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ABSTRACT In this paper, a forecasting algorithm is proposed to predict photovoltaic (PV) power generation
using a long short term memory (LSTM) neural network (NN). A synthetic weather forecast is created for
the targeted PV plant location by integrating the statistical knowledge of historical solar irradiance data with
the publicly available type of sky forecast of the host city. To achieve this, a K-means algorithm is used
to classify the historical irradiance data into dynamic type of sky groups that vary from hour to hour in
the same season. In other words, the types of sky are defined for each hour uniquely using different levels
of irradiance based on the hour of the day and the season. This can mitigate the performance limitations
of using fixed type of sky categories by translating them into dynamic and numerical irradiance forecast
using historical irradiance data. The proposed synthetic weather forecast is proved to embed the statistical
features of the historical weather data, which results in a significant improvement in the forecasting accuracy.
The performance of the proposed model is investigated using different intraday horizon lengths in different
seasons. It is shown that using the synthetic irradiance forecast can achieve up to 33% improvement in
accuracy in comparison to that when an hourly categorical type of sky forecast is used, and up to 44.6% in
comparison to that when a daily type of sky forecast is used. This highlights the significance of utilizing the
proposed synthetic forecast, and promote a more efficient utilization of the publicly available type of sky
forecast to achieve a more reliable PV generation prediction. Moreover, the superiority of the LSTM NN
with the proposed features is verified by investigating other machine learning engines, namely the recurrent
neural network (RNN), the generalized regression neural network (GRNN) and the extreme learning
machine (ELM).

INDEX TERMS PV power forecasting, machine learning, LSTM, neural network, deep learning, synthetic
weather forecast.

I. INTRODUCTION
Solar PV generation is one of the most promising renew-
able energy resources that are expected to mitigate the
climate change crisis and improve global energy security.
Atmospheric variables, such as solar irradiance, tempera-
ture, humidity and cloud properties, directly and indirectly
influence PV power generation. These variables make PV
generation intermittent and stochastic. Therefore, large-scale
PV power penetration in the utility grid requires reliable
forecasting models to operate the power grid economically
and reliably [1], [2]. The short term PV power forecast, which
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extends from an hour ahead to 24 hours ahead, is essential for
a secured grid operation [1]. On the other hand, long-term
forecasting horizons extend from one month to one year,
which is used for long term planning [3]. The physical behav-
ior and the time series nature of PV power generation are
explored using various types of forecasting models in the
state of the art literature. Statistical models use historical
data of PV power generation, whereas physical models uti-
lize satellite imagery sources [2]. Artificial intelligence (AI)
based models use neural networks, and other machine learn-
ing techniques, to capture the stochastic nature of the PV
power time series [4]. Recently, these models are combined
together and proposed as hybrid models [5]. A prediction
performance review of machine learning, mathematical, and

172524 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2400-7154
https://orcid.org/0000-0001-9897-2411


M. S. Hossain, H. Mahmood: Short-Term PV Power Forecasting Using an LSTM NN and Synthetic Weather Forecast

hybrid forecasting models is presented in [1]. According to
this comprehensive review, the hybrid models show superior-
ity in comparison to models that only use machine learning
or mathematical techniques [1]. A hybrid model employing
a genetic algorithm (GA) based weight optimization for a
support vector machine (SVM) is proposed for a single-step
prediction in [6]. A single-step ahead forecasting algorithm
combining meta-heuristic optimization and back propagation
neural network (BPNN) is proposed in [7]. A probabilistic
forecasting approach, which utilizes quantile regression and
an ELM, is proposed in [8] for single-step ahead PV power
forecasting. The prediction models used in [7] and [8] show
high accuracy as the PV generation sampling resolution is
only 5min, which limits their applications to certain real-time
grid operations. LSTMNNbasedmodels outperform the con-
ventional neural network based models when the sampling
resolution is more than 15-min as shown in [9]. The model
proposed in [9] employs the attention mechanism and LSTM
NN for single-step ahead forecasting of PV generation, while
exploring 7.5 min to 1 hour sampling resolutions. The tech-
niques in [6]–[9] rely mainly on the PV generation time
series, which can achieve reasonable accuracy in the case of
single-step ahead predictions. However, for multi-step ahead
predictions, reliance on the generation time series only may
result in inadequate performance.

A deep convolutional neural network (CNN) is used in [10]
to extract features from the PV power time series. Thereafter,
the extracted features and the time series of the weather
variables are fed to a support vector regression (SVR) net-
work to forecast PV generation over intraday horizons. How-
ever, the direct use of PV power time series gradient is
not exploited in this model [11]. An effective algorithm is
implemented in [12] using deep NNs and atmospheric data to
predict the total generation of the whole next day. However,
in recent years, models that predict accumulated generation
become less popular in some countries due to the penalties
enforced by operators on producerswho fail to report accurate
generation forecast [5]. Therefore, hourly day ahead and
hourly intraday models are adopted to obtain a more accurate
prediction, and achieve the intended economic benefit in the
energy markets [13]. A hybrid model combining a wavelet
transform, a deep neural network (DNN), and an LSTM
NN, utilizes temperature data to predict next multiple time
steps of PV generation in [14]. The proposed model adopts
recursive multi-step ahead forecasting method to predict
12-hour horizons.

In recursive prediction methods, the value of the forecast
horizon first step is predicted from direct observations, and
then used recursively to predict the rest of the steps in the pre-
diction horizon. On the other hand, the entire prediction hori-
zon is estimated at once, from direct observations, in direct
multi-step prediction methods. The direct multi-step ahead
forecasting method is more efficient in short-term forecast-
ing, in comparison to the recursive one [15]. A combination
of a wavelet transformation and a feed forward neural net-
work (FNN) is used in [16] to forecast day ahead hourly PV

generation by utilizing historical weather data. Differential
evolution (DE) and particle swarm optimization (PSO) are
used to optimize a mathematical forecasting model in [17]
to predict a 4-hour horizon PV generation. In general, hybrid
models can achieve higher prediction accuracy when incor-
porating weather forecast data [18]. An LSTM NN based
PV power forecasting algorithm is proposed in [19] to pre-
dict intraday and 24-hour horizons using a time index as
an additional input feature along with the relevant weather
variables. A DNN is used in [20] to predict next 24-hour
PV generation based on historical weather information and
a rolling horizon strategy. The forecasting accuracy of the
models proposed in [14], [16], [17], [19], [20] can still be
enhanced by considering weather forecast data [18].

Therefore, recent PV power forecasting models use
weather forecast data effectively for hourly day ahead predic-
tions. A BPNN based day ahead forecasting model that uses
the weather aerosol index as an additional predictor is pro-
posed in [21]. The weather forecast data of a targeted day is
used to choose the training samples of the forecasting model.
However, the conventional feed forward NN is proven to
have its own accuracy limitations with time series prediction,
in comparison to the more advanced memory-based neural
networks, such as recurrent or LSTM networks. A day ahead
hourly prediction algorithm using SVR, self-organizing map
(SOM), and learning vector quantization (LVQ) classifiers is
proposed in [22]. The 15-hour prediction horizon is divided
into five 3-hour segments. On the other hand, a one out of
six prediction sub-models is used at a time, depending on the
weather conditions. Weather forecast data are utilized with
a fuzzy inference machine to decide the sub-model suitable
for every 3-hour horizon segment. The algorithm uses PV
generation data of previous similar days, while ignoring the
same day most recent time series trend.

A combination of a radial basis function neural net-
work (RBFNN) and a fuzzy K-means algorithm is used to
develop five models for five types of days [23]. The tem-
perature and precipitation forecast data of a targeted day are
used to choose the corresponding model to predict the day
ahead hourly PV generation. However, as will be shown in
Section II, solar irradiance is more correlated to the type of
the day, with respect to PV generation, than temperature and
precipitation. The weather classification and SVM are used
to develop four PV forecasting models corresponding to four
types of days in [24]. The type of the day is selected based
on the weather forecast of the day, such as sunny, cloudy,
etc. These weather forecasts are mostly available for large
geographical area, rather than for a specific PV plant location.
This can only give a rough insight into the type of the day
which helps in classifying the training data.

Inspired by the previous research efforts, an algorithm is
proposed in this paper to leverage the powerful time series
processing features of LSTMNNswith a synthesized approx-
imate weather forecast, to predict intraday and day-ahead
horizons. The statistical knowledge gained from the historical
irradiance data of a PV plant location is integrated with the
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publicly available type of sky forecast to create a synthetic
solar irradiance forecast. A K-means algorithm is used to
classify the historical irradiance data into dynamic type of
sky groups that vary from hour to hour in the same season.
In other words, the types of sky are defined for each hour
uniquely, using different levels of irradiance, depending on
the hour of the day, and the season. The synthetic weather
variables, the historical weather and PV generation time
series, the time of the day index and the month of the season
index are used as input features for the LSTM NN. The
performance of the synthetic weather forecast variables as
input features is compared to that of the categorical hourly
and daily city type of sky forecast. It is shown that using the
synthetic irradiance forecast can achieve up to 33% improve-
ment in accuracy in comparison to that when an hourly type
of sky forecast is used, and up to 44.6% in comparison
to that when a daily type of sky forecast is used. Finally,
the proposed algorithm is implemented using other forecast-
ing engines, namely the RNN, the GRNN, and the ELM,
to verify the superiority of LSTMNNwith the proposed input
features.

The rest of the paper is organized as follows. The prob-
lem statement and data mining approach are discussed in
Section II. The forecasting framework based on LSTMNN is
presented in Section III. Section IV presents the performance
evaluation metrics. The simulation results are presented and
discussed in Section V. Finally, Section VI concludes the
paper.

II. PROBLEM STATEMENT AND DATA MINING
APPROACH
As mentioned earlier, recent PV power forecasting models
take advantage of available weather forecasting utilities. The
weather forecast for a city area is available, in hourly and
daily resolutions, on public weather websites. The weather
variables including temperature, humidity and wind speed are
almost homogeneous around the city areas. However, solar
irradiance varies from a location to another in the same city
due to the cloud effect. Moreover, most weather channels
provide hourly and/or daily type of sky categories, rather
than the time series of the numerical irradiance forecast. This
categorical variable can only give a rough and static insight
into the irradiance level since the same sky type can refer to
different levels of irradiance depending on the hour of the day,
and on the season. Accordingly, the categorical type of sky
forecast for a city may not result in an accurate PV generation
forecast for a specific plant location. Creating a synthetic
numerical irradiance forecast, that can be associated with
dynamic types of sky, can be a good starting point towards
improving the prediction accuracy. The creation of synthetic
weather profiles is considered as a part of the data mining
approach of the proposed model. Data mining is very popu-
lar in solving time series regression and classification types
of problems [25]. In this paper, the data mining approach
includes a data-set preparation, a correlation analysis, a sta-
tistical analysis, and a synthetic weather forecast preparation.

The prepared data set is used with an LSTMNN to predict the
PV power generation.

A. APPROACH OVERVIEW
Collecting historical PV generation and weather data, for the
considered PV plant, is the first step of the data preparation.
The hourly historical weather data, of the Desoto solar farm
(25MW) and the city of Arcadia in Florida, are collected from
the national renewable energy laboratory (NREL) website
for the period of 2012-2018 [26]. The data-set comprises
solar irradiance, temperature, wind speed, precipitable water,
pressure and relative humidity. The historical generation and
weather data are divided into four seasons, marked as spring
(Mar-May), summer (Jun-Aug), autumn (Sep-Nov), and win-
ter (Dec-Feb). A correlation analysis is conducted to choose
the suitable predictors for the proposed model. This is created
using statistical analysis of the available historical data in this
step.

To achieve this, it is proposed to classify the historical
irradiance data into dynamic types of sky for every hour of the
day in the same season. Therefore, the types of sky are defined
for each hour uniquely, using different levels of irradiance,
based on the hour of the day and the season. Accordingly,
every hour of the day, e.g. 10:00 AM-11:00 AM, has multiple
irradiance clusters that are different from the other hours of
the day. This is executed using a K-means algorithm.

The irradiance clusters are associated with the categorical
types of sky provided by weather channels, which correspond
to the standard sky condition categories set by the National
Oceanic and Atmospheric Association (NOAA) [27]. For
each hour of the prediction horizon, the categorical type of
sky forecast, for the whole city area, is used to determine the
corresponding irradiance cluster. The cluster center points,
calculated from the historical data, represent the numerical
value of the approximate synthetic forecast for that specific
location at that specific hour. The city weather forecast vari-
ables including temperature, wind speed and humidity are
used directly in the synthetic weather forecast profile. Finally,
the historical weather data, the synthetic weather forecast
data, the historical PV power time series, and other categor-
ical indices are used as input features for the LSTM NN,
as will be discussed in detail in Section III.

B. CORRELATION BETWEEN ATMOSPHERIC VARIABLES
AND PV POWER GENERATION
PV power generation is influenced, at different levels,
by atmospheric parameters such as solar irradiance (GHI ),
temperature (T ), wind speed (WS), precipitable water (PW ),
relative humidity (RH ) and pressure (P). The Pearson product
moment correlation coefficient (PPMCC) method is adopted
to calculate the correlation between each of the weather
variables and the PV power (PPV ) generation [21]. The corre-
lation coefficient (ξ ) of two vectors, e.g. x and y, is calculated
as

ξ =

1
n

∑n
k=1(xk − x)(yk − y)√

1
n

∑n
k=1(xk − x)2

√
1
n

∑n
k=1(yk − y)2

(1)
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TABLE 1. Correlation between PV power generation and weather
variables.

Time series of the PV power and the aforementioned atmo-
spheric variables are considered as vectors, and the correla-
tion coefficients are calculated using Equation (1). As can
be seen from Table 1, solar irradiance, temperature, relative
humidity and wind speed show a strong correlation with PV
power generation, which makes them a good choice for the
model input features.

C. STATISTICAL ANALYSIS
The solar irradiance is a stochastic time series signal with
characteristics that vary hourly, daily, and seasonally. The
NOAA categorizes sky conditions, into five types, as sunny,
mostly sunny, partly sunny/partly cloudy, mostly cloudy and
cloudy [27]. The aforementioned types of sky are provided by
most weather forecast utilities for each hour. The objective of
the statistical analysis is to translate these categories into their
corresponding solar irradiance clusters using the historical
data collected from the geographic location under consider-
ation. The solar irradiance time series of each season, given
as X = [x1, x2, . . . , xnm], is rearranged to create an n × m
matrix by grouping and aligning same time step data points
as follows:

X̂ =


x1 x2 . . . xm

xm+1 xm+2 . . . x2m
. . . . . . . . . . . .

x(n−1)m+1 x(n−1)m+2 . . . xnm

 (2)

where, m represents the total time steps in a day, i.e. 24 in
this paper, and n represents the number of days in a season.
Thereafter, theK-means algorithm is applied to the irradiance
data subset of every hour to cluster the observations. The
K-means algorithm clusters the data according to the min-
imum distance of each data point from randomly selected
k number of center points [25]. The algorithm assigns each
observation to its nearest cluster with a center point Ck which
is calculated as follows:

Ck =
1
n

n∑
j=1

zkj (3)

where, zkj is the jth observation of the k th cluster which
contains n number of data points. In this paper, the number
of clusters is five, corresponding to the NOAA’s five classes.
The five center points for each hour in a day are deter-
mined and kept in record. The data preparation is detailed in
Algorithm 1. TheK-means center points vary with the hour of
the day as shown in Fig. 1. Each hour of a day has different
five center points that are associated with the five types of
sky. To clearly show the dynamic variation of the clusters for
different hours of the day, the probability distribution of the
irradiance is estimated for each cluster of each hour of the

Algorithm 1 Data Preparation and K -Means
Input: X ∈ Rnm contains the irradiance data of a season
Output: Q ∈ Rm×k is a (m × k) matrix with k centers for

each hour of a day
1: m← 24
2: k ← 5
3: X̂ ← {Reshape(X )}′ F X̂ ∈ Rn×m is an (n×m) matrix

as shown in Equation (2)
4: for i← 1, 2, . . ., m do
5: Z ← ∅ F Z ∈ Rn

6: Z ← X̃ ⊂ X̂ F X̃ ∈ Rn is the ith column of X̂
7: C ← Kmeans(Z ) FC ∈ Rk

8: C ← Bubblesort(C)
9: (Q̃← C) ⊂ Q F Q̃ ∈ Rk is the ith row of Q

10: end for
11: return Q

FIGURE 1. K-means centers for the solar irradiance of each hour in a
winter season - observed data are for the winters of 2012-2018 at the
Desoto solar farm in Florida.

FIGURE 2. Irradiance probability density function for each of the five
clusters at three different hours of a winter day.

day [28]. The irradiance probability distributions for the five
clusters of hours 8:00AM, 11:00AM, and 3:00 PMare shown
in Fig. 2. It is worth mentioning that the statistical analysis is
performed with keeping the testing data set excluded.
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Algorithm 2 Numerical Solar Irradiance Forecasting of an
M -Hour Prediction Horizon
Input: Y ∈ RM contains categorical solar irradiance fore-

cast of the city (cloudy=1, mostly cloudy=2, partly
sunny/partly cloudy=3, mostly sunny=4 and sunny=5),
I ∈ RM contains time index of each hour of the pre-
diction horizon, T ∈ R24×5 is a (24 × 5) matrix which
contains the cluster center points for each hour of a day

Output: Q ∈ RM contains numerical solar irradiance fore-
cast for the solar farm location

1: Q← ∅ F Q ∈ RM

2: for i← 1, 2, . . .,M do
3: τ̄ ← I [i]
4: C ← T̃ ⊂ T F T̃ ∈ R5 is the τ̄ th row of T ∈ R24×5

5: for j← 1, 2, . . ., 5 do
6: if Y [i] = j then
7: Q[i] = C[j]
8: end if
9: end for

10: end for
11: return Q

D. SYNTHETIC WEATHER FORECAST DATA PREPARATION
The hourly and daily weather forecast data, for the considered
city of Arcadia, Florida, is available on the weather forecast
channel in [29]. The weather data contain the type of sky,
temperature, relative humidity, wind speed and precipitable
water. All the weather variables except solar irradiance are,
to a great extent, homogeneous over all parts of the city.
Hence, the temperature, relative humidity and wind speed
forecasts of the city area are considered directly in the syn-
thesized weather forecast of the solar farm area. The approx-
imate numerical solar irradiance of the solar farm location
is created for any hour using the saved irradiance clusters
for that hour and the categorical type of sky forecast of the
city. For each hour of the prediction horizon, the type of sky
forecast of the city is associated with the saved cluster that
corresponds to that type of sky at that hour of the day. There-
after, the center for that cluster is considered as the approx-
imate numerical forecast for that hour. The solar irradiance
forecast technique is detailed in Algorithm 2. Fig. 3 shows
the creation of a 24-hour irradiance forecast profile, where
the city categorical type of sky forecast is translated into a
numerical irradiance forecast for the PV plant location. The
data flow of the proposed forecasting system is summarized
in Fig. 4.

III. LSTM NN BASED FORECASTING FRAMEWORK
A. LSTM NEURAL NETWORK STRUCTURE
The LSTM NN was introduced by Hochreiter and Schmid-
huber [30] in 1997. A classical LSTM NN is constructed
by a sequence of an input layer, hidden layers and an
output layer. The hidden layer contains a number of mem-
ory cells with input and output gates. The LSTM NN was

FIGURE 3. Created numerical solar irradiance forecast of Desoto solar
farm location on Dec. 6, 2016.

FIGURE 4. Simplified system architecture and data flow of the proposed
model.

improved later by Gers et al. [31] by introducing a new gate
in the memory cell named the forget gate. The information
flow through a memory cell is regulated by these gates.
The core component of a hidden layer is called a memory
block where a number of memory cells share the same gate
units [30], [31]. The architecture of a memory block is shown
in Fig. 5. An input sequence in the time frame is expressed
as {x(1), x(2), . . . , x(M )}∈ RK×M , where x(τ ) ∈ RK is the
feature vector at time step τ .
A memory block, with J number of memory cells and an

input feature vector x(τ ) ∈ RK , is updated M times, one
update for each feature vector in the input sequence. Each
update of the memory block results in the current state vector
c(τ ) ∈ RJ . The cell state vector c(τ − 1) ∈ RJ and the cell
output vector h(τ − 1) ∈ RJ , from the previous time step,
are utilized to calculate the current output vector h(τ ) ∈ RJ .
The input activation vector i(τ ) ∈ RJ , the forget activation
vector f (τ ) ∈ RJ , and the output activation vector o(τ ) ∈
RJ are updated at each time step of the input sequence by
utilizing a sigmoid activation function (σ ), as shown in Equa-
tions (4), (5), (7). A hyperbolic tangent activation function
(φ) is used to compute intermediate cell states, named as the
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FIGURE 5. Architectural view of an LSTM NN memory block.

cell candidates ĉ(τ ) ∈ RJ , as shown in Equation (6). The
corresponding (J×K ) input weight matrices are concatenated
as {Wi

T ,Wf
T ,Wc

T ,Wo
T
}
T to give a (4J × K ) matrix. Sim-

ilarly, the corresponding recurrent (J × J ) weight matrices
are concatenated as {UiT ,Uf T ,UcT ,UoT }T , which results in
a (4J × J ) matrix. The corresponding (J × 1) biases are
concatenated as {biT , bf T , bcT , boT }T , which is a (4J × 1)
matrix. The update of a memory block at time step τ is
formulated as follows:

f (τ ) = σ [Wf x(τ )+ Uf h(τ − 1)+ bf ] (4)

i(τ ) = σ [Wix(τ )+ Uih(τ − 1)+ bi] (5)

ĉ(τ ) = φ[Wcx(τ )+ Uch(τ − 1)+ bc] (6)

o(τ ) = σ [Wox(τ )+ Uoh(τ − 1)+ bo] (7)

c(τ ) = f (τ )� c(τ − 1)+ i(τ )� ĉ(τ ) (8)

h(τ ) = o(τ )� φ[c(τ )] (9)

The special sign ‘‘�’’ is introduced to show the
element-wise multiplication.

B. THE PV POWER FORECASTING FRAMEWORK
The LSTM forecasting framework is shown in Fig. 6. The
historical PV generation and weather data, the weather fore-
cast variables, the time of the day index, and the month of the
season index are considered as the input features of proposed
model. The min-max normalization method is adopted to
normalize the numerical predictors, whereas the categorical
predictors are standardized using the one-hot encoder tech-
nique. The input time-sequence length is selected to have the
same length (M ) as that of the prediction horizon. The input
matrix at a time step (τ − 1) is prepared and processed as
follows:

1) The PV power generation sequence of past M hours is
set as P = {p(τ − M ), p(τ − M + 1), . . . , p(τ − 1)}
∈ RM . The historical weather data contains solar irra-
diance, temperature, wind speed and relative humid-
ity of past M hours. The sequences of the historical
weather variables, formulated as {w(τ−M ),w(τ−M+
1), . . . ,w(τ − 1)} ∈ RM , are concatenated to form a
(4 × M ) matrix W ∈ R4×M . The synthetic weather
forecast data comprises solar irradiance, temperature,
wind speed and relative humidity of nextM hours. The
sequences of the weather forecast variables, formulated

FIGURE 6. LSTM NN forecasting framework unfolded in time.

as {f (τ ), f (τ + 1), . . . , f (τ + M − 1)} ∈ RM , are
concatenated to form a (4×M ) matrix F ∈ R4×M .

2) The sequence of the incremental time of the day indices
for pastM hours is {i(τ−M ), i(τ−M+1), . . . , i(τ−1)}
∈ RM . The one-hot encoding transform this series into
a (24×M ) matrix, I ∈ R24×M , since each hour of the
day is encoded using 24 categories. The sequence of
month of the season indices of past M hours is {s(τ −
M ), s(τ −M + 1), . . . , s(τ − 1)} ∈ RM . After one-hot
encoding, it forms a (3 ×M ) matrix S ∈ R3×M as the
month of the season has only three categories, i.e. three
months.

3) Finally, the predictors are concatenated to cre-
ate the (36 × M ) input matrix X (τ − 1) =

{PT ,W T ,FT , IT , ST }T .

The input matrix is fed to an LSTM network with two hidden
layers, with J1 number of cells in the first hidden layer, and
J2 number of cells in the second one. The input matrix is fed
sequentially, a single feature vector, x ∈ R36, at each time
step. Hence, the memory block is updated M times, one for
each time step of the input sequence. The memory block of
the second hidden layer is updated synchronously at each
time step by accepting the output vector, h ∈ RJ1 , from the
first layer. The cell output vector, h ∈ RJ2 , from each update
is sent to the output layer to calculate the output sequence,
Y (τ−1) = {p(τ ), p(τ+1), . . . , p(τ+M−1)} ∈RM . Finally,
the output sequence is denormalized to produce the predicted
PV generation sequence.
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IV. PERFORMANCE EVALUATION
The forecasting performance of the proposed model is evalu-
ated using five statistical metrics, namely the mean absolute
error (MAE), the root mean square error (RMSE), the mean
absolute percentage error (MAPE), the mean relative error
(MRE), and the mean bias error (MBE) [32]–[34]. These
metrics are defined as follows:

MAE =
1
n

n∑
i=1

|xpredicted [i]− xactual[i]| (10)

RMSE =

√√√√1
n

n∑
i=1

(xpredicted [i]− xactual[i])2 (11)

MAPE =
1
n

n∑
i=1

|
xpredicted [i]− xactual[i]

xactual[i]
| × 100% (12)

MRE =
1
n

n∑
i=1

|xpredicted [i]− xactual[i]|

PcapacityPV

× 100% (13)

MBE =
1
n

n∑
i=1

(xpredicted [i]− xactual[i]) (14)

where PcapacityPV is the capacity of the PV power plant.

V. RESULTS AND DISCUSSION
The simulation is carried out over 3 years (2016-2018)
of data. The data set of each season is divided into two
subsets using a 9:1 training to testing ratio. In the deep
LSTM NN, the first hidden layer contains 75 memory cells,
while the second layer contains 70 memory cells. The algo-
rithm is implemented in MATLAB 2019b, and executed
on Intel(R) Core (TM) i3 CPU @ 2.1 GHz and 8GB of
memory.

A. FORECASTING PERFORMANCE OF THE PROPOSED
ALGORITHM
The forecasting performance of the proposed algorithm is
evaluated using different prediction horizon lengths in dif-
ferent seasons. The raw weather forecast categorical type
of sky is also used directly in the proposed algorithm to
verify the significance of the proposed synthetic weather
forecast data. To achieve this, the proposed model is tested
using two additional data sets, named as direct-1 and direct-2
versions. In the direct-1 version, the weather forecast data
contains the hourly type of sky category of the city area,
while the daily type of sky category is used in the direct-2
version.

The forecasting accuracy of the proposed model is com-
pared in Table 2 and Table 3, which show that the algorithm
using synthetic weather forecast data performs significantly
better than the other two versions. The seasonal effect on
the forecasting accuracy is shown in Table 2 for 24-hour
prediction horizons. As can be seen, the proposed model can
achieve up to 33% improvement in accuracy in comparison
to the direct-1 version, and up to 44.6% in comparison to the
direct-2 version, in the autumn season. The horizon length

FIGURE 7. Volatility analysis of PV power generation in different seasons.

impact on the prediction accuracy is shown for the summer
season in Table 3.

Season wise, the accuracy is lower in the spring and sum-
mer seasons, yet the proposed model still achieves higher
accuracy than the other two versions. A volatility analysis
of PV power generation in different seasons is performed
using seven years (2012-2018) worth of data to investigate
the lower prediction accuracy in the spring and the sum-
mer. As shown in Fig. 7, PV power generation is more
volatile in the spring and the summer in comparison to
the autumn and winter seasons. To determine probability
density functions of the averaged forecasting error, the pre-
diction horizon is rolled over one hour at a time for a
testing period of one year (2018), and prediction horizons
are picked randomly. Thereafter, the forecasting errors from
each set of samples are averaged. The probability distribu-
tions of the averaged forecasting error are shown in Fig. 8
as Gaussian distributions, according to the central limit
theorem [35].

Though the model gives the highest error for 24-hour
prediction horizons, it shows more consistency as depicted
in Fig. 8. Season wise, the model achieves the high-
est accuracy and consistency in the autumn. The predic-
tions of two 12-hour rolling horizons are shown in Fig. 9.
To assess the convergence of the NN training, the train-
ing process is repeated for 15 times with the same num-
ber of iterations, but with randomly chosen initial weights.
The prediction average and standard deviation envelops
are shown in Fig. 10, for 24-hour horizons. The proposed
model performance under different day conditions is shown
in Fig. 11.

B. FORECASTING ENGINE PERFORMANCE EVALUATION
The prediction capability of the LSTM NN, with the pro-
posed features, is evaluated by implementing the proposed
algorithm using a recurrent neural network (RNN), a gener-
alized regression neural network (GRNN), and an extreme
learning machine (ELM). The hourly data of the autumn
season is used to compare the performance of the forecasting
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TABLE 2. Prediction accuracy for different seasons.

TABLE 3. Prediction accuracy for different horizon lengths - (summer).

FIGURE 8. Averaged error probability distribution for different prediction
horizons of a day, and different seasons of a year.

FIGURE 9. 12-hour ahead rolling horizons, with different horizon starting
hours, in spring 2018.

engines. The prediction accuracy for 24-hour horizons is
compared in Table 4. Performance samples from the autumn
of 2018 data are shown in Fig. 12. The comparison reveals
the superiority of the LSTMNNwith the proposed algorithm,
over the RNN, the GRNN, and the ELM. It is worth noticing

FIGURE 10. 24-hour rolling horizons, with different horizon starting
hours, in winter 2018. The prediction average and standard deviation
envelopes are shown as a results of 15 training trials, with same number
of iteration, but with different initial weights.

FIGURE 11. 24-hour ahead PV power forecasting for different types of
days in summer, 2018.

that the RNN can still achieve higher accuracy than those
of the GRNN and the ELM machines due to its recurrent
nature. However, the LSTM NN shows higher accuracy due
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TABLE 4. Forecasting accuracy comparison among different forecasting
engines- autumn.

FIGURE 12. Sample performance for 24-hour prediction horizons in
autumn, 2018.

to the additional input, forget, and output gates in the mem-
ory cells, which equip the LSTM NN with the ability to
preserve long-range temporal dependencies more than the
RNN.

VI. CONCLUSION
In this paper, an algorithm is proposed to exploit the time
series processing qualities of LSTM NNs along with the
proposed synthetic irradiance forecast to predict PV power
generation. Instead of employing the categorical hourly or
daily type of sky forecast, of the city area, the types of sky
are defined for each hour uniquely, using different levels
of irradiance, based on the hour of the day and the season.
It is shown that using this synthetic irradiance forecast can
achieve up to 33% improvement in accuracy in comparison
to that when the hourly type of sky forecast is used, and
up to 44.6% in comparison to that when the daily type of
sky forecast is used. Moreover, the superiority of the LSTM
NN with the proposed input features, is verified in this
paper by implementing the proposed algorithm using other
forecasting engines, namely the ELM, the GRNN, and the
RNN.
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