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ABSTRACT Harmonic periods have been of great importance in the design of real-time applications due to
their high schedulability, predictability, and ease of analysis. Therefore, period assignment is an important
part of the design process of many real-time systems. This includes various applications such as radar dwell
tasks, robotics, and industrial control applications, where tasks are specified using period ranges and worst-
case execution times. In this paper, we study the issue of assigning a fixed number of harmonic periods from
period ranges to maximize utilization in real-time systems. In the existing period assignment approaches,
the number of different harmonic period values in the solution was not addressed. In this work, we show
that, in real-time systems in which the number of available task periods is restricted, such a constraint is
crucial for efficient system design. We formally define the problem in the context of existing harmonic
period assignment research. We show that this problem is at least weakly NP-hard and devise an optimal
algorithm and suboptimal heuristics. Based on an extensive evaluation on synthetically generated task sets,
we conclude that our approach is efficient and applicable in a variety of real-world scenarios.

INDEX TERMS Harmonic, period assignment, period optimization, real-time systems.

I. INTRODUCTION
In traditional industrial control systems, timeliness, stability
and predictability are very important properties. Moreover,
in safety-critical control systems, these properties are condi-
cio sine qua non as they are required according to generic
safety standards such as IEC 61508 and domain-specific
safety standards, e.g., EN 50128 in the railway domain and
ISO 26262 in the automotive domain. Efficiency and accu-
racy of the control algorithm depends to a large extent on
the timeliness of underlying embedded computing platforms.
Consequently, strict requirements are imposed on the design
of operating systems as the controlling procedures have to be
prompt and correct. In this context, selecting adequate sample
times, i.e., task periods, is crucial for an appropriate behavior
of a system.

A. RELATED WORK
Period assignment is a well-studied topic in real-time system
design, since the choice of periods in sporadic or periodic task
sets has a direct effect on system schedulability, efficiency
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and utilization. Additionally, harmonic period assignment is
of special interest as it is well-known that any harmonic
task set with processor utilization less or equal to one is
schedulable by a rate-monotonic scheduler [1]. Research in
this domain can be divided into three groups with respect to
the particular focus of the research.

The first research area includes papers focused on the
schedulability of real-time systems with arbitrary period
selection, i.e., periods of task sets are not constrained to
harmonic values. Early research in this context was done by
Seto at al. in [2]. The authors devised algorithms for discov-
ering feasible integer periods in fixed-priority systems with
a fixed rate-monotonic and an arbitrary priority assignment.
Moreover, in their approach periods are upper-bounded by
the slowest task rate required by an application. According to
authors in [3], the approach taken in [2] seems to be inefficient
due to the combinatorial explosion for larger task sets. On the
other hand, in [3], authors precisely formulate the feasibility
region in the rate space and devise optimization algorithm
for any convex objective. In their approach, periods are not
constrained to be integers, while fixed-priority scheduling is
assumed. However, there are no additional constraints regard-
ing the period range for tasks in systems.
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The second research area includes papers that exploit the
harmonic relations between the periods of tasks in systems
for determining schedulability. For instance, Han and Tyan
in [4] devise a sufficient schedulability bound which is better
than the one proposed by Liu and Layland [5]. The approach
is based on two previously introduced algorithms Sr and DCT
investigated in the context of distance-constrained real-time
systems [6]. Similarly, an exact polynomial-time schedu-
lability test for harmonic task sets with any fixed-priority
assignment was devised in [7]. It is worth noting that the
problem of determining schedulability of sporadic task sets
with arbitrary periods is NP-hard [8].

The third research area includes papers which are focused
on harmonic period assignment with period ranges. In recent
research [9], authors determined that two classical harmonic
period optimization problems labeled UHPA (utilization-
maximizing harmonic period assignment) and CHPA (cost-
minimizing harmonic period assignment) are in the NP-hard
complexity class. Additionally, they devised approximation
algorithms for the relaxed version of the CHPA problem,
i.e., the constraints on period ranges are removed. We for-
mally define these problems later in the paper as our research
is focused on a variant of the UHPA problem with additional
constraints on period values. In [10], the authors introduce
the notion of harmonic projection and devise an exponential
time (in size of a task set) algorithm for determining harmonic
periods for tasks with period ranges. Additionally, they devise
period assignment algorithms such that the resulting utiliza-
tion of a task set is equal to the lower or the upper bound
utilization value. They expand on their work in [11].We high-
light the similarities and the differences with our approach
later in the paper. Period selection and assignment were
investigated in the context of minimizing the hyperperiod of
task set in systems in which periods are closely harmonically
related [12]. Similarly, in [13], the authors investigate the
minimization of the hyperperiod by non-harmonic period
assignment from period ranges.

The common motivation in the period assignment research
is the real-time system and optimal controller co-design,
in which the problem of selecting adequate sample times
is directly linked to the problem of determining optimal
periods [14]. In such approaches, the LQG (linear-quadratic-
Gaussian) plant model is used [15], [16]. Moreover,
the period assignment of harmonic period values is of
great importance in many applications such as radar dwell
tasks [17], mobile robotics [18], integrated modular avionics
[19], and automotive applications [20].

B. MOTIVATION AND NEW CHALLENGES
As an additional motivation and rationale for imposing
additional constraints on the classical harmonic period
assignment problem, i.e., a variant of the UHPA, we focus on
safety-critical software from real-world industrial scenarios
as it serves as the primarymotivation for this research. Safety-
critical embedded software for control applications typically

has a modular composition in which each module, task
or runnable executes with a predefined period which is
determined off-line as a part of the application design. For
instance, ANSYS SCADE Suite [21], HIMA SILworX [22]
and KONČAR Grap Designer [23] provide automatic code
generation based on a set of application modules. The appli-
cation designer determines a range of periods for every mod-
ule, i.e., task, in the application. In order to ensure function
correctness, tasks have to be executed with periods belonging
to their specified range. Moreover, it is in the interest of
application and system designers that every task in the system
executes with the highest possible frequency, i.e, the lowest
possible period as this will ensure a higher quality of ser-
vice, and consequently increase utilization. Thus, utilization
is maximized. The number of tasks in an application can
grow and be arbitrarily high. However, in many systems, e.g.,
the KONČARGrap [23] operating system, or enginemanage-
ment systems [20] in automotive applications, the number of
available periods, i.e., rates, is fixed or bounded and cannot be
increased due to the specific architecture of the hardware and
the operating system. For instance, the maximum number of
different period values may be fixed to 4, or restricted to the
interval from 4 to 8. It is worth noting that previous research
regarding harmonic period assignment does not address the
number of distinct period values in the solution of the period
assignment problem. Our approach can be used by system
and application designers to determine the optimal choice of
task periods, even when the number of available periods in
the system is limited.

C. CONTRIBUTIONS AND ORGANIZATION
There are five main contributions in this paper. We define
utilization-maximizing harmonic period assignment with a
constrained number of distinct period values referred to as
UDHPA (i). We show that the already studied UHPA problem
is Turing reducible to the UDHPA problem. Additionally,
using the complexity results for the UHPA problem from [9],
we determine that the UDHPA problem is at least weakly
NP-hard by reduction from the well-known partition sum
problem (ii). We devise an optimal and heuristic algorithms
for the UDHPA problem, provide time-complexity analy-
sis, and show the effectiveness of the approach with exten-
sive evaluation on a large number of synthetically generated
instances, which correspond to real-world motivational sce-
narios (iii). We use our optimal algorithm and heuristics to
solve instances of the UHPA problem and compare them to
the existing approaches (iv). Moreover, we provide a numer-
ical example that illustrates a real-world period assignment
problem (v). The rest of the paper is organized as follows.
In section II, we introduce the system model. In section III,
firstly we revisit existing harmonic period assignment prob-
lems, and then define the UDHPA problem. In section IV,
we analyze the complexity of the UDHPA problem. In
section V, we devise an optimal algorithm for the UDHPA
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problem. In section VI, we evaluate our approach. Finally, in
section VII, we state the concluding remarks.

II. SYSTEM MODEL
In this paper, system S is represented as a set T of n periodic
tasks with no initial offset, i.e., a synchronous task set [24].
We use a task model which is common for the period assign-
ment with period ranges proposed in [9], [10], and [11].
Therefore, task τi is represented as a tuple τi = {Ci, Ii},
where Ci is the worst-case execution time (WCET) of τi, and
Ii is the period range of allowed period values for τi. Period
range Ii = [pmini , pmaxi ] is determined by the minimal pmini
and the maximal pmaxi allowed period value. Actual period
value of task τi is denoted as Ti. This is the value which is
assigned to a task by solving a period assignment problem.
Additionally, Ti is the deadline of τi, i.e., implicit-deadline
task sets are considered. We assume that the WCET is a real
number, i.e., Ci ∈ R, and that task periods are integers,
i.e., Ti, pmini , pmaxi ∈ N. Moreover, periods are in harmonic
relation, i.e., TiTj ∈ N ∨ Tj

Ti
∈ N, i, j ∈ [1, n]. Definition II.1

determines the correctness of period assignment.
Definition II.1. Correct Period Assignment. Period

assignment for task τi is correct iff period value Ti assigned
to task τi is such that pmini ≤ Ti ≤ p

max
i .

It is worth noting that the correctness of period assignment
does not guarantee the feasibility of a task set. The feasibility
of a harmonic task set is often expressed using the utilization
of a task set, i.e., U =

∑
Ui =

∑ Ci
Ti
≤ 1.

III. PROBLEM FORMULATION
A. CLASSICAL HARMONIC PERIOD ASSIGNMENT
PROBLEMS
First off, we describe existing harmonic period assignment
problems which are analyzed and discussed in the litera-
ture [9]–[11]. Inputs of these problems are tasks described
with worst-case execution times Ci and period ranges Ii =
[pmini , pmaxi ]. The outputs are period values Ti assigned to each
task. The utilization-maximizing harmonic period assign-
ment (UHPA) problem is formulated as follows:

maximize U =
n∑
i=1

Ui

subject to Ti ∈ Ii, i ∈ [1, n]
Ti
Tj
∈ N or

Tj
Ti
∈ N, i, j ∈ [1, n]

U ≤ 1

As it can be seen, actual periods Ti are allowed to be in range
Ii and have to be in harmonic relation. It is worth noting that
in the related literature (e.g., [9]) period values Ti are not
restricted to the integer values. However, the period ratios of
the two consecutive integers Ti

Tj
are required to be integers.

The second common problem formulation in the literature
is the cost-minimizing harmonic period assignment (CHPA)

problem which can be formulated as:

minimize
n∑
i=1

wiTi

subject to Ti ∈ Ii, i ∈ [1, n]
Ti
Tj
∈ N or

Tj
Ti
∈ N, i, j ∈ [1, n]

U ≤ 1

The CHPA problem is common in control co-design applica-
tions [15] where the goal function is a linear function of task
periods. In the goal function, the weight wi determines the
contribution of each period to the total cost.

B. FORMULATION OF HARMONIC ASSIGNMENT
PROBLEM WITH A CONSTRAINED NUMBER OF
DISTINCT PERIOD VALUES
In this paper, we solve the utilization-maximizing harmonic
period assignment problem with a constrained number of
different period values. In the previous problems, the number
of different period values in the solution is not constrained.
For instance, an optimal solution can have any number of
different period values, from only one up to n. As argued in
the motivation of the paper, the number of different period
values can be smaller than the number of tasks in the system.
To address this, we formulate the problem in which the
number of different period values is constrained, i.e., fixed.
Such an approach enables a more flexible system design as it
allows the system designer to regulate the number of distinct
period values in the system. This is elaborated further using
the numerical example in section VI-D. Now, we proceed to
formulate such a problem. Firstly, we introduce the vector Ep
which contains m different period values, where m ≤ n. Sec-
ondly, we introduce the period assignment matrix X which
contains mapping of period value pj to period value Ti of task
τi. Value xij of the binary matrix X is determined as follows:

xij=

{
1, period value pj is assigned to task τi, i.e., Ti←pj
0, otherwise

(1)

In case m = n, one period value pj maps to only one period
value Ti, i.e., this is one to one mapping. In case m ≤ n,
period value pj can be mapped to many tasks, i.e., generally,
this is one to many mapping. However, period value pj has
to be mapped to at least one period value Ti. If pj is not
mapped to at least one task, then the number of different
period values in the resulting period assignment would not
be equal to m, and this is the requirement of the problem.
To express this formally, we introduce the constraints given
with equations (2) and (3). First, we restrict the assignment
of only one period value pj to period value Ti of task τi:

m∑
j=1

xij = 1, i ∈ [1, n] (2)
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The constraint (2) ensures that the i-th row of matrix X can
contain only one non-zero element, i.e., only one pj is mapped
to Ti. Secondly, every period value pj has to be assigned to at
least one task:

n∑
i=1

xij ≥ 1, j ∈ [1,m] (3)

The constraint (3) ensures that the j-th column of matrix X
has to contain at least one non-zero element, i.e., every period
value pj has to be assigned to a task. The latter constraints
do not ensure the correctness of a period assignment. For
instance, a period value which is too high or too low can
be assigned to a task. To ensure that a period assignment is
correct (Def. II.1), we have to restrict the assignment to period
values from interval [pmini , pmaxi ]. The correctness criteria can
be expressed as:

xij H⇒ pmini ≤ pj ≤ p
max
i (4)

The latter logical expression can be translated to an arithmetic
expression using the translation for logical implication to a
linear constraint:

X H⇒ Y → x ≤ y (5)

At this point, we introduce the binary constraintmatrixAwith
n · m elements aij. Value aij is determined as follows:

aij =

{
1, pmini ≤ pj ≤ p

max
i

0, otherwise
(6)

To ensure the correctness of a period assignment, xij H⇒ aij
has to hold. Using the arithmetic counterpart for implication
given with (5), the correctness criteria can be expressed as:

xij ≤ aij, ∀i ∈ [1, n],∀j ∈ [1,m] (7)

With the latter constraints in place, the problem can be for-
mally expressed as:

maximize U =
m∑
j=1

n∑
i=1

Ci
xij
pj

subject to xij ≤ aij, i ∈ [1, n], j ∈ [1,m]
m∑
j=1

xij = 1, i ∈ [1, n]

n∑
i=1

xij ≥ 1, j ∈ [1,m]

pj = kjpj−1, kj ∈ N+ \ {1}, j ∈ [2,m]

U ≤ 1

where kj is the integer ratio of two consecutive period values
pj and pj−1. We refer to this problem as the utilization-
maximizing harmonic period assignment with a constrained
number of different period values (UDHPA). The outputs of
the UDHPA problem are period vector Ep and period assign-
ment matrix X. These two variables determine period Ti for
each task in system. Similarly as in the classical problems,

the inputs of the problem are tasks represented with worst-
case execution times Ci and period ranges Ii. The additional
input in the UDHPA problem is the number of distinct period
values in the solution m.

IV. PROBLEM ANALYSIS: TURING REDUCIBILITY
AND COMPLEXITY
A. TURING REDUCTION FROM UHPA TO UDHPA
In order to show that theUHPAproblem is Turing reducible to
the UDHPA problem, we show that an oracle for the UDHPA
problem can be used to solve the UHPA problem. Formally,
this is stated with the following lemma.

Lemma IV.1. The UHPA problem can be solved by solv-
ing the UDHPA problem n times.

Proof: If we consider the UHPA problem, an optimal
solution has an arbitrary number of distinct period values
which can be lower than the number of tasks in the system.
In the UDHPA problem, however, the number of distinct
period values is fixed. Therefore, to solve the UHPA problem
using an algorithm for the UDHPA problem, one has to solve
the UDHPA problem for every number m of distinct period
values from interval [1, n]. To better illustrate this, we provide
pseudo-code Alg. 1. �

Algorithm 1 Turing Reduction From UHPA to UDHPA
Input: S = T
Output: Umax F maximal utilization
1: function SolveUHPA(T )
2: Umax ← 0
3: for m in range 1 to n do
4: U ← SolveUDHPA(T ,m)
5: if U > Umax then
6: Umax ← U
7: end if
8: end for
9: return Umax

10: end function

Theorem IV.1. The UHPA problem is Turing reducible to
the UDHPA problem.

Proof: In Lemma IV.1, we can see that the UHPA
problem is solved by invoking the oracle for the UDHPA
problem in polynomial time, which proves the theorem. �

B. COMPLEXITY ANALYSIS
To derive the complexity of the UDHPA problem, we use
the UHPA complexity results from [9]. To show that the
UHPA problem is at least weakly NP-hard, the authors pro-
vided many-one reduction from the partition sum problem
(PART) to the UHPA problem. In other words, they pro-
vided a polynomial-time algorithm for reducing any given
instance of the PART problem to an instance of the UHPA
problem. Their proof can be directly applied to the UDHPA
problem. For completeness and clarity, here we reproduce
important parts of the proof. For the complete proof, refer
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to section 3 in [9]. Firstly, we define the number partitioning
problem (PART).

Definition IV.1. The PART Problem. Let A =

{a1, . . . , an} be a set of n items with an associated size func-
tion s : A→ N which assigns a positive integer to each item.
The problem is to determine whether A can be partitioned
into two sets, A1 and A2, such that the total size of items in
A1 equals that of A2. More formally, let S, S1, and S2 denote
the sum of items for A, A1, and A2, respectively. That is,

S =
∑
ai∈A

s(ai) (8)

S1 =
∑
ai∈A1

s(ai) (9)

S2 =
∑
ai∈A2

s(ai) (10)

Then, the problem is to decide whether A can be partitioned
into A1 and A2 (i.e., A1 ∪A2 = A and A1 ∩A2 = ∅), such that
S1 = S2. An instance of this problem is said to be a positive
one if such a partitioning exists [9].
The PART problem is known to be NP-complete, but solvable
in pseudo-polynomial time [25].

At this point, we reproduce the polynomial-time method
for transforming any given instance of the PART problem to
an instance of the UHPA problem. To show that the proof
is applicable to UDHPA problem as well, we show that the
transformation of any PART instance to an instance of the
UHPA is a transformation to an instance of the UDHPA
problem as well.

Definition IV.2. PARTTransformation.For any instance
of the PART problem, the corresponding UHPA problem is
specified by a set of n+2 tasks. TheWCET of τi is determined
as:

Ci =


4s(ai)
3S + 3

, 1 ≤ i ≤ n

2
3S + 3

, n+ 1 ≤ i ≤ n+ 2
(11)

Period ranges for each τi are determined as:

Ii =


[1, 2], 1 ≤ i ≤ n
[1, 1], i = n+ 1
[2, 2], i = n+ 2

(12)

Proposition IV.1. An UHPA instance obtained using
PART transformation is an UDHPA instance with m = 2.

Proof: Any instance of the PART problem is trans-
formed to an instance of UHPA problem with period ranges
such that the allowed harmonic period values are either
1 or 2. There are always exactly two different period values
in the resulting UHPA problem. Therefore, any such instance
is an UDHPA instance with two different period values,
i.e., m = 2. �
Lemma IV.2. A given instance of the PART problem is

positive (i.e., the given set can be partitioned) if and only if the
UHPA problem instance obtained fromPART transformation
has a solution in which U = 1 [9].

The latter lemma is proven in [9]. It is worth noting that
it applies to the UDHPA problem as well, since we know
from Theorem IV.1. that every instance of the UHPA problem
obtained using PART transformation can be solved with an
oracle for the UDHPA problem with m = 2, i.e., there is one
to one mapping between instances of the UHPA and UDHPA
problem with fixed m = 2.
Theorem IV.2. The UDHPA problem is at least weakly

NP-hard.
Proof: Using the PART transformation and

Lemma IV.2. we can reduce any PART instance to
a corresponding UHPA instance. Additionally, using
Proposition IV.1 and Theorem IV.1 we see that this transfor-
mation is valid for the UDHPA problem as well. Therefore,
any algorithm used for solving the UDHPA problem can be
used for solving any instance of the PART problem after the
PART transformation. Therefore, the UDHPA problem is
at least hard as the PART problem. Moreover, the UDHPA
problem is at least weakly NP-hard. �

V. AN OPTIMAL ALGORITHM FOR THE UDHPA
PROBLEM
The UDHPA problem cannot be easily solved by using exist-
ing mixed-integer or integer programming solvers. The uti-
lization of the system, i.e., the goal function is a non-linear,
i.e., signomial, function. Methods for solving mixed-integer
signomial problems exist, but do not guarantee to find a
global solution [26].
In our approach, we enumerate possible solutions to find

an optimal solution of the problem. We split the UDHPA
problem into two independent parts:

1) enumeration of potential harmonic period sets – we
refer to this part as period enumeration (PE),

2) assignment of periods from a harmonic period set to
tasks - we refer to this part as task assignment (TA).

In the first part, we enumerate the possible harmonic period
sets which can be used for task assignment in the system.
This is possible as we constrained periods to integer values.
Still, in the worst case, enumerating all the possible harmonic
period sets can lead to a combinatorial explosion due to the
exponential growth in the period search space. Therefore,
we introduce several propositions which drastically reduce
search space in most use cases. In the second part, we assume
that harmonic period set Ep is known. It can be seen that the
goal function of the UDHPA problem with known period
values is linear, which makes such problem an integer lin-
ear program, i.e., zero-one linear program. We refer to the
relaxed version of the UDHPA problem, i.e., an assignment
problemwith a known harmonic period set, as the task assign-
ment (TA) problem. The TA problem can be expressed as
follows:

maximize U =
n∑
i=1

m∑
j=1

Ci
pj
xij

subject to xij ≤ aij, i ∈ [1, n], j ∈ [1,m]
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m∑
j=1

xij = 1, i ∈ [1, n]

n∑
i=1

xij ≥ 1, j ∈ [1,m]

U ≤ 1

In the TA problem, only the mapping of period values to tasks
has to be determined, since harmonic period set Ep is known in
advance. In our approach, we exploit this observation. Firstly,
we enumerate possible harmonic period values sets, and then
solve the TA problem for each harmonic period set.

A. ENUMERATING PERIOD VALUES
To determine m different period values, we start by choosing
the values for the lowest period, i.e., p1. Subsequent period
values are determined by choosing the integer ratios kj > 1
of two consecutive integer values pj and pj−1. Possible values
for the first period depend on two specific values which can
be determined from task period ranges. The first value is pminmin,
which is the minimal lower bound in all period ranges, i.e.,
min pmini . The second value is pmaxmin , which is the minimal
upper bound in all period ranges, i.e., min pmaxi .
Proposition V.1. Choice of p1. In any feasible solution of

the UDHPA problem, value of p1 is in interval [pminmin, p
max
min ].

Proof: To prove this, we consider cases in which p1 is
not in the proposed interval and show that at least one of the
constraints is violated. Firstly, let us assume that p1 has a
value which is lower than pminmin. As the period value has to
be assigned to at least one task, i.e.,

∑n
i=1 xij ≥ 1, j ∈ [1,m],

there is no feasible solution to the UDHPA problem, since
period value p1 cannot be assigned to task τi with the minimal
lower bound pmini = pminmin, or to any other task. Secondly, if p1
is greater than the minimal upper bound pmaxmin , it is not pos-
sible to assign any period value to task τi with pmaxi = pmaxmin
due to the violation of the period range constraint. Therefore,
for any feasible solution to the UDHPA problem, p1 is within
the interval [pminmin, p

max
min ]. �

Similarly, as we have restricted the possible choices of p1,
we can restrict the choice of any subsequent period values pj.
We introduce another specific value for the given period
ranges, pmaxmax , which denotes the maximal upper bound among
the upper bounds of all tasks, i.e., max pmaxi .
Proposition V.2. ABound onChoice of pj. In any feasible

solution, there is no period value such that pj > pmaxmax .
Proof: If pj > pmaxmax , it is not possible to assign pj to any

task, since the range constraints will be violated. Therefore,
in any feasible solution, every period pj is less than or equal
to pmaxmax . �

Using the specific values obtained from period ranges,
it is possible to determine the maximum number of distinct
period values which can appear in the solution. The following
proposition is useful as it restricts the period enumeration
search space.

Proposition V.3. The Maximum Number of Distinct
Period Values. In any feasible solution the maximum number

of distinct period values m is such that m ≤ mmax =
blog2

pmaxmax
pminmin
+ 1c.

Proof: Due to the harmonic relations of period values,
it is evident that we obtain the smallest value of the largest
period, i.e., pm, when all consecutive integer ratios are such
that kj = 2, j ∈ [1,m − 1]. Then, we have pminm = pminmin ·

2m−1. From Proposition V.2, we know that pminm ≤ pmaxmax ,
and therefore pminmin · 2

m−1
≤ pmaxmax . When we solve the latter

inequality for m, we get m ≤ log2
pmaxmax
pminmin
+ 1, which proves the

proposition. �

Proposition V.4. Maximum Integer Factor kj. In any fea-
sible solution, every integer factor kj is such that kj ≤
b

pmaxmax
pj−1·2m−j

c.
Proof: Let pm ≤ pmaxmax be the last value of the period

vector Ep. Period pm can be calculated as pm = p1 · k2 · k3 ·
. . . · kj · . . . · km. Moreover, pm = pj−1 · kj · kj+1 · . . . · km.
Therefore, kj = b

pm
pj−1·

∏m
i=j+1 ki

c. Factor kj is maximal when the

product
∏m

i=j+1 ki is minimal, i.e., ki = 2, i > j. Therefore,
kj ≤ b

pm
pj−1·2m−j

c, which proves the proposition. �
Using the latter propositions, harmonic period sets can be

enumerated in an efficient manner. Alg. 2 depicts a recur-
sive algorithm for the enumeration of period sets. Firstly,
the Period Enumeration function assigns values deter-
mined by Proposition V.1 to the first period p1 (line 6 in
Alg. 2). The subsequent period values are determined accord-
ing to Proposition V.4 in a recursive manner (line 15 in Alg.
2). In the basic case, when all the period values are set to
their respective values, i.e., when j == m + 1, the TA
problem is solved for the constructed period set. Moreover,

Algorithm 2 Algorithm for Harmonic Period Enumeration
Input: S = (T )
1: function Period Enumeration(T , m)
2: pminmin = min pmini , ∀τi ∈ T
3: pmaxmin = min pmaxi , ∀τi ∈ T
4: pmaxmax = max pmaxi , ∀τi ∈ T
5: for i in range pminmin to p

max
min do

6: p1← i F according to Prop. V.1
7: Period Enumeration Step(Ep, pmaxmax , 2)
8: end for
9: end function
10: function Period Enumeration Step(Ep, pmaxmax , j)
11: if j ==m+1 then
12: Solve Task Assignment(Ep, T )
13: return
14: end if
15: for kj in range 2 to b

pmaxmax
pj·2m−j

c do F according to Prop.
V.4

16: pj← kj · pj−1
17: Period Enumeration Step(Ep, pmaxmax , j+ 1)
18: end for
19: end function
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the number of different harmonic period sets with m distinct
period values corresponds to the number in which the basic
case is reached. We further analyze the number of solutions
with regard to m in section VI in the context of feasibility
evaluation. Now, we analyze time complexity of the period
enumeration algorithm. Firstly, it is worth noting that the
asymptotic analysis with regard to m is not of any interest,
since we know from Proposition V.3 that m is bounded and
that there are no feasible solutions for higher values of m.
Therefore, we analyze time complexity with regard to the
highest period in the input pmaxmax , as it is obvious that the num-
ber of steps in the algorithm increases when pmaxmax increases
(see loop bound in line 15 inAlg. 2). To provide an asymptotic
upper bound on the time complexity of Alg. 2, we study a
similar enumeration problem referred to as the DIVENUM
problem.

Definition V.1. The DIVENUMProblem. The enumera-
tion problem, which we call DIVENUM, is to output all m-
tuples (k1, . . . , km) such that:

5m
j=1kj ≤ χ, kj ∈ N+,∀j (13)

We can see that the DIVENUM problem is in fact very
similar to the PE problem, since in both problems we are
looking for a set of m factors such that their product is lower
than the specified bound, χ and pmaxmax , respectively. In the
PE problem, each factor kj is greater than one. On the other
hand, in the DIVENUM problem, kj is a positive integer
including one. Therefore, we know that the number of steps
required to enumerate solutions to the DIVENUM problem
is always higher than the number of steps in the PE problem.
For the sake of completeness and clarity, we provide Alg.
3 that depicts the enumeration for the DIVENUM problem.
Moreover, we analyze the time complexity of the Alg. 3, and
the obtained result will serve as an upper bound of the time
complexity of the PE algorithm (Alg. 2).

Algorithm 3 Algorithm for the DIVENUM Problem
Input: χ, j
1: function Divisor Enumeration(χ , j)
2: if j == 0 then
3: output tuple (k1, . . . , km)
4: return
5: end if
6: for km+1−j in range 1 to χ do
7: Divisor Enumeration( χ

km+1−j
, j− 1)

8: end for
9: end function

In Alg. 3, we see that the number of steps T (χ,m) required
to enumerate all m-tuples of positive integers with product
less than or equal to χ is given with:

T (χ,m) =
χ∑
k=1

T (b
χ

k
c,m− 1) (14)

T (χ, 0) = 1 (15)

where T (χ, 0) is the number of elementary operations in the
basic case. For any bound x, we know that:

T (x, 1) =
x∑

k=1

T (x, 0) = x (16)

Moreover, for T (x, 2) we have the following:

T (x, 2) = T (
x
1
, 1)+ T (

x
2
, 1)+ T (

x
3
, 1)+ . . .+ T (

x
x
, 1)

=
x
1
+
x
2
+
x
3
+ . . .+

x
x

We can see that this is in fact a finite partial sum of the
harmonic series:

T (x, 2) = x
x∑

k=1

1
k
= xHx (17)

whereHx =
∑x

k=1
1
k is the x-th harmonic number. Now, with

T (x, 2) = xHx , T (x, 3) can be expressed as:

T (x, 3) = T (
x
1
, 2)+ T (

x
2
, 2)+ T (

x
3
, 2)+ . . .+ T (

x
x
, 2)

= xHx +
x
2
Hx/2 +

x
3
Hx/3 + . . .+

x
x
H1

Next, we can bound T (x, 3):

T (x, 3) = xHx +
x
2
Hx/2 +

x
3
Hx/3 + . . .+

x
x
H1

≤ xHx(1+
1
2
+

1
3
+ . . .+

1
x
)

= xH2
x

By induction, we get that T (χ,m) = χHm−1
χ . Moreover,

harmonic numbers can be approximated with an integral:

Hχ =
∫ χ

1

1
t
dt = lnχ (18)

Therefore, an upper bound on the time complexity for
the DIVENUM problem is given with O(χ logm−1(χ)).
Moreover, the time complexity of the PE algorithm is in
O(pmaxmax log

m−1(pmaxmax)).

B. SOLVING THE TA PROBLEM
The TA problem is solved by enumeration of all possible
period to task assignments with respect to the given harmonic
period set. First off, we devise polynomial-time algorithms
which yield the lower and upper bounds for the goal function,
i.e., the utilization of the system. Then, by using these bounds,
we devise an algorithm for the optimal task assignment.

1) BOUND ALGORITHMS
In order to determine the bounds, we relax constraints∑n

i=1 xij ≥ 1, j ∈ [1,m] to allow that some period values
remain unused in the solution. We refer to this problem as
TA*. In such a scenario, an algorithm that produces a lower
bound of the utilization assigns the highest correct period
to every task (note: correct with respect to Definition II.1).
We refer to this assignment as the HPF (highest period first)
assignment, and it is depicted with Alg. 4. Similarly, the LPF
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(lowest period first) assignment yields an upper bound of
the TA* problem. To obtain the LPF assignment using the
Alg. 4, period values Ep have to be iterated from the lowest
to the highest period value (line 6 in Alg. 4). Formally,
the properties of the HPF assignment are stated in the contin-
uation (Proposition V.5 and V.6). The properties of the LPF
assignment are analogous with respect to an upper bound of
utilization.

Algorithm 4 HPF Algorithm
Input: Ep, T
Output: (correctness, U , X) - correctness of assignment,
utilization and period assignment matrix
1: function HPF Assignment(Ep, T )
2: X← [0], n← |T |, m← |Ep|
3: U← 0, correctness← true
4: for i in range 1 to n do
5: assigned← false
6: for j in range m down to 1 do
7: if pmini ≤ pj ≤ p

max
i then

8: xij← 1
9: U← U +Ci

pj
10: assigned← true
11: break
12: end if
13: end for
14: if not assigned then
15: correctness← false
16: break
17: end if
18: end for
19: return (correctness, U , X)
20: end function

Proposition V.5. The highest period first (HPF) assign-
ment yields the tight lower bound for the TA* problem.

Proof: Without loss of generality, we observe one task
τi from task set T and two correct periods pj and pk such that
pj < pk . Assume that U0 is utilization of task set T without
τi and that to each task a period value is assigned correctly.
We observe two possible period assignments for τi. In the first
case, Ti ← pj, and system utilization is U = U0 +

Ci
pj
. In

the second case, Ti ← pk , and system utilization is U ′ =
U0+

Ci
pk
. As pj < pk , it follows that

Ci
pk
< Ci

pj
, and consequently

U ′ < U . Therefore, assignment to higher period pk for each
τi will yield a lower bound of utilization.Moreover, this lower
bound is tight. �
Proposition V.6. The highest period first (HPF) period

assignment yields a lower bound of utilization for the TA
problem.

Proof: Proposition V.5 guarantees that the HPF will
yield minimal utilization in the case when there are no restric-
tions on the number of the distinct period values which have
to appear in the solution. The HPF algorithm tries to assign
the highest period value to each task, but this is not possible

if we have restriction on the number of distinct period values
as all of the period values have to be used. Therefore, if the
highest correct period value cannot be assigned to the task,
the lower period value will be assigned to the task and
consequently utilization will increase. Therefore, the HPF
assignment yields a lower bound of the utilization for the TA
problem.However, in this case, this boundmay not be tight.�
Both, the HPF and the LPF, have polynomial-time com-

plexity, which is evident from Alg. 4. For each task in a
task set, i.e., in n steps, the highest or the lowest period is
chosen in at most m steps. Therefore, the time complexity
of these algorithms is O(n · m). Note that these algorithms
are not suitable for solving UDHPA instances as they do
not guarantee that the number of used values in the solution
will be equal to m, i.e., some period values from Ep may
remain unused. However, in cases when there is restriction
only on the maximal number of period values, i.e., solution
can have any number of period values from 1 to mmax , usage
of these algorithms is appropriate. Moreover, usage of these
algorithms is appropriate for UHPA instances as in the UHPA
problem there are no constraints on the number of period
values. In such cases, we first use period enumeration to
find appropriate period sets, and HPF or LPF approach to
find corresponding task assignments. Time complexity of the
approach is pseudo-polynomial with regard to pmaxmax as time
complexity of PE algorithm is in O(pmaxmax log

m−1(pmaxmax)), and
polynomial regarding n, as time complexity of HPF and LPF
is in O(m · n)

2) THE OPTIMAL TASK ASSIGNMENT ALGORITHM
An optimal algorithm for enumeration of task assignments is
depicted with Alg. 5. We refer to this algorithm as optimal
task assignment (OTA). Prior to explaining the optimal task
assignment algorithm, we explain how the bounds calculated
by the HPF and the LPF algorithm are used. Moreover,
we explain how the number of distinct period values is tracked
during the enumeration process.

a: BOUNDS OF UTILIZATION
Using the HPF and the LPF assignment, we construct the
vector of lower bounds Ebl and the vector of upper bounds
Ebu. These vectors are used to prune infeasible or subopti-
mal branches in the enumeration of task assignments. These
vectors contain upper and lower bounds of subsets of task
set T . In this context, the i-th subset of task set T is set
Ti = {τi, τi+1, . . . , τn}. Therefore, the i-th value of vectors
Ebl and Ebu can be expressed as:

bli = UHPF (Ti), bui = ULPF (Ti), i = 1, . . . , n (19)

bln+1 = 0, bun+1 = 0 (20)

where UHPF (Ti) corresponds to the utilization obtained by
the HPF assignment for task set Ti. Similarly, ULPF (Ti) cor-
responds to the utilization obtained by the LPF assignment
for task set Ti. It is worth noting that the first values of both
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vectors, namely bl1 and b
u
1, correspond to the lower bound and

the upper bound of task set T , i.e., T = T1. Values bln+1 = 0
and bln+1 = 0 are introduced for valid comparison in the last
step of recursion (see line 28 in Alg. 5).

b: USAGE OF EVERY PERIOD IN THE ASSIGNMENT
To ensure that every period value pj is used in a task assign-
ment at least once, we have to track the number of used
period values when constructing a task assignment. There-
fore, we introduce the binary vector El with values lj such that:

lj =

{
1, period value pj is assigned at least once
0, otherwise

(21)

Additionally, d is the number of currently assigned period
values, i.e., d =

∑m
j=1 lj. As all of the period values have to

be used at least once, in a valid task assignment d must be
equal to m.

Here follows a detailed explanation of the OTA algorithm
depicted with Alg. 5. For brevity and ease of representation,
variables Umax , Xmax , X, Elj, and d , flag feasible, and
bounds Ebl , Ebu are assumed to be global. Umax is the current
maximal value obtained for assignment matrixXmax , and flag
feasible indicates the feasibility of the problem. Global
variable X is current assignment matrix. The local variable u
represents utilization at step i.
In the first part of the algorithm, i.e.,Task Assignment

function, we use the HPF assignment to determine the lower
bound of utilization prior to enumerating all task assignments
(lines 2 to 8 in Alg. 5). If the obtained lower bound is greater
than one or the assignment is not correct, there is no need
for enumeration of task assignments (line 6 in Alg. 5). In this
way, we efficiently prune a lot of period sets for which the
task assignment is infeasible.

In the second part of the algorithm, i.e., Task
Assignment Step function, task assignments are enu-
merated in a recursive manner. In the basic case (lines 12
to 18), we test if the utilization of the current task assignment
u is larger than the current maximal value Umax , and update
the solution Xmax accordingly. In other cases, period values
are conditionally assigned to the tasks (lines 21 to 36).

At the beginning of the loop, we check if the value pj is
assigned to any task at the previous recursion steps. If lj is
0 at step i, value pj is not assigned to any task τk such that
k < i. On the other hand, if value pj is used for the first
time at step i, we set values of lj and auxiliary variable ul
to 1 (lines 22 to 25). The auxiliary variable ul keeps track of
‘‘locking’’ period value pj at step i. Therefore, at the end of
the loop (lines 32 to 35), if pj was used for the first time at
step i, we have to reset (‘‘release’’) lj and ul.

Next, we break down two groups of conditions in their
respective if statements (line 26 and 28). The first if
statement checks validity of assignment. The first condition,
i.e., pmini ≤ pj ≤ pmaxi corresponds to the correctness criteria
(Def. II.1). In the second condition, m − d is the number
of unused periods from the input period set Ep, and n − i

is the number of tasks to which the period is not assigned.
The condition requires that the number of unused periods is
less than or equal to the number of tasks to which a period
value is not assigned. In other words, if it is not possible
to assign every period value in the next recursion steps, pj
cannot be assigned to τi. In line 27, period pj is assigned
to task τi, i.e., utilization for the next recursion step is
incremented by Ci

pj
.

The second if statement (line 28) serves to test the fea-
sibility and the bounds of the assignment. Condition u′ ≤ 1
ensures feasibility of the assignment. The second condition,
i.e., u′+bli+1 ≤ 1, checks if the sum of the current utilization
and minimal utilization of task subset Ti+1 is less than or
equal to one. If this condition is false, we know that there
is no assignment for which the final utilization will be less
than one, because bli+1 is a lower bound. Similarly, the third
condition, i.e., u′ + bui+1 ≥ Umax , checks if the sum of the
current utilization and maximal utilization of task subset Ti+1
is greater than or equal to current maximal valueUmax . If this
condition is not true, we know that there is no assignment for
which the final utilization is greater than the current maximal
value Umax , because bui+1 is a upper bound.
The time complexity of the OTA algorithm is evidently

exponential in the number of tasks n. In the worst-case, when
bounds are ineffective, one of the m period values will be
assigned to each task. Therefore, the time complexity of the
OTA algorithm is in O(mn). To find an optimal solution to
an UDHPA instance, we have to use the OTA algorithm for
each period set obtained using the PE algorithm. Complexity
of such an approach is again pseudo-polynomial with regard
to pmaxmax , since the time complexity of the PE algorithm is in
O(pmaxmax log

m−1(pmaxmax)), and exponential with regard to n, since
the time complexity of the OTA algorithm is in O(mn).

VI. EVALUATION
To further investigate the UDHPA problem and our approach,
we perform an extensive evaluation of the developed algo-
rithms on synthetically generated task sets. Firstly, we show
how the difficulty of the problem changes with regard to
utilization, the number of distinct period values, the width
of period ranges and the number of tasks in a task set. Fur-
thermore, we show how our approach can be used for UHPA
problem instances and compare it with existing approaches.
As the parameters used for synthetically generating task sets
correspond to the parameters of task sets in motivational
scenarios, we show that our approach can be efficiently used
in plenty of real-world scenarios. Moreover, we provide a
small numerical example that illustrates the benefits of our
approach in motivational real-world scenarios.

A. TASK SET GENERATION
We generate task sets using the UUnifast algorithm [27],
which is commonly used in measuring the performance of
algorithms in real-time systems. Using the UUnifast algo-
rithm we generate utilizations of task sets with regard to
pmaxi of tasks in a set. Therefore, the target utilization for
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Algorithm 5 Optimal Algorithm for the TA Problem (OTA)
Input: Ep, T
Output: (feasible, Umax , Xmax)
1: function Task Assignment(Ep, T )
2: (correct, U , X)← HPF Assignment(Ep, T )
3: feasible← false
4: u← 0
5: Umax ← 0
6: if not correct ∨ U > 1 then
7: return
8: end if
9: Task Assignment Step(Ep, 1, 0)

10: end function
11: function Task Assignment Step(Ep, i, u)
12: if i == n+ 1 then
13: if u > Umax then
14: feasible← true
15: Umax ← u
16: Xmax ← X
17: end if
18: return
19: end if
20: ul ← 0
21: for j in range 1 to m do
22: if lj == 0 then
23: lj← 1
24: ul ← 1
25: end if
26: if pmini ≤ pj ≤ p

max
i ∧ m−d ≤ n− i then

27: u′← u+ Ci
pj

F equivalent to Ti← pj or
xij← 1

28: if u′ ≤ 1∧ u′+ bli+1 ≤ 1∧ u′+ bui+1 ≥ Umax
then

29: Task Assignment Step(Ep, i+ 1, u′)
30: end if
31: end if
32: if ul == 1 then
33: lj← 0
34: ul ← 0
35: end if
36: end for
37: end function

UUnifast method corresponds to the lowest utilization of a
task set. We refer to this utilization as Umin =

∑n
i

Ci
pmaxi

. After
the utilizations are generated, we first choose pmaxi from the
interval [pdown, pup] with uniform distribution. Then, based
on the parameter σ , we determine the lower bound of the
period range for task τi as pmini = dpmaxi σe. Increasing σ
decreases the width of the period range for tasks.

We generate task sets with utilization Umin from interval
[0.2, 0.9] with an increment of 0.025. Moreover, pdown = 1,
pup = 2048, and σ = 0.4. We generate 1000 task sets per
utilization factor, i.e., a total of 29 · 1000 = 29000 task sets.

TABLE 1. Computing platform specifications.

Every task set consists of n = 20 tasks. These are the default
task set generation parameters unless noted otherwise. When
it comes to algorithm runtime measurements, it is worth
noting that our implementations of algorithms are written
in C++. Additionally, the specifications of the computing
platform are given in Table 1. Furthermore, we terminated an
algorithm if we obtained the utilization value in the interval
[1− 10−7, 1].

B. EVALUATION ON UDHPA INSTANCES
In this section, we evaluate our optimal approach which
consists of the PE algorithm (Alg. 2) and the OTA algorithm
(Alg. 5) on UDHPA instances with regard to different prob-
lem parameters m, σ and n.

Firstly, we evaluate our approach with regard to different
number of distinct period values in the solution m. Fig. 1
shows the number of feasible systems for different utilization
factors and for a different number of distinct period values in
the solution. It can be seen that, for m = 5, we obtain the
highest number of feasible solutions. For higher values of m,
the number drops, and we know from Proposition V.3 that
the maximum value of distinct period values for the system
to be feasible equals log2

2048
1 + 1 = 12. Since the number

of feasible systems for m > 8,m < 3 is lower than for
m = 8, we did not include these graphs in Fig. 1. Moreover,
Fig. 2 shows the average number of enumerated period sets
with regard to m. It can be seen that, for higher values of
different period valuesm, the number of harmonic period sets
is reduced. Thus, increasing the number of different period
values reduces the number of potentially feasible systems.
On the other hand, although the number of enumerated period
sets is higher for lower m in Fig. 2, feasibility is reduced
for lower m as it is more difficult to find a lower number
of harmonic period values that satisfy the correctness criteria
(Def. II.1) for each task in the system.

Fig. 3 shows the average resulting utilization for each
utilization factor and a different number of distinct period
values. In this particular evaluation, we set the resulting
utilization of infeasible systems to zero. In this way, we do
not lose information about the overall feasibility of systems.
Again, it can be seen that, for m = 5, we have the best
result. Dashed lines in the figure denote the utilization lower
bound obtained by the HPF assignment for the corresponding
number of distinct period values.

Fig. 4 shows the average utilization of feasible systems.
Here, we averaged the resulting utilization of feasible systems
for every m in interval [3, 8]. Additionally, Fig. 4 shows the
lower bound and the upper bound obtained by theHPF and the
LPF assignment, respectively. It can be seen that the resulting
utilization of our optimal approach is very close to the upper
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FIGURE 1. Number of feasible systems for different number of distinct
period values m.

FIGURE 2. Number of period sets obtained in period enumeration w.r.t. m.

bound for lower utilization values. When the upper bound
is higher than 1, our optimal approach yields the highest
possible utilization values lower or equal to 1.

Fig. 5 shows the average runtime per task set of our imple-
mentation of the algorithm for each utilization factor and a
different number of distinct period values. It can be seen
that, on average, the algorithm for larger numbers of different
period values has a higher runtime. This is mostly due to a
higher number of potential task assignments in solving the
TA problem. Additionally, it is worth noting that the average
runtime for m = 8 is lower than for m = 7 and m = 6. For
m = 8, there is a smaller number of enumerated period sets,
and therefore fewer TA problem instances have to be solved.

Figs. 6-8 show the effect of the period width σ on the
overall feasibility, utilization and average runtime. We use
the same parameters in task set generation as in the previous
evaluation. However, in this case, the number of distinct
period values is fixed, i.e., m = 5, and the period range

FIGURE 3. Average resulting utilization of task set for different number of
distinct period values m.

FIGURE 4. Average resulting utilization of the optimal assignment with
corresponding bounds.

width values σ from interval [0.2, 0.7] are used. Additionally,
100 task sets for each utilization factor and for each σ are
generated, which totals to 29 · 6 · 100 = 17400 task sets.

Fig. 6 shows the feasibility for each utilization factor and
for different period widths. It can be seen that, for higher σ ,
i.e., lower period range width, feasibility drops significantly.
This is to be expected as the correctness constraints are more
strict and there is less chance of finding a potentially feasible
harmonic period set.

In Fig. 7, we again show the average resulting utiliza-
tion per utilization factor assuming that the utilization of
infeasible system equals zero. Larger period range width
increases the number of feasible enumerated period sets, and
consequently utilization is higher as the task assignments
with high utilization can be discovered.

In Fig. 8, we see, that for a larger period range width,
i.e., σ = 0.2, runtime is of an order of magnitude higher
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FIGURE 5. Average runtime of the optimal assignment for different
number of distinct period values m.

FIGURE 6. Number of feasible systems for different period ranges
width σ .

than a smaller period range width. As we already mentioned,
the number of feasible solutions is higher for larger period
range width and more enumerated period sets have to be
explored. Thus, the runtime is increased. It is worth noting
that runtime graphs for σ ∈ [0.4, 0.7] cannot be distin-
guished, as they are much lower than the average runtime for
σ = 0.2.
Finally, we perform the evaluation of our optimal algorithm

with regard to the size of a task set. In the previous evaluation,
we have fixed the number of tasks in a set to 20. For the
purpose of this evaluation, we have fixed the period range
width, i.e., σ = 0.4 and the number of distinct period values,
i.e., m = 5. For Figs. 9-10, we have generated 200 task sets
for each utilization factor and for each n ∈ [20, 30, 40, 50],
which totals to 29 ·4 ·200 = 23200 task sets. Fig. 9 shows the
number of feasible task sets with regard to n. It can be seen
that, by increasing n, feasibility drops. This is the effect of
adding more period range constraints in the systems for each

FIGURE 7. Average resulting utilization for different period range width σ .

FIGURE 8. Average runtime of the optimal assignment for different
period range width σ .

task. Intuitively, it will be more difficult to find an appropriate
period assignment with a higher number of constraints. For
the same reason, the total average utilization is reduced when
n is increased as depicted in Fig. 10. For the runtime eval-
uation with regard to n, we have set the utilization factor to
Umin = 0.6 and generated 200 task sets for every fifth number
of tasks in range [20, 100], i.e., a total of 200 · 17 = 3400
task sets. In Fig. 11, the PE + OTA graph corresponds to
our optimal approach. The PE + EXH graph corresponds
to an approach which consists of the PE algorithm (Alg. 2)
and an exhaustive search of task assignments, which does
not employ utilization bounds and pruning rules devised in
section V-B2. We can see that the runtime of exhaustive
search rises exponentially with the number of tasks, which
is an expected behavior, since, at worst, time complexity is in
O(mn) (evaluation is not performed for n ≥ 70). On the other
hand, we see that the runtime of the PE+ OTA approach has
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FIGURE 9. Number of feasible systems for different number of task in
system n.

FIGURE 10. Average resulting utilization of task set for different number
of tasks in system n.

a reduced growth rate due to the usage of devised utilization
bounds and pruning rules.

C. EVALUATION IN THE CONTEXT OF EXISTING UHPA
APPROACHES
On the basis of Theorem IV.1, we know that the UHPA
problem is Turing reducible to the UDHPA problem, and
therefore we can simply employ our optimal algorithm for
UHPA instances. To solve an UHPA instance, we need to
solve the corresponding UDHPA instances for every pos-
sible number of distinct period values m, which is given
with Proposition V.3. To optimally solve an UHPA instance,
we use the PE algorithm in combination with the OTA algo-
rithm for each m. In the UHPA problem, there is no restric-
tion on the number of distinct period values. Thus, we can
use the PE algorithm with the HPF algorithm to obtain the
period assignment for each m. It is worth noting that it is
possible that, while using the HPF algorithm, some values

FIGURE 11. Average runtime of the optimal assignment for different size
of task set n.

of the enumerated period set may remain unused. However,
this is not a problem in the context of UHPA instances,
since there are no restrictions on the number of different
period values. We compare our approachwith existingUHPA
approaches in the literature, which are based on finding har-
monic projections for given task period ranges [10], [11].
The algorithms employed in these approaches are generally
of pseudo-polynomial time complexity, but in specific cases
complexity can be reduced to linear or polynomial time. The
approach in [10], referred to as forward search, consists of
two parts, namely the graph construction algorithm (GCA),
and a greedy heuristic for period assignment, which can
yield low utilization (LU) or high utilization (HU). Here,
we employ the LU heuristic as it increases the chance that
the resulting harmonic period assignment will be feasible.
The GCA part is analogous to our period enumeration part
of the algorithm. Similarly, the HPF and OTA algorithms are
counterparts to the LU heuristic. The approach from [11],
referred to as backward search, is based on the harmonic
period existence test and suboptimal heuristic period assign-
ment. Figs. 12-16 show the performance of our approach in
comparison with approaches from [10], [11]. We have gener-
ated task sets using the default task set generation parameters
from the beginning of this section.

Fig. 12 shows the number of feasible systems for different
period assignment approaches. It can be seen that the number
of feasible task sets is higher when our optimal approach
(PE + OTA) and heuristic approach (PE + HPF) are used,
than when forward search or backward search are used. The
number of feasible systems when the PE + HPF or PE +
OTA approaches are used is the same because both algo-
rithms are optimal regarding feasibility. However, the HPF
algorithm yields the solution with the lowest utilization.
More precisely, it yields the lowest utilization for the TA*
problem. As explained in section V-B1, the TA* problem
does not restrict the number of different period values in the
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FIGURE 12. Number of feasible systems for UHPA instances for different
period assignment approaches.

FIGURE 13. Average resulting utilization for different period assignment
approaches.

solution, and therefore the utilization obtained using the HPF
assignment is minimal. Fig. 13 shows the resulting utilization
for different period assignment approaches. As expected, our
optimal approach (PE + OTA) yields the highest utilization.
Moreover, the period enumeration with the HPF assignment
(PE + HPF) dominates forward search and backward search
as well.

Finally, we present the runtime results in Figs. 14-16.
In Fig. 14, it can be seen that the runtime for forward search
and backward search is at least an order of magnitude lower
than in our approach. Since the period ranges are relatively
wide, i.e., σ = 0.4, both forward and backward search are
time-efficient. Moreover, in Fig. 15, we can see that when
the number of tasks in a set is increasing, runtime is higher
for exhaustive search (PE+ EXH) and our optimal approach
(PE + OTA) than for the other approaches which cannot
be distinguished in the figure. The PE + HPF approach is

FIGURE 14. Average runtime for different period assignment approaches
w.r.t. utilization.

FIGURE 15. Average runtime for different period assignment approaches
w.r.t. size of task set.

efficient when the number of tasks is increasing, since the
time complexity of the HPF algorithm is polynomial O(n ·m)
and the time complexity of the PE algorithm does not depend
on the number of tasks in the system. However, in Fig. 16,
we can see that the runtime of approaches which employ PE
algorithm increases when the maximum period in the system
pmaxmax is increased. It is worth noting that although runtime
can be significantly higher when our optimal approach (PE
+ OTA) and the heuristic approach (PE + HPF) are used, it
is still relatively low, i.e., several milliseconds per task set.
Since period assignment in practice is typically done off-line
during the application design, this is more than acceptable.

D. NUMERICAL REAL-WORLD PERIOD ASSIGNMENT
PROBLEM
To further emphasize and explain the benefits of our
approach, we provide a numerical example of a small
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FIGURE 16. Average runtime for different period assignment approaches
w.r.t. maximum period in the system pmax

max .

TABLE 2. Task parameters for the application task set.

real-world period assignment problem. As we have already
stated in the introduction, the structure of safety-critical
control applications is modular and often each module,
i.e., task, is developed by a different application designer.
In the development process, based on the specific application
requirements, application designers provide implementations
of tasks with suggested execution rates, which are in this
paper and related literature modelled with period ranges.
It is in the interest of every application designer that their
module executes with the highest possible execution rate,
i.e., the smallest period, in order to achieve a higher quality
of service for a particular part of the application. Based on
the input from the application designers, the system designer
has to determine periods which shall be used in the system to
achieve the highest utilization, i.e., quality of service. Thus,
utilization is maximized. Table 2 shows the task set with task
parameters. Such a table is an input to the system designer.
However, due to the specific architecture of the system,
i.e., the operating system and the underlying hardware, the
system designer is restricted regarding the number of distinct
period values which can be used in the solution. In this
example, themaximumnumber of different period values is 4.
Therefore, any number of different period values smaller or
equal to mmax = 4 can be used. Table 3 shows the period val-
ues assigned to each task in the input. We can see that period
enumeration with the optimal task assignment (PE + OTA)
yields the most satisfying result, since it produces the maxi-
mal utilization and uses nomore than 4 period values. In order

TABLE 3. Assigned periods, the number of distinct period values and
resulting utilization per period assignment approach.

to achieve this, the system designer has to solve UDHPA
instances using the PE + OTA approach for m in the interval
[1,mmax = 4]. We can see that period enumeration using the
HPF algorithm (PE + HPF) also yields a satisfying result as
the number of the distinct period values is lower than mmax .
However, the utilization is lower than the value obtained using
the OTA algorithm. The forward and the backward search
do not yield satisfying results, since they do not restrict the
number of distinct period values in the solution. Moreover,
utilization factors are significantly lower than when using
both the PE + OTA and the PE + HPF approaches.

VII. CONCLUSION
In this paper, we have defined the utilization-maximizing har-
monic period assignment problem with a constrained number
of distinct period values (UDHPA). The motivation for this
problem arises from the observation of industrial control
systems in which the number of different period values is
either fixed or restricted. We have put the problem in the
context of the already studied UHPA problem and show
that the UHPA problem is Turing reducible to the UDHPA
problem. Additionally, we show that UDHPA problem is at
least weakly NP-hard. We have devised an optimal algorithm
for the UDHPA problem and showed its efficiency on a
large number of synthetically generated task sets. Moreover,
we have used the developed algorithm for solving UHPA
instances and explained the differences between our approach
and the existing approaches. The key benefit of our approach
lies in the fact that, for a large variety of synthetically gen-
erated UDHPA and UHPA instances, our algorithm is time-
efficient and optimal, and therefore more than suitable for
use in real-world system design. Furthermore, as we have
shown on a numerical example, the existing approaches are
not applicable in systemswith a restricted number of different
period values. Our future work will include the application
of our algorithm to real-world scenarios and a further theo-
retical analysis of the relation between the optimal number of
distinct period values and period ranges of tasks.
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