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ABSTRACT Robustness of complex networks has attracted much attention in diverse disciplines. Most of
previous studies did not consider the attack cost. In this paper, the network robustness is studied with the
consideration of attack cost, with different complex network models and different robustness indices. It is
found that with different cost function and attack budget, the best attack strategy changes. When the budget
is low and attacking hubs costs much more than attacking an unimportant node, then the high-degree attack
(HDA) strategy performs worse than the low-degree attack (LDA) strategy. On the contrary, HDA is always a
better strategywhen the budget is high. Therefore, there is an intersection before and after that different attack
strategies perform better. The position of this intersection is affected by the network structure, robustness
index, cost function and the budget.

INDEX TERMS Attack cost, complex networks, robustness.

I. INTRODUCTION
Large-scale infrastructure networks, such as the Internet,
transportation networks, power grids play important roles in
our society [1]–[3]. In order to improve their performance
and avoid unexpected damages, either due to random failures
or intentional attacks, it is essential to study the robustness
of such infrastructure networks. However, these networks
usually have large scales and complex structures, whichmake
the modeling and analysis difficult.

Recent progress in network science provides an efficient
way for the study on the robustness of complex infrastructure
networks [4]–[6]. Network science focuses on the structural
properties of networks. Although different networks have
different properties, they all can be demonstrated by structural
elements such as nodes and links. More interestingly, many
distinct networks have quite similar structural properties. And
it has been shown that these properties are vital to determine
the dynamics performed in the network.

The study on the robustness of complex networks has
attracted much attention in the past two decades [7]–[12].
One common method is that the attacker is supposed to
remove a proportion of nodes, and the robustness is measured
by the connectivity of the rest network. It has been shown

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

that scale-free networks are robust against random attack
but fragile to intentional attack [13]. In such studies, the
intentional attack is conducted on hubs, which are supposed
to be the most important nodes in the network, such as those
with the highest degrees. Obviously, the removal of these
nodes makes the network disconnected easily. In comparison,
the homogeneous random graph is robust to both random
failure and intentional attack.

In the above studies, it is assumed that the attacker pays
the same cost to remove one node, no matter it is the hub
or a remote unimportant node. In the real case, however,
the removal of different node usually costs differently, and
the intentional removal of a hub usually costs much more
than the removal of an unimportant node. Based on this fact,
some researchers studied different attack strategies with the
consideration of attack cost. Zheng et al. [14] found that,
when the attack cost is taken into account, the scale-free
networks may be robust against intentional attacks. This find-
ing is quite different from the famous ‘‘robust-yet-fragile’’
property of scale-free networks, as the latter did not con-
sider the attack cost. Hong et al. [15] considered different
attack strategies including the high-degree removal strategy
(HDRS), low-degree removal strategy (LDRS), and the ran-
dom removal strategy (RRS), and studied how the total
attack cost and network assortativity coefficient affect the
performance of different attack strategies. Zhang et al. [16]
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FIGURE 1. The relative size of the largest connected component G when considering the attack cost. (a) a=0;
(b) a=0.1; (c) a=0.2; (d) a=0.3; (e) a=0.4; (f) a=0.5; (g) a=0.6; (h) a=0.7; (i) a=0.8; (j) a=0.9; (k) a=1. BA scale-free
network with N=1000 and <k>≈4 is considered. Each point is the average of 10 runs.

FIGURE 2. The intersection between HDA and LDA curves in figure 1.
(a) the relative size of the largest connected component G at the
intersection, as a function of a. (b) the budget p at the intersection, as a
function of a. BA scale-free network with N=1000 and <k>≈4 is
considered. Each point is the average of 10 runs.

designed an optimization algorithm to defend the network
from attacks when the cost is considered.

When considering the attack cost, there are actually two
issues. One is the cost to remove an individual node.
Obviously, the removal of a hub node should cost more than
the removal of an unimportant node. Another issue is the total
cost the attacker can pay. In this paper, we will consider both
these two issues and study how these two issues affect the
robustness of networks.

The rest of paper is organized as follows. In section II,
the complex network models, the cost formulation and the
robustness index are given. In section III, simulated results
and discussions are provided. Finally, the work is concluded
in section IV.

II. MODEL
A. NETWORK MODELS
Two network models are considered in this paper. One is the
Barabasi-Albert (BA) scale-free network [17]–[19], and the
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FIGURE 3. The relative size of the largest connected component G when considering the attack cost. (a) a=0; (b) a=0.2;
(c) a=0.4; (d) a=0.6; (e) a=0.8; (f) a=1. ER random graph with N=1000 and <k>=4 is considered. Each point is the
average of 10 runs.

other is the Erdos-Renyi (ER) random graph [20], [21]. These
two network models show quite different characteristics in
structure. The BA scale-free network model has the charac-
teristics of growth and preferential attachment. As a result,
the hub nodes have a large number of connections whereas
most of other nodes only have few links. In this way, different
nodes take quite different roles in the network. So, the BA
scale-free network model generates heterogeneous network.
In comparison, the nodes of the ER random graph model
are connected with the same probability. Therefore, the ER
random graph generates homogeneous network, where all
nodes show identical property statistically. These two models
are described in detail as follows.

1) BA SCALE-FREE NETWORK
Initially there are m0 nodes in the network. They are fully
connected from one to another. Then at each time step, one
node is added into the network, and this new node is con-
nected to m existing nodes. The connection is based on a
preferential rule. More specifically, the probability that a new
node is connected to an existing node i is

∏
i
=

ki∑
i ki

(1)

where ki is the degree of node i. Repeat this growth process
until the number of nodes reaches N . Denote the average
degree of node as <k>.

2) ER RANDOM GRAPH
Initially there are N isolated nodes without any connection
between each other. Then the links are randomly added
between nodes, until the average degree reaches <k>.

FIGURE 4. The intersection between HDA and LDA curves in figure 3.
(a) the relative size of the largest connected component G at the
intersection, as a function of a. (b) the budget p at the intersection, as a
function of a. ER random graph with N=1000 and <k>=4 is considered.
Each point is the average of 10 runs.

B. ATTACK COST
When the attacker removes a node from the network, a cost
has to be paid. Generally speaking, the more important the
node is the higher cost the attacker has to pay. In order to
investigate the impact of attack cost on the robustness of
network, define the cost to remove node i as

Yi = kai (2)

where a is the cost factor. When a = 0, then the cost to
remove different nodes is the same. This is equivalent to
the traditional study where no cost is considered. Usually a
should be positive, indicating the fact that removing a more
important node costs more.

After defining the cost to remove a node, the attacker can
conduct the attack and remove nodes. Here we consider three
node attack strategies, i.e., HDA, LDA and RA. The detailed
attack strategies are described as follows.
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FIGURE 5. The network efficiency E when considering the attack cost. (a) a=0; (b) a=0.1; (c) a=0.2; (d) a=0.3; (e) a=0.4;
(f) a=0.5; (g) a=0.6; (h) a=0.7; (i) a=0.8; (j) a=0.9; (k) a=1; (l) a=1.1; (m) a=1.2. BA scale-free network with N=1000 and
<k>≈4 is considered. Each point is the average of 10 runs.

1. High-degree attack (HDA) strategy: Sort the nodes in
a descending order of their degrees. Then remove the nodes
sequentially.

2. Low-degree attack (LDA) strategy: Sort the nodes in
an ascending order of their degrees. Then remove the nodes
sequentially.

3. Random attack (RA) strategy: Remove the nodes
randomly.

It should be noted that our definitions of HDA and LDA
are different from those for HDRS and LDRS. In Ref. [15],
a node is removed with a probability related to its degree.
HDRS defines a higher probability to remove the node with
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FIGURE 6. The intersection between HDA and LDA curves in figure 5.
(a) the network efficiency E at the intersection, as a function of a. (b) the
budget p at the intersection, as a function of a. BA scale-free network with
N=1000 and <k>≈4 is considered. Each point is the average of 10 runs.

a higher degree, whereas LDRS defines a higher probability
to remove the node with a lower degree. In comparison, HDA
removes nodes strictly in a descending order of degree, and
LDA removes nodes strictly in an ascending order of degree.

In most cases, the attacker has limited budget and can only
attack a proportion of nodes, no matter what kind of attack
strategy is used. To show the limited budget, we define

p =

∑
i∈Z k

a
i∑N

i=1 k
a
i

(3)

where Z is the set of removed nodes. p gives the budget the
attacker can use.

C. ROBUSTNESS INDEX
Two indices are considered to show the robustness of net-
works.

1) THE RELATIVE SIZE OF THE LARGEST CONNECTED
COMPONENT
After the attack, the network will be disintegrated into pieces.
The largest connected component is the connected piece with
the largest number of nodes within it. It shows the best part
where the revival nodes can still communicate with each
other. So its relative size can be used to measure the robust-
ness of network [22]

G =
N ′

N
(4)

where N ′ is the number of nodes in the largest connected
component after the attack.

2) NETWORK EFFICIENCY
The efficiency of the network is defined as [23]

E =
1

N (N − 1)

∑
i 6=j

1
dij

(5)

where dij is the shortest path length between node i and node j.
Compared with the largest connected component, the effi-

ciency takes each and every node into account, instead of
those in the largest piece. So this index shows the character-
istic of the whole survival network after attack.

III. SIMULATION RESULTS
Figure 1 shows how the relative size of the largest con-
nected component G of the BA network changes with the
total attack budget p. It shows that, with higher budget,
the attacker always can make more serious damage to the
network, no matter what kind of attack strategy is applied.

On the other hand, different attack strategies do have dif-
ference. The best attack strategy is always one of the two
intentional attack strategies, not RA. Take subfigure (a) as an
example. The cost factor a=0 in this subfigure, which means
that the cost to remove different node is the same. Under
this condition, it is obviously better to attack the high-degree
nodes, which makes the network break quickly. So HDA
performs the best among three strategies. On the contrary,
if the removal begins from the low-degree nodes, then most
of survival nodes are still connected. So LDA performs badly.
The performance of RA is between HDA and LDA.

More interestingly, with the change of cost factor a,
RA curve almost unchanged, but the performance of inten-
tional attack strategies changes accordingly. Take the last
subfigure as an example, where a = 1. According to
equation (2), the cost to remove a node is proportional to the
node’s degree when a = 1. And we know that the degree
distribution of BA network is heterogeneous, which means
that a few nodes have a large number of links while most of
nodes have only few connections. Thus, the cost to remove a
hub is many times higher than the cost to remove a normal
node. Then, removal of high-degree nodes may be not a good
idea especially when the budget is tight. This is because when
the budget is tight, HDA can only remove few hubs, which
has litter effect to the whole network. In comparison, LDA
can remove a large number of nodes with the same budget.
Although each of them is not an important node, the removal
of a large number of these unimportant nodes may make the
network broken. In the subfigure, when the budget p is low,
the LDA curve is the lowest among three curves, followed by
the RA curve. Of course, if the budget is higher, HDA still
has its advantage. Therefore, in the subfigure, an intersection
can be seen between LDA and HDA curves. This intersection
is important, since before and after it different attack strategy
takes the lead.

Comparing different subfigures in figure 1, the intersection
moves. To show it more clearly, we plot how the values
of G and p at the intersection change with a in figure 2. It can
be seen that both of them aremonotone. Since the intersection
appears when a ≥ 0.5 in Fig. 1, the curves in Fig. 2 begin at
a = 0.5.
Similar results can be seen in ER random graph, as shown

in figure 3. And since ER random graph is a homogeneous
network, the advantage of HDA is taken over more easily as
the intersection appears when a is still small. Figure 4 shows
how the values of G and p at the intersection change with a.
The results in both networks show that LDA leads HDA for a
longer time when the cost gap between removal high-degree
node and low-degree node is larger (i.e., when a is
larger).
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FIGURE 7. The network efficiency E when considering the attack cost. (a) a=0; (b) a=0.2; (c) a=0.4; (d) a=0.6; (e) a=0.8;
(f) a=1. ER random graph with N=1000 and <k>=4 is considered. Each point is the average of 10 runs.

In the study on network robustness, the largest connected
component is often used to measure the performance.
However, it only shows the largest connected part of the
survival network. To show the whole picture, the network
efficiency is a suitable index, as it takes each and every node
into account. Figures 5-8 give the network efficiency of BA
scale-free network and ER random graph after attack. The
intersection between HDA and LDA can be observed in these
figures. Comparing to the intersections in figures 1-4, the
intersections for the network efficiency appears late. Take
the BA scale-free network as an example. The intersection
appears when a is greater than 0.5 for the largest connected
component (see figure 2), whereas it appears only when a
is greater than 0.9 for the network efficiency (see figure 6).
During 0.5 < a < 0.9, HDA seems to be a better attack
strategy if the efficiency of the whole network is the key
concern, whereas LDA becomes the better strategy if the aim
of attack is to reduce the largest connected component. As for
RA, the change of a has little impact on the curve.

FIGURE 8. The intersection between HDA and LDA curves in figure 7.
(a) the network efficiency E at the intersection, as a function of a. (b) the
budget p at the intersection, as a function of a. ER random graph with
N=1000 and <k>=4 is considered. Each point is the average of 10 runs.

IV. CONCLUSION
There are different strategies to attack a complex network.
Then the key issue is to find a better one. From the study in
this paper, it is shown that the better strategymay change with
conditions such as the cost function for the attack, the budget
the attacker has, the network structure the attacker is facing,
the performance measure the attacker concerns about, and
so on. More specifically, when the attack cost is taken into
account, attacking the network from the hubs may not be
always a good strategy, since hubs cost much higher than
most of other nodes. In some cases, attacking unimportant
nodes may become a better strategy as it can remove a large
number of nodes with the same cost for removing few hubs.
In addition, attacking nodes randomly is not a good choice,
since there is always one intentional attack strategy better
than it. Although this paper is from an attacker’s point of view,
it is also helpful for the network administrator to defend the
network from attacks.
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