph in which each edge symbolizes an unordered, transitive
relationship between two nodes. Such edges are rendered as
direct lines or arcs [1]. A vectorized description of the graph
will simplify the process of solving problems related to the
connectivity of the graph.

Featherstone [2] proposed to use a parent array of undi-
rected graphs to describe the connectivity of the bodies.

The associate editor coordinating the review of this manuscript and

approving it for publication was Haipeng Yao .

It uses another two arrays to represent the set of chil-
dren of related bodies and the set of joints on the path
between the related bodies and root. Yazar [3] introduced a
one-dimensional vector Pgraph, which is used to describe the
connection between linear graph theory bodies and branches.

The traditional prufer algorithm is a method of coding
and decoding labeled trees, which can be used to vectorize
unrooted trees, and it was first proposed by Heinz Prufer
in 1918 when he proved Cayley’s theorem.

Prufer sequence is not incredibly widely used, but it can be
applied on some special occasions, such as be integrated into
the design of the Genetic Algorithm (GA) [4]–[6] and used
to solve the Minimum Spanning Tree (MST) problem [7].
Reference [8] proposes a new XML schema matching frame-
work based on the use of prufer encoding to improve the per-
formance of identifying and discovering complex matches.
Reference [9] uses the prufer code to define martingale of the
tree and establish a concentration result for a specific family
of functions over random trees with given degrees. Refer-
ence [10] designed a BMEP polytope iterative enumeration
algorithm based on the Prufer coding method of rootless label
tree, combined with the multi-faceted combination algorithm

175360 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4341-7132
https://orcid.org/0000-0003-1391-7363


L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

of the Balanced Minimum Evolution Problem (BEMP). The
chain structure of the objective supply chain [11] and the
branched polymer can be represented as a tree structure.
Reference [12] generates random trees with the same degree
distribution by repeatedly modifying the prufer code to cre-
ate the randomly branched polymers. Reference [13] used
the prufer algorithm to encode its proposed skeleton graph
model and check the isomorphism of the skeleton graph based
on the prufer sequence, but the skeleton graph proposed in
reference [13] is actually a tree structure.

Compared with the tree structure, the graph structure
(or the mesh structure) has a broader range of application
scenarios. Can the random tree generation method based on
the prufer algorithm proposed in reference [12] be extended to
the generation of random graphs? Whether the graph isomor-
phism detection method based on the prufer algorithm in ref-
erence [13] could be accurately applied to graph structures?
Although scholars have proposed many improved methods
for the traditional prufer algorithm, no one has considered
applying it to graph vectorization. In order to realize it, our
contributions could be summarized as follows:

a) Propose a method for undirected labeled graph vec-
torization based on the prufer algorithm, including graph
encoding and decoding algorithm.

b) Propose a method to check the connectivity of the graph
based on the Warshall algorithm and introduce an improved
approach, then apply it to increase the accuracy of the prufer
algorithm in coding and decoding undirected labeled graph.

Finally, the application prospect of the graph vectorization
in topology calculation will be analyzed. The process block
diagram of the topology vectorization is shown in Figure 1.

FIGURE 1. Process block diagram of topological vectorization.

II. REVIEW OF THE PRUFER ALGORITHM
A. PRUFER CODING OF ROOTLESS LABELED TREE
Prufer sequence encoding refers to converting a tree into a
character string, and decoding refers to converting a character
string into a tree [14].

First, briefly introduce the prufer coding process of rootless
trees: Let T be a tree with n vertices; then tree T is called
a labeled tree if the n vertices are distinguished from one
another by names such as v1, v2, . . . , vn [15]. Assuming that
the known n vertices are simply marked as 1, 2, . . . , n, then
suppose that T is one of the trees, and the node with the
smallest label in the leaves is a1, its adjacent node is b1. When
the point a1 and the edge (a1, b1) are trimmed from the graph,
the point b1 becomes the leaf of the remaining tree T1. Then
search the leaf with the smallest label in the remaining tree T1,
set to a2, the adjacency point of a2 is b2, and trim a2 and edge
(a2, b2) from T1. Continue this step n-2 times until there is
one edge left. Then tree T can be expressed as the sequence
b1, b2, . . . , bn−2, which is called the prufer sequence, and
this process is called the prufer coding algorithm. The coding
steps are summarized as follows [16]:
step_1: Cut the leaf nodes and edges in order from small to

large according to vertex labels.
step_2: Record the node number that connected to the leaf

node on the trimmed edge.
step_3: Repeat step_1 and step_2 until only two nodes and

edges between them are left in the tree, the algo-
rithm is end.

The following is a concrete example to illustrate the root-
less tree coding and decoding method of the Prufer sequence.
The constructed rootless tree is shown in Figure 2.

FIGURE 2. A rootless tree composed of 7 nodes.

Firstly, according to the coding step_1, node 2 and the
edge (2, 3) with the smallest sequence number among the leaf
nodes are cut out to generate a new tree.

According to the coding step_2, record the node number 3
adjacent to node 2, so the current prufer sequence is 3.

Then according to the coding step_3, the above process is
repeated until one edge remains. The entire process is shown
in Figure 3.

The prufer sequence changes as follows.

[3]→ [3, 1]→ [3, 1, 5]→ [3, 1, 5, 5]→ [3, 1, 5, 5, 1]

Finally, the prufer sequence is [3, 1, 5, 5, 1].

B. PRUFER DECODING OF ROOTLESS LABELED TREE
Provide two sequences 1, 2, . . . , n and b1, b2, . . . , bn−2,
which are sequential sequence (SeqtSeq) and prufer sequence
(PruferSeq), respectively. The tree T can be conversely
decoded from b1, b2, . . . , bn−2.

VOLUME 8, 2020 175361



L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

FIGURE 3. Prufer coding process of tree T.

In above coding process, since a1 has been cut from the
tree T when recording b1, a1 will not appear in b2, . . . , bn−2,
so find the first number that does not appear in PruferSeq
from SeqtSeq. This number is obviously a1, and at the same
time, rebuild the edge (a1, b1), then eliminate a1 from SeqtSeq
and eliminate b1 from PruferSeq. Continue the above steps
n−2 times until the PruferSeq becomes an empty set. At this
time, the SeqtSeq will have two numbers ak , aj left, and the
edge (ak , aj) will be the last edge of the tree T . Decoding steps
are as follows:

step_1: Construct the SeqtSeq according to the node number
of the tree. Find the number that is not in PruferSeq
and is located on the leftmost side of the SeqtSeq.
Connect it to the leftmost number of the SeqtSeq to
rebuild this edge.

step_2: After completing the step_1, the two node numbers
of SeqtSeq and PruferSeq are eliminated to form
two new sequence.

step_3: Repeat step_1 and step_2 several times until only
two numbers left in the SeqtSeq. Then rebuild the
edge corresponding to the remaining two numbers,
and the algorithm terminates.

Continue take the above tree T as an example. The
PruferSeq that we get is [3,1,5,5,1], according to step_1,
construct the SeqtSeq: [1,2,3,4,5,6,7], the leftmost sequence
number that in SeqtSeq but not in PruferSeq is 2, and the
leftmost number of the SeqtSeq is 3, so rebuild edge (2,3),
as shown in Figure 4. According to the decoding step_2,
delete the number 2 in SeqtSeq and the leftmost number 3
in PruferSeq, here we expressed it as [1,­,3,4,5,6,7]

FIGURE 4. Decoding side (2, 3).

and [®,1,5,5,1]. Get the new SeqtSeq: [1,3,4,5,6,7] and
PruferSeq: [1,5,5,1].

According to the decoding step_3, the above processes will
be repeated until SeqtSeq has only two numbers left: [1,7],
finally rebuild the edge (1,7). The changes of SeqtSeq and
PruferSeq are shown below.{

[1,®, 4, 5, 6, 7]
[¬, 5, 5, 1]

→

{
[1,¯, 5, 6, 7]
[°, 5, 1]

→

{
[1, 5,±, 7]
[°, 1]

→

{
[1,°, 7]
[¬]

→

{
[1, 7]
φ

Edges (3,1), (4,5), (6,5), (5,1), (1,7) will be decoded in
order, as shown in Figure 5.

FIGURE 5. The decoding process of the rootless tree.

Finally, we get a tree that is the same as the rootless
tree in Figure 2. The prufer coding and decoding algorithm
processes are shown in Figure 6.

FIGURE 6. Algorithm flowchart of rootless labeled tree.

175362 VOLUME 8, 2020



L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

Scholars have optimized the prufer encoding and decoding
algorithms, and have proposed many improved algorithms.
Reference [16] and [17] propose linear time algorithms.
Using the integer sorting algorithm obtained by the particular-
ity of the integer values to be sorted, the prufer encoding and
decoding problems are simplified to integer sorting problems,
which can better improve the efficiency of rootless tree prufer
coding and decoding. Reference [18] uses simple arrays
to improve prufer algorithm, which can improve the time
complexity of prufer coding to O(n). Reference [14] studied
a decoding algorithm that scanned the prufer sequence in
reverse order and proved that the algorithm could run in linear
time without the need for additional data structures or sorting
processes.

III. PRUFER ALGORITHM FOR UNDIRECTED LABELED
GRAPH
Traditional prufer algorithms can be used to encode and
decode a rootless labeled tree. However, compared to a root-
less tree, graphs are more widely used to solve network
problems, so it is necessary to design a method for coding
and decoding labeled graphs.

The tree and graph are both non-linear data structures, but
the graph is more abstract and complex than a tree. Compared
with a tree, the graph has a unique structure, which is named
cycle. Graph coding needs to focus on solving the coding
problem of the cycle. In order to emphasize the structural
nature of the graph, we only discuss the coding and decoding
of the undirected simple graph, which does not include paral-
lel edges and self-loops. Figure 7 shows a simple undirected
labeled graph with a cycle structure and leaf node.

FIGURE 7. A simple undirected labeled graph G.

By coding graph G, we will find some problems: if use the
prufer coding method of the rootless tree to coding graph G,
the node 4 and edge (1,4) in graph G will be trimmed first.
Then the remaining nodes 1, 2, and 3 form a cycle, where
there are no more leaf nodes. In this situation, which node
and which edge should be trimmed next? In order to success-
fully coding the undirected labeled graph, we need to find a
suitable way to solve this problem.

A. PRUFER CODING OF UNDIRECTED LABELED GRAPH
First of all, the single node cropping rules are specified: Each
cropping step trim the node and all edges connected to it.
In the prufer coding algorithm of the rootless tree, the clipped
node is always leaf-node; there are only one adjacent node
that needs to be recorded each time. Therefore, the single
node recording rule is specified: Recording all adjacent nodes

of the clipped node in order, then record that clipped node at
the end.

Suppose that the n vertex of the undirected labeled graphG
is denoted as a1, a2, . . . , an. The coding steps are designed as
follows:
step_1: If the current undirected labeled graph has leaf

nodes ai, . . . , aj, cut out the smallest node amin
among the leaf nodes, as well as the edge (ai, bi)
formed with the adjacent node bi. If there is no leaf
node left, the one with the smallest sequence num-
ber among the remaining nodes will be trimmed.

step_2: If the clipped node is a leaf node, only its adjacent
node bi should be recorded; if the clipped node is
not a leaf node and its degree is j(j ≥ 2), All nodes
b1, b2, . . . , bj that connected to ai through edges
(ai, b1), (ai, b2), . . . , (ai, bj) should be recorded,
assuming that b1 < b2 < . . . < bj follow the order
from small to large, record all of them and add the
clipped node ai at the end to generate a sequence
[b1, b2, . . . , bj, ai].

step_3: When each trim is complete, a new undirected
labeled graph will be generated. Continue to repeat
step_1 and step_2 until the undirected labeled
graph has only two nodes left, and the algorithm
terminates.

Taking graph G (Figure 7) as an example graph, its coding
process is shown in Figure 8.

FIGURE 8. The coding process of an undirected labeled graph.

B. PRUFER DECODING OF UNDIRECTED LABELED GRAPH
The decoding of an undirected labeled graph is the reverse
process of encoding, so we should correctly restore all detail
in the coding process. Due to the complexity of the coding
process, several problems should be considered. Firstly, how
to rebuild the cycle structure? We know that cycle structure
is the particularity of the graph. In the coding algorithm,
we recorded all the adjacent nodes of the clipped node and
recorded that node at the end. Therefore, in the decoding
process, we only need to locate that node in the PruferSeq,
then rebuild all the adjacent edges with the number in front of
it. Secondly, according to the coding algorithm of the rootless
labeled tree, the way to rebuild leaf node could adopt the
same method, that is, find the leftmost number that included
in SeqtSeq not appear in PruferSeq, and link it to the leftmost
number of PruferSeq to rebuild that edge.

Decoding steps could be designed as follows.
step_1. Find the number a that located in the leftmost side

of SeqtSeq but does not exist in the PruferSeq.

VOLUME 8, 2020 175363



L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

FIGURE 9. Prufer decoding process of undirected labeled graph G.

FIGURE 10. Prufer coding and decoding flowcharts for undirected labeled graph.

step_2. Connect the node a with the node b that located in
the leftmost side of PruferSeq, rebuild edge (a, b).

step_3. Delete a in SeqtSeq and b in PruferSeq.
step_4. If the above number a does not exist, find the

position of the leftmost side number of SeqtSeq in
PruferSeq, mark that number as bj.

step_5. Connect the node bj with each node (b1, . . . , bj−1)
that in front of bj, in order to rebuild edges
(bj, b1), . . . , (bj, bj−1).

step_6. Delete number bj in SeqtSeq and all numbers
b1, . . . , bj−1, bj in PruferSeq;

step_7. Repeat the above process until there are only two
numbers left in SeqtSeq. Connect the remaining two
numbers, rebuild the final edge, the algorithm is
over.

Taking the undirected labeled graph G as an example,
we have got the PruferSeq in above. According to the
PruferSeq, the decoding process is shown in Figure 9.

The prufer coding and decoding flow for the undirected
labeled graph is shown in Figure 10. To facilitate experimen-
tal verification, the pseudocode of algorithm is designed as
follows:

175364 VOLUME 8, 2020



L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

FIGURE 11. Schematic diagram of the experimental codec process.

Algorithm 1 Coding Algorithm
Input:

undirected labeled graph G
Output:

prufer coding sequence PruferSeq.

1: algorithm PruferCoding (G)
2: while G.nodenum > 2
3: CurrentNode← FindLeafNode (G)
4: if CurrentNode != NULL
5: AdjNode← FindAdjNode (CurrentNode)
6: PruferSeq← Record (PruferSeq, AdjNode)
7: else CurrentNode← FindSmallestNode (G)
8: Adj← FindAdjNode (CurrentNode)
9: PruferSeq←Record (PruferSeq, Adj,CurrentNode)
10: end if
11: end while
12: Prun (CurrentNode)
13: PruferSeq← Record (PruferSeq, NodeNumof(G))
14: return PruferSeq
15: end algorithm

In order to clearly describe the algorithm execution
process, we intuitively take an undirected labeled graph com-
posed of 6 nodes as an example to show the entire process of
its coding and decoding, as shown in Figure 11.

The basic operation of the coding algorithm is to determine
whether a node is a leaf node; its time complexity is O(n).
Outer while loop needs to determine the remaining nodes
number, its time complexity is alsoO(n), so the time complex-
ity of the coding algorithm is O(n2). The basic operation of
the decoding algorithm is to find the node number that in the
leftmost of SeqtSeq but not in PruferSeq, its time complexity
is O(n2), consider the outer while loop, the time complexity
of decoding algorithm is O(n3).

The optimal time complexity of basic operation can reach
O(n log n).Meanwhile, the time complexity of the outer while
loop can be reduced to O(log n) by selecting the appropriate
data storage structure [19], so the optimal coding and decod-
ing algorithm time complexity are O(n log n) and O(n log2 n)
respectively.

For undirected labeled graphs with different node size
scales, a large of experiments have been carried outs.
The accuracy rate of the codec still has not reached 100%,
as shown in Table 1.

According to the algorithm execution process, to analyze
the causes of algorithm errors, we found that the original
graph will be divided into two or more graphs in some par-
ticular cases. In this situation, the algorithm execution result
will be wrong, as shown in Figure 12.

In such a situation, the node with the small label happens
to be the bridge node connecting the two subgraphs, and
currently, there is no leaf node. If we trim such a node,

VOLUME 8, 2020 175365



L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

Algorithm 2 Decoding Algorithm
Input:

prufer coding sequence PruferSeq
Output:

undirected labeled graph G.

1: algorithm PruferDecoding (PruferSeq)
2: CreateSeqtSeq (PruferSeq)
3. while SeqtSeq.length > 2
4: for i← 1 to sizeof (SeqtSeq)
5: if NotBelongtoPruferSeqt (SeqtSeq (i))
6: CurrentNum← SeqtSeq (i)
7: break
8: end if
9: end for

10: if CurrentNum != NULL
11: G← RebuildEdge (G, CurrentNum, PruferSeq (1))
12: Eliminate (CurrentNum, PruferSeq (1))
13: else CurrentNum← FindinPruferSeqt (SeqtSeq (1))
14: Adj← AllLeftNum (CurrentNum)
15: G← RebuildEdge (G, Adj CurrentNum);
16: Eliminate (Adj, CurrentNum)
17: end if
18: end while
19: G← Rebuild (G, SeqtSeq)
20: return G
21: end algorithm

TABLE 1. Accuracy data of the first experiment.

FIGURE 12. The particular case of trimming into two pictures.

the original graph will be divided into two graphs. In order to
solve this problem, the shearing condition needs to be added.

Such a problem certainly does not occur when cutting
leaf nodes, so it is necessary to detect whether the current
undirected graph will be decomposed into multiple graphs in
the second case (cutting non-leaf nodes).

TheWarshall algorithm uses the idea of dynamic program-
ming to find transitive closures, which can be used to judge
the connectivity of the graph [20]. If only need to judge the
connectivity of the undirected graph simply, a vector can

be introduced to record the reachability of a single node.
We know that the n power of the adjacency matrix represents
the number of paths that each node can reach through n
hops to another node (including itself), so the connectivity
detection algorithm can be designed as follows:

Algorithm 3 Connectivity Check
Input:

undirected labeled Graph G
Output:

connectivity judgment result
1: algorithm ConnectionCheck (G)
2: CheckLine← G (1)
/∗Use the first row of the adjacency matrix for inspection∗/
3: for PowerCount← 2 to G.nodenum
4: CheckLine← CheckLine and G (1)
/∗CheckLine performs AND operation with the first row of

the current matrix∗/
5: if AllOnes (CheckLine)
/∗If CheckLine is all 1 then return true∗/
6: return TRUE
7: end if
8: G← G ∗ G_Init; // Continue multiplication
9: end for

10: return FALSE
11: end algorithm

If CheckLine becomes an all-one array, it means the node
that we marked can reach any other nodes, that is, this undi-
rected graph is connected. When considering this particular
case, it means that there is no leaf node at present, so a cycle
will appear, it will accelerate the check. Only in the worst
case, the outer loop needs to be performed n-2 times. The
inner layer is to check CheckLine. If we mark the value that
has been changed to 1, so that each time only need to check
the value that is still 0 in the previous round, the time com-
plexity can be reduced to O(log n), so the time complexity of
this check algorithm is O(n log n).
Therefore, the algorithm needs to make the following

improvements: If it is found that trimming the current
non-leaf node will divide the original graph into multiple
graphs, then mark and skip this node until a node that does
not decompose the original graph is found, exchange it with
the smallest marked node, and record this exchange in order
to recover when decoding. We introduce a table structure for
recording this exchange and return it at the end of the prufer
coding algorithm, and meanwhile, it as the input of the prufer
decoding algorithm to help restore this exchange.

The improved part can be described as follows:

IV. ALGORITHM APPLICATION
The algorithm proposed in this paper can better implement
the vectorization of the undirected labeled graph and record
the connectivity of it. Recording the two-dimensional adja-
cency matrix as a one-dimensional vector, can sometimes

175366 VOLUME 8, 2020



L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

Algorithm 4 Improved Coding Algorithm
J/∗rest of the algorithm∗/
if there is no leaf nodes

a← G.smallestNum
Trim (a)
if ConnectionCheck (G) = FALSE

Restore (G)
MarkNodeSet← a

else ConnectionCheck (G) = TRUE
if isempty(MarkNodeSet) = FALSE
ExgTable← Record (MarkNodeSet.smallest, a)
Clear(MarkNodeSet)

end if
end if

end if /∗rest of the algorithm∗/I
return ExgTable

Algorithm 5 Improved Decoding Algorithm
J/∗rest of the algorithm∗/
if there is no qualified number

if isexchanged (SeqtSeq(1)) = TRUE
b← Recover(ExgTable, SeqtSeq(1))

else
b← SeqtSeq(1)

end if
end if /∗rest of the algorithm∗/I

greatly simplify some graph operations and improve the effi-
ciency of solving graph problems, such as the graph isomor-
phism judgment problem, as shown in Figure 13.

Graph isomorphism is the most rigorous form of exact
graph matching, holding all the mapping, which must be
a bijection in both directions [21]. Graph_1 and Graph_2
in figure 13 are isomorphic because their adjacency matrixes
are exactly the same. The prufer sequences obtained accord-
ing to the algorithm proposed in this paper are also the
same: [3,4,1,5,2], and they have the uniqueness of decoding.
If the graph isomorphism analysis is performed based on the
adjacency matrix, it will take 10 comparison operations, and
based on the prufer sequence, it will only require 5 compari-
son operations so that the efficiencywill be sharply improved.

FIGURE 13. Graph isomorphism.

When use the adjacencymatrix to store a simple undirected
graph, the useful information is distributed in the upper trian-
gle of that matrix, as shown in Figure 14.

FIGURE 14. Useful information distribution.

The length of prufer sequence is related to the connectivity
of the undirected graph, as cropping rules make sure that it
will always record by the cropped edges, a conclusion could
be made as follow:

PruferLen = Edge+ CroppedRing

Therefore, when the undirected graph is sparse, the space
occupied by the prufer sequence to store useful information
is always sharply less than n(n− 1)

/
2, it will be verified in

the later experiment.

V. EXPERIMENT
A. ALGORITHM ACCURACY VERIFICATION
In order to verify the effect of the improvement method, more
experiments were carried out.

To compare the accuracy difference between the origi-
nal algorithm and the improved algorithm, we conducted
500 experiments each for undirected labeled graphs with
different numbers of nodes. Table 2 shows the accuracy

TABLE 2. Comparison of two algorithm experiments.

VOLUME 8, 2020 175367



L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

FIGURE 15. Vectors generated by prufer coding algorithm of two undirected labeled graphs with 100 nodes.

comparison of the two algorithm experiments on different
Graph_Size. The experimental results show that the improved
algorithm can always achieve 100% coding and decoding
accuracy.

Meanwhile, from the experiments, we can find that the
accuracy of the original algorithm will decrease when the
node number increases, as the expansion of the graph will
increase the probability of the above special case. Although
the improvement of the algorithm increases the time cost,
it dramatically improves the algorithm accuracy. The accu-
racy of the original algorithm in large-scale (between 100
to 300) graph is shown in Table 3.

Excluding the influence of random errors, the accuracy
rate of the algorithm that does not introduce the connectivity
check mechanism will be reduced to less than 60% when the
size comes to about 250 nodes.

The main disadvantage of the algorithm is that for different
topological graph models, the length of vectors generated by
the coding algorithm are not the same. If the vectors can be
determined to have the same length, then multiple vectors
can be formed into a full matrix (full matrix here refers to
needn’t to fill in irrelevant information to make the matrix
aligned). When using the matrix method to solve topological
calculation problems such as subgraph isomorphism, matrix
operations can significantly improve the operation efficiency.

Taking two random undirected labeled graphs with
100 nodes as an example, the vectors generated by the algo-
rithm proposed in this paper are shown in Figure 15.

Figure 16 shows two experiments that the topological size
from 5 to 100, taking the size step as 5, and performing

TABLE 3. The accuracy of original algorithm in large-scale.

50 times coding on each size to generate the average length
of the vector.

Through data fitting, the power function is used as the fit-
ting model, and the fitting function obtained is approximately
as l = n1.237, which is better than n(n− 1)

/
2.

175368 VOLUME 8, 2020



L. Yang, Y. Wang: Prufer Coding: A Vectorization Method for Undirected Labeled Graph

FIGURE 16. The effect of topological size on vector length.

VI. CONCLUSION
This paper has discussed the method of graph vectorization,
the prufer coding and decoding algorithms for undirected
labeled graph were proposed, and the algorithmwas analyzed
and improved according to the experimental results. The final
experimental results showed that the algorithm could well
encode and decode the undirected labeled graph. By analyz-
ing the time complexity of the algorithm, it has acceptable
time complexity. The algorithm has a good application sce-
nario, such as being used to generate graphs that meet certain
conditions randomly. Besides, the algorithm provides an idea
for the vectorization of graphs, which can simplify some
graph operations. However, the length of the vector generated
by the algorithm cannot be determined, so it cannot be well
applied for some specific graph analysis. In the subsequent
research, it will continue to explore the applicable range of
the method.

REFERENCES
[1] A. B. Sadavare and R. V. Kulkarni, ‘‘A review of application of graph

theory for network,’’ Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 6,
pp. 5296–5300, 2012.

[2] R. Featherstone, ‘‘A beginner’s guide to 6-D vectors,’’ IEEE Robot.
Automat. Mag., vol. 17, no. 4, pp. 88–99, Dec. 2010.

[3] M. N. Yazar and S. M. Yesiloglu, ‘‘Path defined directed graph vector
(Pgraph) method for multibody dynamics,’’Multibody Syst. Dyn., vol. 43,
no. 3, pp. 209–227, Jul. 2018.

[4] S. Molla-Alizadeh-Zavardehi, M. Hajiaghaei-Keshteli, and
R. Tavakkoli-Moghaddam, ‘‘Solving a capacitated fixed-charge
transportation problem by artificial immune and genetic algorithms
with a Prüfer number representation,’’ Expert Syst. Appl., vol. 38, no. 8,
pp. 10462–10474, Aug. 2011.

[5] R. He, C. Ma, C. Ma, W. Zhang, and Q. Xiao, ‘‘Optimisation algorithm for
logistics distribution route based on Prufer codes,’’ Int. J. Wireless Mobile
Comput., vol. 9, no. 2, pp. 205–210, 2015.

[6] Z. Hashemi and F. G. Tari, ‘‘A Prufer-based genetic algorithm for allocation
of the vehicles in a discounted transportation cost system,’’ Int. J. Syst. Sci.,
Oper. Logistics, vol. 5, no. 1, pp. 1–15, Jan. 2018.

[7] S. M. A. Nayeem and M. Pal, ‘‘Diameter constrained fuzzy minimum
spanning tree problem,’’ Int. J. Comput. Intell. Syst., vol. 6, no. 6,
pp. 1040–1051, Dec. 2013.

[8] A. Algergawy, E. Schallehn, and G. Saake, ‘‘Improving XML schema
matching performance using Prüfer sequences,’’DataKnowl. Eng., vol. 68,
no. 8, pp. 728–747, Aug. 2009.

[9] C. Greenhill, M. Isaev, M. Kwan, and B. D. McKay, ‘‘The average number
of spanning trees in sparse graphs with given degrees,’’ Eur. J. Combina-
torics, vol. 63, pp. 6–25, Jun. 2017.

[10] D. Catanzaro and R. Pesenti, ‘‘Enumerating vertices of the balanced min-
imum evolution polytope,’’ Comput. Oper. Res., vol. 109, pp. 209–217,
Sep. 2019.

[11] J. Xu, Q. Liu, and R. Wang, ‘‘A class of multi-objective supply chain net-
works optimal model under random fuzzy environment and its application
to the industry of chinese liquor,’’ Inf. Sci., vol. 178, no. 8, pp. 2022–2043,
Apr. 2008.

[12] S. W. Singaram, A. Gopal, and A. Ben-Shaul, ‘‘A Prüfer-sequence based
algorithm for calculating the size of ideal randomly branched polymers,’’
J. Phys. Chem. B, vol. 120, no. 26, pp. 6231–6237, Jul. 2016.

[13] H.-Y. Su, C.-C. Chen, Y.-L. Li, A.-C. Tu, C.-J. Wu, and C.-M. Huang,
‘‘A novel fast layout encoding method for exact multilayer pattern match-
ing with Prüfer encoding,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 34, no. 1, pp. 95–108, Jan. 2015.

[14] T. Paulden and D. K. Smith, ‘‘Developing new locality results for the
Prüfer code using a remarkable linear-time decoding algorithm,’’ Electron.
J. Combinatorics, vol. 14, no. 1, p. R55, Aug. 2007.

[15] H.-C. Chen and Y.-L. Wang, ‘‘An efficient algorithm for generating
Prüfer codes from labelled trees,’’ Theory Comput. Syst., vol. 33, no. 1,
pp. 97–105, Jan. 2000.

[16] X. Wang, L. Wang, and Y. Wu, ‘‘An optimal algorithm for Prufer codes,’’
J. Softw. Eng. Appl., vol. 2, no. 2, pp. 111–115, 2009.

[17] S. Caminiti, I. Finocchi, and R. Petreschi, ‘‘On coding labeled trees,’’
Theor. Comput. Sci., vol. 382, no. 2, pp. 97–108, Aug. 2007.

[18] J.Wang and K.M. Yan, ‘‘Linear algorithm of Prufer codec based on array,’’
J. Xi’an Shiyou Univ. (Natural Sci. Ed.), vol. 28, pp. 102–105, 2013.

[19] X. D. Wang and Y. J. Wu, ‘‘Optimal algorithm for coding and decoding
Prufer codes,’’ J. Chin. Comput. Syst., vol. 29, no. 4, pp. 687–690, 2008.

[20] R. R. Liu, J. E. Chen, and S. Q. Chen, ‘‘Improvement ofWarshall algorithm
based on transitive closure,’’ Comput. Eng., pp. 38–39, 2005.

[21] J. He, J. Chen, G. Huang, J. Cao, Z. Zhang, H. Zheng, P. Zhang, R. Zarei,
F. Sansoto, R. Wang, and Y. Ji, ‘‘A polynomial-time algorithm for simple
undirected graph isomorphism,’’ Concurrency Comput., Pract. Exper.,
p. e5484, Aug. 2019.

LIN YANG received the B.Sc. degree in electronic
engineering from the National University of
Defense Technology, Hefei, China, where he is
currently pursuing the M.Sc. degree in electro-
magnetic countermeasure. His research interests
include cyberspace security, network security sit-
uational awareness, and artificial intelligence.

YONGJIE WANG received the M.Sc. and Ph.D.
degrees from the National University of Defense
Technology, Changsha, China. He is currently
an Associate Professor of electronic engineering
with the National University of Defense Technol-
ogy, Hefei, China. His research interests include
cyberspace security, risk assessment, and informa-
tion system modeling and simulation.

VOLUME 8, 2020 175369


