
Received September 5, 2020, accepted September 13, 2020, date of publication September 18, 2020,
date of current version October 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3024851

Design and Implementation of a 256-Bit
RISC-V-Based Dynamically Scheduled
Very Long Instruction Word on FPGA
NGUYEN MY QUI , CHANG HONG LIN , (Member, IEEE), AND POKI CHEN , (Member, IEEE)
Department of Electronics and Computer Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan

Corresponding author: Nguyen My Qui (m10702809@mail.ntust.edu.tw)

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant 108-2221-E-011-137.

ABSTRACT This study describes the design and implementation of a 256-bit very long instruction
word (VLIW) microprocessor based on the new RISC-V instruction set architecture (ISA). Base integer
RV32I and extension instruction sets, including RV32M, RV32F, and RV32D, are selected to implement
our VLIW hardware. The proposed architecture packs up eight 32-bit instruction flows, each of which
performs fixed operational functions to create a 256-bit long instruction format. However, one obstacle of
studying new ISAs, similar to RISC-V, to design VLIW microprocessors is the lack of dedicated compilers.
Developing an architecture-specific compiler is really challenging. An instruction scheduler is integrated to
dynamically schedule independent instructions into the VLIW instruction format. This scheduler is used
to overcome the lack of a dedicated RISC-V VLIW compiler and leverage the available RISC-V GNU
toolchain. Unlike conventional VLIWs, our proposed architecture is organized into six main stages, namely,
fetch, instruction scheduler, decode, execute, data memory, and writeback. The complete design is verified,
synthesized, and implemented on a Xilinx Virtex-6 (xc6vlx240t-1-ff1156). Maximum synthesis frequency
reaches 83.739 MHz. The proposed RISC-V-based VLIW architecture obtains an average instructions per
cycle value that outperforms that of existing open-source RISC-V cores.

INDEX TERMS Very long instruction word (VLIW), RISC-V, microprocessor, dynamic scheduling,
field-programmable gate arrays (FPGA).

I. INTRODUCTION
Exploiting instruction-level parallelism (ILP) is key to
achieving high performance for microprocessors. The imple-
mentation of processor architectures to exploit high ILP
ranges from pipelining, multiple processors, multithreading,
superscalar, and very long instruction word (VLIW) [1].
Superscalar and VLIW processors exploit spatial parallelism
by utilizing multiple functional units to issue several opera-
tions simultaneously. However, the superscalar architecture
demands specific hardware control to schedule instructions,
thereby making superscalar hardware highly complicated.
In the VLIW, parallelism potential among instructions is
determined through the support of a powerful VLIW com-
piler. Concurrent operations are packed into very long
instructions without any dependency. This compiler-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

scheduling reduces VLIW hardware complexity compared
with superscalar hardware.

This study proposes a general-purpose 256-bit VLIW
architecture based on the new RISC-V instruction set archi-
tecture (ISA) [2]. Formal research on the design and
implementation of VLIW microprocessors based on the
RISC-V ISA is rarely reported. The selected instruction
sets include base integer RV32I and optional extensions,
including multiply-and-divide integer RV32M, single- and
double-precision floating-point RV32F, andRV32D.Our pro-
posed VLIW implementation includes eight 32-bit opera-
tional flows, creating a 256-bit VLIW instruction format.
Nevertheless, the difficulty of studying and constructing
VLIW architectures based on the latest ISAs, such as
RISC-V, lies in the lack of a specific compiler to schedule the
sequential instructions of an original program into the VLIW
instruction format. Moreover, programs scheduled for a given
VLIW implementation are not binary compatible with other
implementations with a different number of functional units

172996
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6044-1778
https://orcid.org/0000-0003-3646-3261
https://orcid.org/0000-0003-0749-4181
https://orcid.org/0000-0003-0810-1458


N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

or functional units with different latencies [3]. To solve this
lack of a dedicated RISC-V VLIW compiler, we integrate an
instruction scheduler to dynamically fit independent instruc-
tions in the instruction memory into their corresponding flow
in our VLIW instruction format. Thus, leveraging the avail-
able RISC-V GNU toolchain [4] is possible. Consequently,
the VLIW architecture is organized into six stages, namely,
fetch, instruction scheduler, decode, execute, data memory,
and writeback. The main contributions of our paper can be
summarized as two folds:
+ We study the new RISC-V ISA and propose a general-

purpose VLIW architecture based on the selected RISC-V
subsets, each of which can be implemented as one or more
flows in VLIW architecture.
+ We integrate a dynamic instruction scheduler to over-

come the shortage of a specific RISC-V VLIW compiler for
the proposed VLIW architecture. Thus, we can utilize the
existing RISC-VGNU toolchain rather than developing a new
compiler.

The entire design is constructed, simulated, synthesized,
and implemented on a targeted Xilinx field-programmable
gate array (FPGA) Virtex-6 (xc6vlx240t-1-ff1156) using
Verilog Hardware Description Language (HDL) in ISE
14.7 software suite. The synthesis results demonstrate that the
dynamic instruction scheduler is simple and consumes mini-
mal hardware resources. The burden of instruction scheduling
is shouldered by the hardware. The existing RISC-V GNU
toolchain can be used to compile and execute C programs for
functional verification and performance measurement. The
performance of our VLIW core is measured by using bench-
mark programs. The average instructions per cycle (IPC) of
the proposed design outperforms that of open-source RISC-V
cores. The rest of this paper is organized as follows. Section II
reviews the previous VLIW designs. Section III introduces
the selection of RISC-V ISAs, and Section IV reveals the
VLIW instruction format structured with selected ISAs.
Section V presents the entire VLIW architecture. Section VI
shows the simulation, synthesis, and implementation results.
Section VII provides the conclusions.

II. RELATED WORKS
In academia, several studies have been conducted on VLIW
architecture implementation on application-specific inte-
grated circuit (ASIC) and FPGA technology. An ASIC-based
four-slot VLIW for multiple stream cipher operations is fab-
ricated on a 180 nm technology to achieve an operating fre-
quency of 200 MHz [5]. It achieves a good tradeoff between
high performance and flexibility for multiple basic stream
cipher operations. Another 28 nm four-slot VLIW based on
a vector ISA operates at 400 MHz [6] at the expense of high
power consumption. Despite achieving competitive area and
throughput efficiency, high power consumption is the demerit
of this design compared with its counterparts. In general,
the ASIC implementation provides the best solution for high
performance of VLIW processors. Besides, studies have been
conducted on FPGA-based VLIW design. A 90- and 45-nm

sub-word parallelism RISC architecture with various sub-
word-sizes [7] is proposed to obtain the performance com-
parable with the DSP core TMS320C64X [8]. An adaptable
VLIW, whose main parameters are reconfigured at design
time [9], is built into the 32-bit VEX ISA [10] to oper-
ate up to 174.89 MHz. However, any experimental results
and the IPC used to estimate execution time results are not
reported. Another VLIW architecture, which is also based
on the VEX ISA, is the 32-bit four-issue ρ-VEX [11]. Its
maximum frequency reaches up to 74.369MHz. The substan-
tial advantage of the VEX compiler involves the scheduling
of multicycle memory operations to maintain high ILP [12].
VEX-based architectures can be kept relatively simple by
using this powerful compiler to achieve a high frequency.
Next, a two-stage VLIW based on the HPL-PD ISA [13] can
reach 41.8 MHz [14]; its compiler and assembler are based
on the Trimaran framework [15]. However, the frequency
of this design is relatively low. Another 128-bit four-slot
VLIW for issuing multiscalar and vector instructions can
achieve 75.825 MHz [16]. Nevertheless, only the synthesis
results of stages in the architecture are shown, without any
experimental and performance results.

Several VLIW architectures share the burden of ILP
exploitation by applying dynamic instruction scheduling
methods in the hardware. Thus, they can avoid the problem of
binary incompatibility caused by different instruction formats
and provide higher performance than traditional VLIW mod-
els. Dynamic instruction scheduling VLIW (DISVLIW) [17],
which is a hybrid architecture with inherited features, such as
ILP exploitation at the compile time of the VLIW processor
and dynamic scheduling at the run time of the superscalar,
is proposed. The dynamically trace scheduling VLIW [3]
integrates a VLIW engine with a conventional superscalar
core into a processor with a complicated hardware scheduler.
This architecture is used to maintain instruction trace and
dispatch suitable instructions to the VLIW engine superscalar
core. Besides, the Avatar VLIW processor [18] integrates
DynaPack scheduling and packing mechanisms that can ana-
lyze the dependence relations of instructions, maintain their
correctness, and pack concurrent instructions into a VLIW
bundle during run time. Generally, DISVLIW architectures
are complicated in terms of hardware implementation owing
to their complex instruction tracing and scheduling mecha-
nisms. Furthermore, such architectures require considerable
amounts of hardware resources and execution time.

III. RISC-V ISA
In this section, we introduce the RISC-V ISA sets selected for
our VLIW implementation, comprising base integer RV32I,
multiply-and-divide RV32M, single- and double-precision
floating-point RV32F, and RV32D. The details of these
ISAs, including instruction layout, opcodes, format types,
names, and usage, can be referred in the specifications [2].
Although we choose 32-bit RISC-V subsets to implement our
VLIW, this selection does not indicate that RISC-V has only
32-bit instructions. RISC-V proposes 16-bit, 32-bit, 48-bit,

VOLUME 8, 2020 172997



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

TABLE 1. Summary of selected RISC-V ISAs.

and 64-bit instructions. Migration to the VLIW architec-
ture has several attractive advantages. For instance, a 64-bit
instruction interface can fetch and process three instructions
(1× 32-bit + 2× 16-bit) in parallel. In various applications,
designers can select suitable RISC-V instruction subsets and
lengths for the VLIW instruction format. Table 1 summarizes
the RISC-V instruction sets selected to implement our VLIW
design.

A. RV32I: BASE INTEGER
The first essential subset requirement in any implementation
is the base integer RV32I, because it can run a full software
stack at the core. RISC-V simplifies instruction decoding.
Register operands are consistently in the same locations for
all instructions, which means that registers to be read and
written are consistently accessed before an instruction is
decoded [19]. R-type offers arithmetic instructions (add, sub),
logical instructions (and, or, xor), shift instructions (sll, srl,
sra), and set less than instructions (slt). I-type provides imme-
diate versions of R-type instructions and loads for words (lw),
halfwords (lh), and bytes (lb). S-type has store instructions
for words (sw), halfwords (sh), and bytes (sb). B-type instruc-
tions compare two registers, and a conditional branch is taken
if they are equal (beq), not equal (bne), greater than or equal
(bge) or less than (blt). I-type jump and link register (jalr)
and J-type jump and link (jal) are unconditional jumps that
support procedure calls. In U-type, the load upper immediate

(lui) instruction followed by an immediate instruction creates
a 32-bit constant. The add upper immediate to PC (auipc) can
combine with a jalr for control flow transfers or with a load
or store for data accesses.

B. RV32M: MULTIPLY AND DIVIDE
An evident characteristic of RISC-V is its modularity. In addi-
tion to the base ISA, RISC-V supports optional standard
extensions. One extension can be implemented as one ormore
separate flows in the VLIW architecture. Next, we expand our
implementation to RV32M operations. RV32M adds integer
multiply, divide, and remainder instructions to RV32I. Multi-
plying two 32-bit integers produces a 64-bit product, and the
length of registers in the integer register file is 32 bits. RV32M
requires two multiply instructions to obtain the 64-bit prod-
uct. The instructionmul is to obtain the lower 32-bit of the full
product, and mulh is to obtain the upper 32 bits. RV32M also
offers divide instructions: divide (div) and remainder (rem).

C. RV32F AND RV32D: SINGLE- AND DOUBLE-
PRECISION FLOATING POINT
Our design also supports floating-point RV32F and RV32D
operations. The implementation complies with the IEEE
754-2008 floating-point standard [20]. RISC-V provides two
L-type load instructions (flw, fld) and two S-type store
instructions (fsw, fsd) for RV32F and RV32D. In R-type,
RV32F and RV32D also support instructions finding maxi-
mum (fmax.s, fmax.d) and minimum values (fmin.s, fmin.d)
from the pair of source operands in addition to apparent
arithmetic operations (fadd.s, fadd.d, fsub.s, fsub.d, fmul.s,
fmul.d, fdiv.s, fdiv.d, fsqrt.s, fsqrt.d). No floating-point
branch instructions are found. RV32F and RV32D estab-
lish conditions for integer branch by comparing two
floating-point values and setting the destination register to
be one if they are equal (feq.s, feq.d), less than (flt.s, flt.d)
or less than or equal (fle.s, fle.d). Conditional integer branch
is taken or not taken on the basis of the value at the desti-
nation register. For many floating-point algorithms, RISC-V
defines fused R4-type instructions that multiply two floating-
point values. It then adds (fmadd.s, fmadd.d) or subtracts
(fmsub.s, fmsub.d) that product to the third value. Versions
that negate the product before summation or subtraction
(fnmadd.s, fnmadd.d, fnmsub.s, fnmsub.d) are also found.
The purpose of these instructions is to increase the accuracy:
they only round once (after multiply) rather than twice (after
multiply, then after add or subtract). RV32F and RV32D
also support data conversion instructions between data types:
integers, 32- and 64-bit floating points (fcvt.w.s, fcvt.s.w,
fcvt.w.d, fcvt.d.w, fcvt.d.s, fcvt.s.d). Only RV32F can trans-
pose data between integer and floating-point register files
(fmv.x.w, fmv.w.x).

IV. VLIW MICROPROCESSOR ARCHITECTURE
A. VLIW INSTRUCTION FORMAT
After the ISAs to be used are selected, a VLIW instruction
format is structured. Eight 32-bit instruction flows are packed

172998 VOLUME 8, 2020



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

together, forming a 256-bit VLIW instruction, as shown in
Figure 1. Each flow in the long instruction performs fixed
functions. In various applications, the format of a VLIW
instruction, and the number, type, and order of operations in
the VLIW instruction can be customized by designers. In our
architecture, five flows (1–5) perform the RV32I instructions.
Flow 1 performs R-type operations (R), and Flow 2 com-
putes between one register value and one immediate (I/U).
Flows 3 and 4 are memory loads and stores (L/S), and
Flow 5 is for branch and jump operations (B/J). Flow 6 is used
for the multiply and divide instructions of RV32M (M/D).
The last two flows (i.e., 7 and 8) contain floating-point RV32F
and RV32D instructions (F/D).

FIGURE 1. VLIW instruction format.

FIGURE 2. Diagram of latency of eight flows.

The datapath for each flow in the architecture is designed
with different latencies, as described in Figure 2. Instructions
in Flows 1 and 2 are issued through three stages of decode,
execute, and writeback without accessing the data memory
stage. Load and store instructions in Flows 3 and 4 need
to access data memory to read out or store values. Jump or
conditional branch decision is taken on the basis of register
file values. B/J instructions in Flow 5 are completely pro-
cessed at the decode stage. However, in the execute stage,
multiply operations for Flow 6, consume four cycles (anno-
tated as E1, E2, E3, and E4) to complete the calculation.
The latency of divide in Flow 6 and the floating-point cal-
culations in Flows 7 and 8 are usually unpredictable. The
time interval to achieve the final result of these operations

is usually unknown and is dependent on the magnitude of
input values. Therefore, our design must include stalls during
these operations owing to the hazard unit. In conventional
VLIW architectures, the instruction scheduling method relies
on dedicated compilers. Thus, their compilers must know
the latency of all supported operations. They insert suffi-
cient no operations (NOPs) equal to the most prolonged
latency of independent operations within a VLIW instruction
to solve data dependencies between VLIW instructions [21].
In other words, the subsequent instruction cannot be pro-
cessed until the previous one passes the writeback stage.
Despite solving dependencies, inserting long NOPs among
VLIW instructions exaggerates code size. In our architecture,
the hazard unit can perform data forwarding among long
instructions to puzzle out data dependencies without long
intermediary NOPs.

B. PROPOSED VLIW ARCHITECTURE
After the datapath latencies are determined, each flow is
cumulatively designed. The design steps are conceptualized
similar to those of building a classical pipepined five-stage
RISC-V architecture in [22] with minor changes. Figure 3
describes the entire VLIW hardware architecture, including
the modules, namely, fetch, instruction scheduler, decode,
execute, data memory, and writeback. Fetch is responsible
for reading out original sequential instructions from the
instruction memory. Subsequently, the instruction scheduler
exploits potential parallelism among the instructions from
fetch. Next, independent instructions are packed into one
VLIW instruction and delivered to the decode stage. In this
stage, the control units receive opcode and function fields
in sub-instructions to generate appropriate corresponding
control signals for the execute, data memory, and writeback
stages. In addition, source operands required for calculations
in the execute stage are read out from floating-point 64-bit F
and integer 32-bit X register files based on source addresses.
The execute module contains arithmetic logic units (ALUs)
that perform on source operands. Moreover, multiplexers
exist ahead of ALUs for the data forwarding mechanism.
Only load and store instructions of two L/S and two F/D
flows (i.e., 3–4 and 7–8) need to access the data memory.
The last writeback stage merely writes the calculation results
or data from the data memory back to the register files with
a corresponding destination address.

1) FETCH STAGE
The design of fetch stage is illustrated in Figure 4. The signif-
icant functionality of the fetch stage is to control the reading
out of eight 32-bit instructions from the instruction memory
simultaneously based on the program counter (PC). Given the
original sequential program stored in the instruction memory,
the fetch stagemust integrate a BJCheckermodule to examine
whether branch or jump instructions are present in the eight
received 32-bit instructions. The BJChecker module then cal-
culates the address of branch instructions (BrInstAdd) or the

VOLUME 8, 2020 172999



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

FIGURE 3. The diagram of entire implemented VLIW microprocessor.

FIGURE 4. Structure of fetch module.

address of jump instructions (JpInstAdd) based on the current
PC and the positions of these branch or jump instructions.
Subsequently, the eight instructions are transferred to the

instruction scheduler along with a ScheStart signal. When
scheduling is completed, the scheduler notifies fetch using a
ScheFinish signal to retrieve the next eight instructions. The
decode stage calculates the branch targeting address BJTar-
getAdd based on BrInstAdd and JpInstAdd from fetch. If the
branch or jump is taken, then fetch moves to the BJTargetAdd
to retrieve the eight new instructions.

2) DYNAMIC INSTRUCTION SCHEDULER
As aforementioned, the shortcoming of studying a new ISA
and implementing a VLIW architecture based on that ISA
is the lack of a powerful compiler to schedule original
instructions in accordance with the VLIW instruction format.
Designing a compiler for a new VLIW architecture is rigor-
ous, despite the compiler being designed to be compatible
with the instruction format of only a specific VLIW archi-
tecture. This binary incompatibility restricts VLIW usage
popularity. Meanwhile, the RISC-V GNU toolchain, which
can be downloaded from [4], is a capable C compiler that

173000 VOLUME 8, 2020



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

FIGURE 5. Block diagram of instruction scheduler.

supports 32-bit and 64-bit RISC-V ISAs. We design a simple
instruction scheduler to exploit the parallelism potential of
sequentially original instructions dynamically. This scheduler
is used to overcome the lack of an RISC-V VLIW compiler
and leverage the open-source RISC-V compiler. The instruc-
tion scheduling algorithm traces dependencies throughout
the original eight instructions from the fetch stage based
on instruction types, source, and destination addresses. Our
goal is to guarantee that (i) no instruction is lost to maintain
program correctness, (ii) no data dependencies occur within
one long instruction, and (iii) the cost of hardware resource
is reasonable. Centered on these principles, the instruc-
tion scheduler is constructed with two submodules, namely,
the dependence checker (DC) and instruction packer (IP),
as shown in Figure 5. The former is responsible for receiv-
ing and checking dependencies between eight instructions
simultaneously. The latter indicates the ready status of eight
instruction slots (InstStt) and fits the extracted instructions
from the checker (ExtrInst) into their corresponding slot. The
instruction scheduling operation is described in the algorithm
flowchart of Figure 6. When receiving the asserted ScheStart
signal from fetch, the scheduler examines eight instructions
line-by-line. If the current instruction I[i] is branch/jump and
independent on previous examined independent instructions
I[1]–I[i−1], all the instructions will be extracted to IP and
removed. However, if I[i] is dependent, I[1]–I[i−1] will be
extracted. In the next scheduling turn, only I[i] will be sched-
uled in another separate VLIW instruction. In case that the
branch decision or jump is taken, instructions behind branch
or jump instruction I[i] will not be scheduled. In another
case, I[i] is not branch or jump and it does not depend on
I[1]–I[i−1], then the instructions will be packed together if its
slot checked by IP is still available. Next, the scheduler will
check the next instruction. In general, when dependencies
occur between I[i] and I[1]–I[i-1], the dependent instruction
I[i] is examined and arranged with subsequent instructions in
the next turn. The whole process is repeated until all eight
instructions are sorted. Given this simplicity, only several
temporary registers are needed to store the remaining instruc-
tions for the next scheduling turn. Figure 7 illustrates the
scheduling method for eight sequential instructions. In the
instruction dependence analysis graph, a node represents an
instruction, and an arrow indicates that the source of subse-
quent instructions utilizes the result of the previous instruc-
tion. The I1 and I2 instructions are independent; thus, the DC

prioritizes them and retains the six remaining instructions for
the next scheduling turn. Next, the IP fits I1 and I2 into their
matching slots, inserts NOPs into empty slots to create a V1
instruction, and transfers it to the decode stage. Dependencies
occur from I3 to I8, as described in the graph. Hence, I3–I8 are
arranged into different V2–V4 instructions. After the arrange-
ment has is completed, the instruction scheduler receives the
next eight instructions from the fetch stage. Our dynamic
instruction scheduling feature ensures the proper matching of
sequential instructions in their slot while preserving program
accuracy.

3) DECODE STAGE
The decode module decodes the instructions passed down
from the fetch module. The structure of the decode stage
is illustrated in Figure 8. The control units (from CuOp1 to
CuOp8) create control signals based on the opcode and func-
tion fields. These control signals must be pipelined alongwith
the data such that they remain synchronized with the instruc-
tion. Moreover, the decode stage reads the source operands
from two integer 32-bit X and floating-point 64-bit F register
files and passes them to the execute module for execution.
RV32F and RV32D use a separate set of 32 64-bit floating-
point registers. Increasing the space of register address fields
for decoding RISC-V instruction formats is unnecessary by
doubling the number of registers. The length of floating-point
registers is 64-bit, and RV32F uses only the lower 32 bits. The
first register of the floating-point register file is not hardwired
to zero, which differs from that of the integer register file.
The values of the registers (Rs1Val, Rs2Val, or Rs3Val of
flows 1 – 8) are read and passed to the execute module,
whereas the results of operations are written back to the
register files (AluReOp1/2/6/7/8 or DmReOp3/4). Besides,
SignExmodules are used to extend the bit sign of immediates.

Branch instructions may pose control hazards when the
VLIW processor cannot decide which instructions to pick
next, as the branch decision has yet to be made. Waiting
until the end of the execution stage to determine whether
the branch is taken can result in a substantial mispredic-
tion penalty. The VLIW makes a branch decision early in
the decode stage of Flow 5 by integrating BranchCheck
module to reduce the penalty. The decision is simply a
comparison between the values of two registers Rs1ValOp5
and Rs2ValOp5. If the branch is taken, then the instruction
scheduler discards the long instruction being processed, and
fetch moves to the new target PC BJTargetAdd. If a previous
instruction is issued to determine one of the sources operating
for the branch and has not been written into the register files,
then the data forwarding forwards the necessary operands
through multiplexers when available, or the pipeline is stalled
by the hazard unit until the data are ready.

4) EXECUTE STAGE
From the decode stage, the execute stage receives appropriate
control signals and source operands to perform calculations.
As shown in Figure 9, this stage consists of several functional

VOLUME 8, 2020 173001



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

FIGURE 6. The algorithm flowchart of sequential dynamic instruction scheduling.

FIGURE 7. Illustration of sequential dynamic instruction scheduling algorithm.

units, such as R-type register–register (AluR), I- and U-type
register–immediate (AluIU), two 32-bit adders for L/S flows,
AluM for M/D operations, and two floating-point ALUs for
F/D flows (AluFDs). Moreover, multiplexers exist ahead of
the functional units to select source operands directly from
register files or either the data memory or writeback in case
of data dependencies. Operations in AluR andAluIU take one
clock cycle to complete their calculation. Whereas, in AluM,
integer multiply consumes four clocks and divide loops in
a variable iteration number to obtain the final result. The
execute unit of Flows 3 and 4 are simply 32-bit adder to
calculate the address for data memory access.

The floating-point coprocessor operates in parallel with
integer cores in most general-purpose processors to offload
massive computational and high-latency floating-point
instructions from the central processor [23]. In the VLIW,
floating-point operations can be combined within a long
VLIW instruction and run in parallel with integer operations.
In particular, the AluFD of Flows 7 and 8 are integrated to per-
form single- and double-precision floating-point operations,
such as add (ADD), subtract (SUB), divide (DIV), square
root (SQRT), multiply (MUL), fused multiply and accumu-
late (FUSED), convert (CVT), compare (CMP), and clas-
sify (CLS). The particular architecture for the floating-point

173002 VOLUME 8, 2020



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

FIGURE 8. Structure of decode module.

adder, subtractor, divider, multiplier, and comparator mod-
ules are detailed in [24]. The two floating-point flows
designed with floating-point RISC-V instructions adhere
to the IEEE 754-2008 specification. They obtain source
operands, a rounding mode, enable, and control signals
from the decode stage. Only the module with an asserted
enable signal calculates the input data operands. Next, it
outputs the computational results and exceptions as invalid
(invalidOp7/8), divide-by-zero (divByZeroOp7/8), overflow
(overflowOp7/8), underflow (underflowOp7/8), and inexact
operations (inExactOp7/8). During the floating-point cal-
culations, the pipeline stages are stalled. Upon completion

FIGURE 9. Structure of execute module.

of the current calculation, a finish signal is asserted, and
the final results (AluReOp7/8) are transferred back to the
floating-point register file. Furthermore, an extra special case
detector module examines particular inputs, such as not-
a-number, infinity, denormalized, and zero. In exceptional
matched cases, the module provides output for these specific
inputs, as defined in the IEEE 754-2008 standard.

FIGURE 10. Block diagram of hazard unit.

5) HAZARD UNIT
A hazard unit is designed as a combinational logic block to
solve pipeline hazards through data forwarding and instruc-
tion stalling. The forwarding technique is used to address
data hazards that occur when an instruction requires the
results of previous pipeline instructions that have not been
written on the register file by the time the current instruction
reads its source operands from the register file. As shown
in Figure 10, the hazard unit receives the source and des-
tination addresses from the decode, execute, data memory,

VOLUME 8, 2020 173003



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

and writeback stages of flows (annotated asRs1Opx,Rs2Opx,
Rs3Opx, and RdOpx). The hazard unit bypasses the nec-
essary operands from the memory or writeback stage to
the ALUs in the execute stage or to the BranchCheck in
the decode stage. This technique requires additional mul-
tiplexers ahead of the ALUs to select the operands from
either the register file, execute (only for BranchCheck), mem-
ory, or writeback. For ALUs, if the memory and writeback
stages contain matching destination addresses, then the mem-
ory stage is prioritized, as it contains the latest executed
instructions. In addition, the hazard unit stalls the pipelined
stages (when StartOp6/7/8 are asserted) until the results from
the load, divide, or floating-point calculations are usable
(FinishOp6/7/8 are asserted). When the calculations of exe-
cute stage in Flow 7 and 8 are finished, a Clear signal is used
to clear internal registers for avoiding bogus information.

V. EXPERIMENTAL RESULTS
A. FUNCTIONAL VERIFICATION METHOD
To validate the function of our proposed VLIW architecture,
we verify each flow and the entire design. First, we write C
programs corresponding to the operations of the tested flow
to test each flow separately. Second, we install the RISC-V
GNU toolchain available at [4] to compile the C programs
in RISC-V-executable and machine code files. In addition,
we build the Whisper simulator [25], which is an RISC-V
instruction set simulator developed to verify the Swervmicro-
controller. This simulator allows the user to run RISC-V
codes without an RISC-V hardware, as a ‘‘golden model,’’
to compare results. The C programs are compiled and run
on the Whisper simulator to obtain the execution results.
Next, we input the same testing values into the testbench
written in Verilog HDL to conduct the simulation. Ultimately,
we compare the execution results from theWhisper simulator
with the simulation results from the VLIW.

Subsequently, we utilize five integer benchmark programs,
including quick sort (qsort), matrix multiplication (matmul),
vector–vector addition (vvadd), median filter (median), and
binary multiply (multiply) to verify the overall design. These
benchmarks are available in RISC-V GNU toolchain [26].
Given that they mainly operate on six integer flows (1–6),
to verify the entire design, including both Flows 7 and 8,
we define a floating-point benchmark (fbench). This program
performs floating-point operations on 100 pairs of different
float and double values. These programs are then compiled
and run on the Whisper simulator to obtain the execution
results. Next, we dump corresponding RISC-V assembly
codes and store them into the instruction memory as text files
to conduct simulations. The results processed by the VLIW
engine are retained in the data memory. Finally, we compare
the execution results from the Whisper simulator with the
simulation results from the VLIW design.

To prove that our proposed VLIW design functions
properly after implementation, we conduct experiments on
a Xilinx FPGA Virtex-6 platform (xc6vlx240t-1-ff1156).

Each benchmark program is still compiled and stored in the
instruction memory. The whole system is then downloaded
to the FPGA board. The output results processed by VLIW
engine are stored in the data memory. Given that the data in
the data memory are stored in bytes, we integrate a memory
controller to control reading bytes. We use ChipScope [27],
which is a software-based logic analyzer, to observe the
onboard results. We can set triggering options and display the
waveform of the desired FPGA chip signals by inserting an
integrated controller core and logic analyzer into the design.
The simulation and onboard experimental results show that
our VLIW core functions correctly as expected. The design
performance is evaluated through these benchmarks, as pre-
sented in the succeeding IPC section.

TABLE 2. Performance of the VLIW core with the single-ended oscillator
frequency fosc = 66 MHz.

B. IPC
IPC is used to evaluate the performance of a processor archi-
tecture. IPC is defined as the average instruction number
executed in every clock cycle. In addition to the statistical
counters for exceptional cases mentioned in the Execute
Stage section, we integrate two other performance counters
into our design: one to count the number of operations and
one to count the total clock cycles to complete a bench-
mark program. The final IPC result is derived by dividing
the number of instructions with the number of clock cycles.
Table 2 presents the performance of our VLIW architecture
on six selected benchmarks. The proposed VLIW obtains the
highest IPC for the median benchmark (1.024). By contrast,
the lowest IPC value belongs to the fbench program (0.395),
as the floating-point program execution time is generally
unpredictable. The larger the number is, themore time the cal-
culation needs. This finding leads to an unexpectedly low IPC
for floating-point-related programs. The table also shows the
throughput for each benchmark that is defined by the number
of operations or floating-point operations per second. The
throughput can be derived by multiplying the number of IPC
with the operating frequency of the design. In particular, our
design utilizes the onboard single-ended oscillator frequency
fosc = 66 MHz. The average IPC from five integer bench-
marks obtains 0.955 and the average throughput value is

173004 VOLUME 8, 2020



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

TABLE 3. Device utilization for the entire VLIW architecture and its main modules.

63.044 million operations per second (MOPS). Correspond-
ing to the IPC of 0.395 from fbench, the throughput gains
26.07 million floating-point operations per second (MFOPS).
For all six benchmarks, our eight-issue VLIW core achieves
the average IPC of 0.862.

To measure the acceleration of our VLIW core compared
with a single-issue core, we design a single-issue pipelined
five-stage 32-bit RISC-V architecture. The architecture’s
ALU supports the same integer and floating-point instruc-
tions with the same latencies, as described in Figure 2.
Subsequently, the same benchmarks are utilized to ver-
ify the function and measure of the IPC values for the
single-issue core. Figure 11 shows a comparison of IPC
values from six benchmarks between the proposed VLIW and
the single-issue core. Figure 12 presents the IPC speedup of
our VLIW engine for each benchmark. The speedup results
show that our VLIW architecture accelerates 1.344 times
faster than the single-issue core on average.

FIGURE 11. IPC comparison between the VLIW and single-issue core.

C. SYNTHESIS RESULTS
The complete architecture of our proposed VLIW is synthe-
sized on the targeted Virtex-6 using ISE 14.7 software suite.

FIGURE 12. Speedup of the proposed VLIW over the single-issue core.

The platform has 37,680 slices, with each slice structured
with four six-input LUTs and eight D-type FFs, totaling
to 150,720 LUTs and 301,440 FFs [28]. Table 3 illustrates
the slice logic utilization and distribution of the entire pro-
posed VLIW design and its main modules, including fetch,
instruction scheduler, decode, execute, and data memory. For
slice logic utilization, the ISE XST synthesizer represents the
number of slice registers (or FFs) and LUTs used. The decode
module consumes 18,469 (12%) slice LUTs, with an avail-
able frequency of 150.082 MHz. The execute module uses
the greatest number of slice registers, that is, 9,188 (3% com-
pared with a total number of 301,440 FFs), and 14,398 LUTs
(14,353 LUTs are used to generate combinational functions
and 45 LUTs are configured as distributed RAM because
the HDL may contain a small array of read/write registers).
In terms of slice logic distribution, the execute module has
7,686 unused FFs (using only slice LUTs), 2,476 unused
LUTs (using only FFs in slices), and 6,712 fully used
LUT–FF pairs. Compared with other modules, the instruction
scheduler consumes reasonable resources, and its operating
frequency is at 173.805 MHz. It satisfies one of our ini-
tial criteria about hardware resource for dynamic instruction

VOLUME 8, 2020 173005



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

TABLE 4. Performance comparison among RISC-V cores.

scheduling. Our VLIW architecture can reach the maximum
frequency of 83.739MHz. In addition, we strive to synthesize
our design without two floating-point flows. We find that
the maximum frequency of our proposed design can reach
97.943 MHz, with slice registers reduced to 6,177 and slice
LUTs reduced to 20,109, respectively.

D. DISCUSSION
Dynamic instruction scheduler integration can overcome the
lack of a specialist compiler for our architecture. The avail-
able RISC-V GNU toolchain can be leveraged for func-
tional verification and performance evaluation. However, our
design recognizes a few tradeoffs. First, as stated in the
Synthesis Results section, the instruction scheduler consumes
substantial hardware utilization. The instruction scheduler is
simple to utilize less hardware than other modules. Second,
scheduling eight sequential instructions from the fetch stage
requires one extra clock cycle for each scheduling turn. This
requirement increases program execution time, indicating
that IPC is slightly degraded. Our VLIW core still achieves
higher IPC compared with existing open-source RISC-V
cores at the expense of hardware resource, as presented
in Table 4. The integration of floating-point flows is the main
reason for this high resource consumption. Hardware opti-
mization and effective scheduling algorithm implementation
should be considered in future studies to achieve outstanding
performance.

VI. CONCLUSION
RISC-V is a potential ISA that is promising for academic
studies and as a future industry standard. VLIW micropro-
cessors can benefit from the flexibility and modularity of the
RISC-V ISA. This study describes how the VLIW architec-
ture can be implemented with an instruction format for eight
operations from RISC-V subsets, including RV32I, RV32M,
RV32F, and RV32D. This study suggests that an instruc-
tion scheduler should be integrated with sequential algorithm
scheduling instructions to solve the compiler shortage for
our VLIW architecture. Thus, we can utilize the available
RISC-V GNU toolchain without needing to develop a new

RISC-V VLIW compiler. The instruction scheduling algo-
rithm is relatively simple and requires less hardware utiliza-
tion. Functional correctness is verified through benchmark
programs by comparing the results of our VLIW with those
of the Whisper simulator and observing onboard waveforms
using ChipScope. The benchmark programs are also used
to evaluate the IPC performance of our VLIW and demon-
strate that our design still speeds up compared with existing
open-source RISC-V cores. The maximum frequency of our
proposed VLIW reaches 83.739 MHz, and the number of
slice registers and LUTs are 21,476 (7%) and 69,572 (46%),
respectively.

ACKNOWLEDGMENT
The authors would like to thank the Taiwan Semiconductor
Research Institute (TSRI) for the support of design and sim-
ulation tools.

REFERENCES
[1] X. Li and D. L. Maskell, ‘‘Time-multiplexed FPGA overlay architec-

tures: A survey,’’ ACM Trans. Des. Autom. Electron. Syst., vol. 24, no. 5,
pp. 1–19, Oct. 2019.

[2] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovíc.
(Dec. 2019). The RISC-V Instruction Set Manual, Volume I:
Unprivileged ISA, Document Version 20191213. [Online]. Available:
https://riscv.org/specifications/

[3] A. F. de Souza and P. Rounce, ‘‘Dynamically scheduling VLIW instruc-
tions,’’ J. Parallel Distrib. Comput., vol. 60, no. 12, pp. 1480–1511,
Dec. 2000.

[4] RISC-V GNU Compiler Toolchain. Accessed: Feb. 5, 2020. [Online].
Available: https://github.com/riscv/riscv-gnu-toolchain

[5] L. Nan, X. Yang, X. Zeng, W. Li, Y. Du, Z. Dai, and L. Chen, ‘‘A VLIW
architecture stream cryptographic processor for information security,’’
China Commun., vol. 16, no. 6, pp. 185–199, Jun. 2019.

[6] A. Bytyn, R. Leupers, and G. Ascheid, ‘‘An application-specific VLIW
processor with vector instruction set for CNN acceleration,’’ in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[7] S. Khan, M. Rashid, and F. Javaid, ‘‘A high performance processor
architecture for multimedia applications,’’ Comput. Electr. Eng., vol. 66,
pp. 14–29, Feb. 2018.

[8] Digital Signal Processor TMS320C64x From Texas Instruments.
Accessed: Jul. 15, 2020. [Online]. Available: https://www.ti.com/lit/ug/
spru395b/spru395b.pdf

[9] C. Pham-Quoc, B. Kieu-Do-Nguyen, and A.-V. Dinh-Duc, ‘‘Adaptable
VLIW processor: The reconfigurable technology approach,’’ in Proc. Int.
Conf. Adv. Technol. Commun. (ATC), Oct. 2017, pp. 120–125.

173006 VOLUME 8, 2020



N. M. Qui et al.: Design and Implementation of a 256-Bit RISC-V-Based Dynamically Scheduled VLIW on FPGA

[10] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW
Approach to Architecture, Compilers, and Tools. San Mateo, CA, USA:
Morgan Kaufmann, 2004.

[11] S. Wong, F. Anjam, and F. Nadeem, ‘‘Dynamically reconfigurable register
file for a softcore VLIW processor,’’ in Proc. Design, Automat. Test Eur.
Conf. Exhib. (DATE), Mar. 2010, pp. 969–972.

[12] M. Koester, W. Luk, and G. Brown, ‘‘A hardware compilation flow for
instance-specific VLIW cores,’’ in Proc. Int. Conf. Field Program. Log.
Appl., 2008, pp. 619–622.

[13] V. Kathail, M. Schlansker, and B. R. Rau, ‘‘HPL-PD architecture specsifi-
cation: Version 1.1,’’ HP Lab., Palo Alto, CA, USA, Tech. Rep. HPL-93-80
(R.1), 2000.

[14] W.W. S. Chu, R. G.Dimond, S. Perrott, S. P. Seng, andW. Luk, ‘‘Customis-
able EPIC processor: Architecture and tools,’’ in Proc. Design, Automat.
Test Eur. Conf. Exhib., vol. 3, 2004, pp. 236–241.

[15] Trimaran: An Infrastructure for Research in Instruction Level Parallelism.
Accessed: May 23, 2020. [Online]. Available: http://www.trimaran.org

[16] M. I. Soliman, ‘‘A VLIW architecture for executing multi-scalar/vector
instructions on unified datapath,’’ in Proc. Saudi Int. Electron., Commun.
Photon. Conf., Apr. 2013, pp. 1–7.

[17] S. Jee and K. Palaniappan, ‘‘Dynamically scheduling VLIW instructions
with dependency information,’’ in Proc. 6th Annu. Workshop Interact.
Between Compil. Comput. Archit. (INTERACT), 2002, pp. 15–23.

[18] S. L. Chu, G. S. Li, and R. Q. Liu, ‘‘DynaPack: A dynamic scheduling
hardware mechanism for a VLIW processor,’’ Appl. Math. Inf. Sci., Int. J.,
vol. 6, no. 3, pp. 983–991, 2011.

[19] D. Patterson and A. Waterman, The RISC-V Reader: An Open Architecture
Atlas. San Francisco, CA, USA: Strawberry Canyon LLC, 2017.

[20] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008,
2008. [Online]. Available: https://ieeexplore.ieee.org/document/4610935

[21] M. Dubois, M. Annavaram and P. Stenstrom, Parallel Computer Organi-
zation and Design. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[22] D. Patterson and J. Hennessy, Computer Organization and Design:
The Hardware/Software Interface—RISC-V Edition. Amsterdam,
The Netherlands: Elsevier, 2018.

[23] V. Patil, A. Raveendran, P. M. Sobha, A. D. Selvakumar, and D. Vivian,
‘‘Out of order floating point coprocessor for RISC V ISA,’’ in Proc. 19th
Int. Symp. VLSI Design Test, Jun. 2015, pp. 1–7.

[24] Y. Li, Computer Principles and Design in Verilog HDL. Beijing, China:
Tsinghua Univ. Press, 2015.

[25] Western Digital’s Open Source RISC-V SweRV Instruction Set Simu-
lator. Accessed: Feb. 12, 2020. [Online]. Available: https://github.com/
westerndigitalcorporation/swerv-ISS

[26] RISC-V GNU Toolchain, Riscv-Tests. Accessed: Feb. 5, 2020. [Online].
Available: https://github.com/riscv/riscv-tests

[27] Xilinx. (Mar. 20, 2013). PlanAhead Tutorial: Debugging With ChipScope
(UG677). [Online]. Available: https://www.xilinx.com/support/
documentation/sw_manuals/xilinx14_7/PlanAhead_Tutorial_Debugging_
w_ChipScope.pdf

[28] Xilinx. (Feb. 3, 2012). Virtex-6 FPGA Configurable Logic Block
User Guide (UG364). [Online]. Available: https://www.xilinx.com/
support/documentation/user_guides/ug364.pdf

[29] DarkRISCV. Accessed: Aug. 3, 2020. [Online]. Available: https://github.
com/darklife/darkriscv

[30] Kronos RISC-V. Accessed: Aug. 3, 2020. [Online]. Available:
https://github.com/SonalPinto/kronos

[31] PicoRV32—A Size-Optimized RISC-V CPU. Accessed: Aug. 3, 2020.
[Online]. Available: https://github.com/cliffordwolf/picorv32

[32] The NEORV32 Processor. Accessed: Aug. 3, 2020. [Online]. Available:
https://github.com/stnolting/neorv32

NGUYEN MY QUI was born in Vietnam, in 1994.
He received the B.S. degree in electronics and
telecommunications from the Ho Chi Minh City
University of Science, HoChiMinhCity, Vietnam,
in 2016, and the M.S. degree in electronics and
computer engineering from the National Taiwan
University of Science and Technology, Taipei City,
Taiwan. His research interests include digital sys-
tems design with field-programmable gate array
and computer architecture.

CHANG HONG LIN (Member, IEEE) received
the B.S. and M.S. degrees in electrical engineer-
ing from National Taiwan University, Taipei City,
Taiwan, in 1997 and 1999, respectively, and the
M.A. and Ph.D. degrees in electrical engineering
from Princeton University, Princeton, NJ, USA,
in 2003 and 2007, respectively. He is currently a
Professor with the Department of Electronics and
Computer Engineering, National Taiwan Univer-
sity of Science and Technology. His research inter-

ests include ubiquitous camera frameworks, code compression for embedded
systems, and hardware/software co synthesis.

POKI CHEN (Member, IEEE) was born in Chiayi,
Taiwan, R.O.C., in 1963. He received the B.S.,
M.S., and Ph.D. degrees in electrical engineer-
ing from National Taiwan University, Taipei City,
Taiwan, in 1985, 1987, and 2001, respectively.

He was a Lecturer, an Assistant Professor, and
an Associate Professor with the Department of
Electronics Engineering, National Taiwan Univer-
sity of Science and Technology (NTUST), from
1998 to 2001, from 2001 to 2006, and from 2006 to

2011, respectively. He is currently a Professor with the Department of
Electronics and Computer Engineering, NTUST. His research interests
include analog/mixed-signal IC design and layout, with a special focus
on time–domain signal processing circuits such as time–domain smart
temperature sensors, time-to-digital converters, digital pulse generators
(DTCs), time-domain ADCs, and high-accuracy DACs. He is also inter-
ested in creating innovative analog applications for field-programmable gate
array (FPGA) platforms such as FPGA smart temperature sensors and FPGA
digital-to-time and time-to-digital converters. He has been an Organizer of
IEEE International Conferences on Intelligent Green Building and Smart
Grid since 2014 and has served as a Keynote/Invited Speaker, a TPC Mem-
ber, and a Session Chair of various IEEE conferences such as the SOCC,
VLSI-DAT, IFEEC, ISESD, NoMe TDC, ISNE, ASID, and so on. Moreover,
he has been served as an Associate Editor for IEEE TRANSACTIONS ON VERY

LARGE-SCALE INTEGRATION SYSTEMS and IEEE ACCESS since 2011.

VOLUME 8, 2020 173007


