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ABSTRACT This paper investigates the combination of reinforcement learning and neural networks
applied to the data-driven control of dynamical systems. In particular, we propose a multi-critic actor-critic
architecture that eases the value function learning task by distributing it into multiple neural networks.
We also propose a filtered multi-critic approach that offers further performance improvements as it eases
the training process of the control policy. All the studied methods are evaluated with several numerical
experiments on multi-tank water systems with nonlinear coupled dynamics, where control is known to be
a challenging task. The simulation results show that the proposed multi-critic scheme is able to outperform
the standard actor-critic approach in terms of speed and sensitivity of the learning process. Moreover,
the results show that the filtered multi-critic strategy outperforms the unfiltered one under these same terms.
This document highlights the benefits of the multi-critic methodology on a state of the art reinforcement
learning algorithm, the deep deterministic policy gradient, and demonstrates its application to multi-tank
water systems relevant for industrial process control.

INDEX TERMS Data-driven control, approximate dynamic programming, reinforcement learning, actor-
critic methods, deep deterministic policy gradient, water-tank systems.

I. INTRODUCTION
With the recent advances in computational technologies,
reinforcement learning (RL) [1] and neural networks have
attracted considerable attention as a promising combination
for the data-driven control of dynamical systems. RL offers a
family of methods that, through trial-and-error interactions
with the dynamical system, permit the model-free tuning
of parameterized controllers. The use of neural networks,
on the other hand, offers a flexible platform to represent
such parameterized controllers for a vast range of problems.
Hence, the combination of RL and neural networks not only
endows engineers with very powerful control techniques, but
also alleviates themodel-based dependency that characterizes
most classic control methods.

In the control community, the field that studies such com-
bination is known as approximate dynamic programming
(ADP). In ADP, ideas from optimal control and function
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approximation are combined to achieve optimization-based
controllers under the model-free framework [2]–[4]. The
most common approach within the ADP family uses two
distinct neural networks, an actor and a critic, that are simul-
taneously trained through a policy iteration procedure [1], [5].
In particular, the critic is trained to approximate the value
function that solves a Hamilton-Jacobi-Bellman equation,
and the actor is trained to approximate the optimal control
policy coupled to the solution given by the critic [5]. In the RL
literature these approaches are termed as actor-critic methods,
and, therefore, we refer as such in the rest of this document.

Due to the increasing popularity of RL and neural net-
work methods, several recent works have studied actor-critic
approaches as model-free control strategies. For instance,
[6] proposes an actor-critic method for nonaffine nonlinear
systems and demonstrates its application on a torsional pen-
dulum; [7] uses a decentralized stochastic actor-critic algo-
rithm to avoid collisions within large populations of mobile
robots; and [8] proposes a hierarchical actor-critic scheme
to simultaneously learn basic and compound skills required
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for robotic navigation. Furthermore, [9] extends actor-critic
methods to the maximum entropy model-free control frame-
work, and [10] illustrates its application to challenging con-
trol problems. Finally, with the aid of deep-learning, [11] uses
recurrent neural networks as a way to achieve memory-based
controllers, and [12] uses them to transfer the control policy
from simulation to reality.

Although several extensions and modifications of actor-
critic approaches have been proposed, a common difficulty
that remains a challenge is the data inefficiency inherent to
the trial-and-error nature of RL methods. Approaches based
on hierarchical learning have demonstrated that RL agents
can benefit from more structured learning schemes, and that
breaking a complex task into smaller simpler ones can ease
the training process [8], [13]. Inspired by this last idea,
in this work we propose an actor-critic method that eases the
learning task of the critic neural network by distributing it
into multiple critics. Under this scheme, each of the multiple
critics focuses only on a certain component of the value
function, and, therefore, individually solves a problem that
is potentially simpler than the full value function approx-
imation. In that sense, note that the proposed approach is
fundamentally different from asynchronous actor-critic meth-
ods, e.g., asynchronous advantage actor-critic [14], where the
learning process is improved by means of simultaneously
training multiple instances of the same neural networks all
having the (common) full learning objective. To the best of
our knowledge, similar approaches to ours have been recently
proposed in [15], [16], and [17]. As in the present work, [15]
proposes a linear decomposition of the value function as a
way to ease its approximation. Unlike us, however, they apply
it to control problems with discrete action spaces. On the
other hand, the work of [16] proposes an actor-critic method
that trains an agent to solve various independent tasks and
uses multiple critics to achieve simultaneous training, and
the work of [17] uses multiple critics to split the learning
process into different stages and applies the method to the
stochastic actor-critic approach of [10]. In contrast, in the
present work we explore single-task multi-input multi-output
(MIMO) deterministic control problems and propose a multi-
critic architecture to extend the deterministic actor-critic
approach of [18]. Here, each output of the control system
has to satisfy a given control objective and the objectives
of all outputs have to be completed concurrently. We use
multiple critics to ease the value function approximation
in a distributed manner, and, we show that such aggregate
of multiple critics indeed approximates the original value
function without changing the learning objective. Further-
more, our multi-critic scheme not only eases the critic’s
training process, but also offers more flexibility in the way
that the actor can be trained. To demonstrate this, we pro-
pose an heuristic filtered multi-critic approach that, with the
assumption of shallow prior knowledge about the system’s
dynamics, is able to ease the actor’s training and improve
the learning process in terms of speed and sensitivity to the
change of parameters. Such a filtered multi-critic method

can be regarded as an actor-critic-attention approach, where
the attention mechanism is fixed and is set based on some
shallow prior knowledge of the system. Regarding attention-
augmented actor-critic methods, some recent related works
are the ones in [19] and [20]. Namely, the authors in [19]
propose an actor-attention-critic scheme for multi-agent rein-
forcement learning, where each agent has an actor-critic
structure and a central attention mechanism is used to select
the relevant information for each agent at every time step.
Similarly, the authors in [20] propose an actor-critic-attention
framework, where an actor-critic controller is extended with
an attention mechanism to integrate multiple sensory data.
In contrast with the previous works, in this paper the attention
mechanism is used to filter the back-propagated gradients
coming from the multiple critics, so that each output neuron
of the actor network can specialize on certain component of
the approximated value function. As mentioned above, this
filtered multi-critic scheme outperforms the unfiltered one in
various aspects.

Unlike most of the previous works in RL, where the meth-
ods have been applied to game-like or movement-oriented
problems, in this work we explore the application of RL to
industrial processes. More specifically, in this work we study
the data-driven control of multi-tank water systems. These
systems are not only relevant for industrial process control,
but are also characterized by nonlinear coupled dynamics that
difficult the design of analytic controllers under the model-
free framework. The application of RL to the control of
water-tank systems has also been studied in [21] and [22].
In particular, the authors in [21] explore the combination of
conventional data-driven control method and Q-learning for
the control of a vertical two-tank system, and the authors in
[22] consider a hierarchical control scheme where the deep
deterministic policy gradient (DDPG) algorithm of [18] is
applied to control the water-flows of an open channel system.
In contrast with the previous works, in this paper we study
the application of the proposed multi-critic schemes to the
DDPG algorithm, and through several numerical experiments
we evaluate our approaches both on a quadruple-tank process
[23] and a vertical two-tank system. Furthermore, it is worth
to highlight that our multi-critic approaches are compatible
with the methods proposed in [21] and [22]. Hence, the devel-
opments presented in this work could further extend the
aforementioned researches.

In summary, the contributions of this paper are as follows:
1) Unfiltered multi-critic method: we propose a deter-

ministic actor-critic method that distributes the value
function learning problem into multiple critics as a way
to ease the learning task.

2) Filtered multi-critic method: we further propose an
heuristic to ease the actor’s learning task as well.
Through numerical experiments, we show that this
approach offers benefits in terms of speed and sensi-
tivity of the RL training process.

3) Numerical validation: we perform several numerical
experiments on the proposed multi-tank water systems.
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We apply the multi-critic scheme on the state-of-the-art
DDPG algorithm and validate the multi-critic improve-
ments in multiple scenarios with different conditions.

The rest of this paper is organized as follows. Section II
introduces the foundations of the single-critic actor-critic
method and the DDPG algorithm. In Section III we develop
the unfiltered multi-critic approach as well as the fil-
tered multi-critic heuristic. Then, in Section IV we present
the multi-tank water systems to be studied and explain
how to apply the actor-critic approaches to such systems.
In Section V we present the numerical experiments that
validate our contributions. Finally, Section VI concludes the
paper.

II. ACTOR-CRITIC REINFORCEMENT LEARNING
In this section we introduce the main theory behind model-
free RL and actor-critic methods. As is usual in the RL
literature, we formulate the problem under the discrete-time
Markov decision process framework.

Consider a time-invariant discrete-time system with state
x = [x1, . . . , xNx] ∈ RNx , with control input u =

[u1, . . . , uNu] ∈ RNu, and with unknown stochastic dynam-
ics characterized by the transition distribution: x[k + 1] ∼
P
(
x[k + 1]

∣∣ x[k],u[k]), for all k . Moreover, consider the
discounted cost-to-go

G(k,T ) =
T∑
i=k

γ i−kC
(
x[i],u[i]

)
, (1)

where T is the time-horizon; the function C : RNx
×RNu

→

R gives the cost of executing control action u[i] in state x[i] at
time i; and γ ∈ [0, 1) is a scalar discount factor that weights
the importance of the costC(·, ·) over time, and keepsG(k,T )
finite when T = ∞. Furthermore, consider the following
assumptions.
Assumption 1 (Bounded State): There exists a finite

xmax ∈ R such that |xi[k]| ≤ xmax , for all i ∈ {1, . . . ,Nx}
and all k .
Assumption 2 (Bounded Input): There exists a finite

umax ∈ R such that |ui[k]| ≤ umax , for all i ∈ {1, . . . ,Nu}
and all k .
Assumption 3 (Bounded Cost): The cost C(x[k],u[k]) is

finite for all k .
Remark 1: Notice that Assumption 1 is satisfied by any

system with saturated states; Assumption 2 is satisfied if the
output of the controller is saturated; and, finally, Assumption
3 can be satisfied with an appropriate design of the cost
function C(·, ·).
Following, under this framework the goal is to find a feed-

back control policy that minimizes, in expectation, the dis-
counted cost-to-go G(k,T ). Namely, a feedback control law
µ : RNx

→ RNu such that

µ
(
x[k]

)
= argmin

u[k]
Eµ

[
G(k,T )

∣∣ x[k],u[k]] , ∀k, (2)

where Eµ [·| x[k],u[k]] denotes the expectation over the
closed-loop dynamics: P

(
x[k + 1]

∣∣ x[k], µ(x[k])), and is

conditioned on the current state-action pair: x[k],u[k]. In this
work, µ(·) is represented by a 2-parameterized neural net-
work µ2 : RNx

→ RNu, denoted as the actor, and is trained
to approximate the minimizer of the expectation in (2). How-
ever, given that the dynamics of the system are assumed
unknown, this expectation cannot be explicitly evaluated,
and, instead, it has to be estimated from input-output data
of the closed-loop system. For such, we define an additional
8-parameterized neural network Qµ8 : R

Nx
× RNu

→ R,
which, for all times k , seeks to approximate the following
Bellman equation:

Qµ8
(
x[k],u[k]

)
= Eµ

[
G(k,T )

∣∣ x[k],u[k]]
= C

(
x[k],u[k]

)
+ γQµ8

(
k + 1

)
, (3)

where Qµ8
(
k + 1

)
, Qµ8

(
x[k + 1], µ2(x[k + 1])

)
. This

additional network is denoted as the critic and is iteratively
trained to minimize the squared Bellman error (SBE):

SBE =
1
2

(
y− Qµ8

(
x[k],u[k]

))2

, (4)

where the target y is set to be

y = C
(
x[k],u[k]

)
+ γ Q̂µ

8̂

(
x[k + 1], µ̂

2̂
(x[k + 1])

)
.

The target networks µ̂
2̂
(·) and Q̂µ

8̂
(·, ·), with respective

parameters 2̂ and 8̂, have the exact same structure as the
actor and critic networks and are used to improve the stability
of the learning process. Note that with the aid of the target
networks, the target value y is decoupled from the parameters
that we are learning, i.e., 2 and 8. Hence, by delaying the
updates of the target networks, the target value y does not
change immediately with the updates of the main parameters
2 and 8. Consequently, the use of target networks slows
down the change of the target value y and improves the
learning performance in practice. This heuristic approachwas
first proposed in [24] and has been widely accepted in the RL
community. As in [18], in this work the parameters 2̂ and 8̂
are slowly copied from the main parameters2 and8 through
soft updates of the form

2̂ = τ2+ (1− τ )2̂, 8̂ = τ8+ (1− τ )8̂, (5)

where τ ∈ (0, 1] denotes the targets’ learning rate. Once
the expected cost under the current policy µ2(·) is estimated,
the policy can be updated to minimize such cost, and, in con-
sequence, to become a better policy. For such, the parameters
of the actor network are updated in the decreasing direction
of the action-gradient that is back-propagated from the critic
network [18], [25]. For time k that is:

∇2 ∝ ∇2µ2
(
x[k]

)
∇uQ

µ
8

(
x[k],u[k]

)∣∣∣∣
u[k]=µ2(x[k])

. (6)

Here, ∇2 ∈ RN2 contains the gradients to be applied to
the parameters of the actor network (N2 is the number of
parameters of the actor network); the matrix ∇2µ2(x[k]) ∈
RN2×Nu contains the gradients of each output of the
actor network with respect to the actor’s parameters; and
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∇uQ
µ
8(x[k],u[k]) ∈ RNu contains the gradients of the critic

network with respect to the control input u[k] = µ2(x[k]).
The critic and actor networks described above are itera-

tively updated to evaluate and improve the control policy.
This algorithm is known as deep deterministic policy gradient
(DDPG) [18], and can be seen as a form of generalized policy
iteration (GPI) [1], [5]. For the sake of clarity, Algorithm 1
summarizes the way that we use it in this work. Notice that
the input-output data experiences that are obtained through
the interaction with the system are saved in a memory buffer.
Such memory buffer allows the algorithm to resample past
experiences in the training process of the actor and critic
networks, and, in consequence, to reduce the temporal cor-
relation of the training data [24].

Algorithm 1 GPI for DDPG-Like Actor-Critic Methods
1: Initialization: start with an arbitrary initial parameter-

ized control policy µ2(·), and with an arbitrary initial
parameterized value function Qµ8(·, ·) for the actor and
the critic, respectively. Define update frequencies fµ and
fQ for the actor and critic, respectively.

2: Beginning of training episode: set k = 0 and reset the
initial state of the system.

3: while k ≤ training steps do:
4: Execute action u[k] = µ2

(
x[k]

)
+ exploration noise.

5: Store in memory: x[k], u[k], x[k + 1], C
(
x[k],u[k]

)
.

6: if mod (k, fQ) = 0 then:
7: Sample a batch B of tuples from the memory buffer.
8: Perform one step update of the critic to minimize (4)

on B.
9: Perform one step update of all the target networks

using (5).
10: end if
11: if mod (k, fµ) = 0 then:
12: Sample a batch B of tuples from the memory buffer.
13: Perform one step update of the actor using (6) aver-

aged over B.
14: end if
15: k ← k + 1
16: end while
17: If maximum number of training episodes has been

achieved, end. Else, return to step 2.

III. THE MULTI-CRITIC ACTOR-CRITIC ARCHITECTURE
In the previous section we introduced the main theory behind
actor-critic methods through the RL approach. Now, we intro-
duce the unfiltered and filtered multi-critic actor-critic archi-
tectures that depict our main contributions.

A. THE UNFILTERED MULTI-CRITIC APPROACH
Consider the case where the cost C(·, ·) is linearly separable
into Np > 1 cost-partitions. More precisely, consider a cost
C(·, ·) such that:

C
(
x[k],u[k]

)
=

Np∑
p=1

Cp
(
x[k],u[k]

)
, ∀k, (7)

where Cp : RNx
× RNu

→ R for all p ∈ P , with P =
{1, . . . ,Np}. For instance, some cost-partitions might con-
sider the error of certain components of the state with respect
to some given reference signals, and other partitions might
penalize large switches in the components of the control
input. In any case, the fact that the cost C(·, ·) can be decom-
posed into Np partitions, as in (7), allows the decomposition
of the critic network Qµ8(·, ·) into Np critic networks where
each critic focus only on one cost-partition. The following
proposition illustrates this result.
Proposition 1: LetC(·, ·) be a cost function that is linearly

separable into Np partitions as in (7). Moreover, let Qµ8(·, ·)
be a neural network approximating the expectation of the
discounted cost-to-go of (1) as in (3). Then, the network
Qµ8(·, ·) can be decomposed into Np networks as follows:

Qµ8
(
x[k],u[k]

)
=

Np∑
p=1

Qµ8p
(
x[k],u[k]

)
, ∀k, (8)

where Qµ8p : R
Nx
× RNu

→ R for all p ∈ P .
Proof: Using the cost-partitions defined in (7), the dis-

counted cost-to-go (1) can be decomposed into Np partitions:

G(k,T ) =
T∑
i=k

γ i−kC
(
x[i],u[i]

)
=

T∑
i=k

γ i−k
Np∑
p=1

Cp
(
x[i],u[i]

)
=

Np∑
p=1

T∑
i=k

γ i−kCp
(
x[i],u[i]

)
=

Np∑
p=1

Gp(k,T ),

where Gp(k,T ) =
∑T

i=k γ
i−kCp

(
x[i],u[i]

)
. If we apply this

partitioned cost-to-go in the first line of (3) and use the
linearity of expectation, then, for all times k , the network
Qµ8(·, ·) can be decomposed as

Qµ8
(
x[k],u[k]

)
= Eµ

[
G(k,T )

∣∣ x[k],u[k]]
= Eµ

 Np∑
p=1

Gp(k,T )

∣∣∣∣ x[k],u[k]


=

Np∑
p=1

Eµ
[
Gp(k,T )

∣∣ x[k],u[k]]
=

Np∑
p=1

Qµ8p
(
x[k],u[k]

)
.

Since the equality holds exactly, the sum of the Np networks
approximates the same expectation as the network Qµ8(·, ·).
Thus, the overall learning objective is unchanged. This com-
pletes the proof.

The previous result means that the expectation
Eµ
[
G(k,T )

∣∣ x[k],u[k]] can be equally approximated by the
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FIGURE 1. Representation of how the gradients are back-propagated into the actor network in an illustrative two-critic multi-critic architecture:
(a) unfiltered multi-critic, (b) filtered multi-critic. The blue (dashed) and red (dotted) lines represent network’s connections with a flowing gradient that is
exclusively associated to one of the critics. The black (solid) lines represent connections where gradients are not flowing or where the multi-critics’
gradients are mixed.

single critic Qµ8(·, ·) or by the sum of Np critics Qµ8p(·, ·).
The advantage of the later case, however, is that each
of the multiple critics focus only on some component of
the aforementioned expectation, i.e., Qµ8p

(
x[k],u[k]

)
=

Eµ
[
Gp(k,T )

∣∣ x[k],u[k]], and, in consequence, the learning
task of each of the Np critics is potentially simpler than the
learning task of the overall critic network Qµ8

(
x[k],u[k]

)
=

Eµ
[
G(k,T )

∣∣ x[k],u[k]]. Thus, our multi-critic partition can
be thought as a divide-and-conquer approach where the over-
all learning task is broken down into smaller problems, each
to be solved by an independent dedicated neural network.
Under this scheme, the p-th critic is trained to minimize the
p-th squared Bellman error (p-SBE):

p-SBE =
1
2

(
yp − Q

µ
8p

(
x[k],u[k]

))2

, (9)

where the target yp is set to be

yp = Cp
(
x[k],u[k]

)
+ γ Q̂µ

8̂p

(
x[k + 1], µ̂

2̂
(x[k + 1])

)
.

On the other hand, the actor network is trained using the same
updates of (6), but adding the back-propagated gradients that
come from the different critics. More precisely, for all k the
parameters of the actor network are updated in the decreasing
direction of the following gradient:

∇2 ∝ ∇2µ2
(
x[k]

) Np∑
p=1

∇uQ
µ
8p

(
x[k],u[k]

)∣∣∣∣
u[k]=µ2(x[k])

,

(10)

with ∇2 ∈ RN2 ; ∇2µ2(x[k]) ∈ RN2×Nu; and
∇uQ

µ
8p(x[k],u[k]) ∈ RNu, for all p ∈ P . Furthermore,

as before, the target networks are updated as in (5). As illus-
tration, Fig. 1a shows an example of the describedmulti-critic
architecture for the case when Nu = Np = 2. As we show in
the results of Section V, the introduced multi-critic method is
able to outperform the single-critic approach of Section II in
terms of speed and sensitivity of the RL training process.
Remark 2: Notice that to select the number of critics, Np,

one should consider several factors. On one hand, the cost

functionC(·, ·) must have at leastNp linearly separable terms,
so that C(·, ·) can be expressed as in (7). Hence, the number
Np depends on the considered cost function, which in turn
depends on the controlled system as well as the control
objective. Moreover, the number of critics Np provides a
trade-off between the simplicity of the cost-partitions and
the number of neural networks that must be designed and
trained. Namely, a biggerNp leads to potentially simpler cost-
partitions, but at the expense of more critic neural networks.
Clearly, this is an important issue to consider when dealing
with limited memory and processing resources.
Remark 3: It is worth mentioning that the recent work of

[26] has proposed an algorithm called multi-critic DDPG.
Nonetheless, the multiple critics in [26] are used as a form
of redundant boosting where several estimations of the same
value function are made (i.e., without any value decompo-
sition). Although our multi-critic DDPG is given the same
name as the one in [26], the two approaches are fundamen-
tally different and should not be confused. We highlight this
to avoid confusion between the acronyms used in the results
of our work and the ones used in [26].

In the following section, we propose an additional heuristic
modification to the multi-critic architecture that can lead to
further improvements regarding its training performance.

B. THE FILTERED MULTI-CRITIC APPROACH
The multi-critic scheme presented in the previous section
takes advantage of the linearly separable nature of the
cost C(·, ·), and uses a distinct neural network to approxi-
mate the expected cost-to-go of each cost-partition Cp(·, ·).
More precisely, the p-th critic seeks to approximate
Eµ

[
Gp(k,T )

∣∣ x[k],u[k]], where Gp(·, ·) is defined as in (1)
but with Cp(·, ·) instead of C(·, ·). Note that although the
training process of the multiple critics is decoupled under
this scheme, the back-propagated gradients that flow into
each output neuron of the actor network consider all of the
Np critics (see (10) and Fig. 1a). In this section we explore
whether the training performance of the actor network can be
further improved by filtering such back-propagated gradients.
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By filtering we mean that some components of the back-
propagated gradients that come from the multiple critics are
ignored. To explore this, we modify the updates of the param-
eters of the actor network so that:

∇2 ∝ ∇2µ2
(
x[k]

) Np∑
p=1

Fp∇uQ
µ
8p

(
x[k],u∗

)
, (11)

where all the shapes are the same as in (10); u∗ , µ2(x[k]);
and Fp ∈ RNu×Nu is a diagonal matrix where the (i, i)-th
element is 1 if ∂Qµ8p(x[k],u[k])/∂ui ∈ R is to be back-
propagated to the actor network, and where the (i, i)-th ele-
ment is 0 if ∂Qµ8p(x[k],u[k])/∂ui is to be ignored.
Remark 4: Notice that if Fp is set as the Nu× Nu identity

matrix for all p ∈ P , then the update in (11) becomes equal
to the one in (10).

The motivation behind this filtered multi-critic approach
is that the matrices Fp can be designed so that each output
neuron of the actor network is trained considering only certain
cost-partitions. This could be desirable in the case where the
different cost-partitions are dominated by distinct compo-
nents of the control input. For instance, consider a determin-
istic nonlinear discrete-time system: x[k+1] = f (x[k],u[k]),
where f : RNx

×RNu
→ RNx is a deterministic function that

satisfies Assumption 1. Moreover, suppose that the j-th cost-
partition is given by: Cj(x[k],u[k]) = |ri − xi[k + 1]|, for all
k , where ri ∈ R is a reference signal to be achieved by xi[·].
If f (·) is such that xi[k + 1] is mostly determined by the d-
th control input: ud [·], then the aforementioned cost-partition
Cj(·, ·) is mostly dominated by ud [k], for all k . In conse-
quence, it might be convenient to set the (d, d)-th term in Fj
equal to one, and all other diagonal elements of Fj equal to 0.
By doing so, only ∂Qµ8j(x[k],u[k])/∂ud is back-propagated
to the actor network from the j-th critic, and only the d-th out-
put neuron of the actor receives such gradient. Given that the
variance of the sum of random variables is equal to the sum of
variances plus the corresponding co-variances, by weighting
some multi-critics’ gradients with zero, the overall variance
of the summation in (11) is reduced. Clearly, such variance
reduction leads to a bias increment regarding the actor’s
minimization objective in (2). Nevertheless, the results of
Section (V) show that despite this additional bias, the filtered
multi-critic approach is able to outperform the unfiltered one
in terms of speed and sensitivity of the training process.
Remark 5: It is worth highlighting that the design of the

filteringmatricesFp requires some knowledge of the system’s
dynamics. For instance, in the previous example we assumed
that f (·) was such that xi[k + 1] was mostly determined by
ud [k] for all k . Therefore, the filtered multi-critic approach
is not fully model-free as the unfiltered one. Nevertheless,
note that the elements of the matrices Fp are either 0 or 1,
and, in consequence, although some sense of dominance of
the input-cost couplings is required, the exact values of such
couplings are not needed. Thus, the required knowledge about
the system’s dynamics is relatively shallow.

For the sake of clarity, Algorithm 2 summarizes the
implementation of the proposed multi-critic approaches, and
Fig. 1b depicts an example of the filtered multi-critic scheme
with Np = Nu = 2 and with filtering matrices given by:

F1 =

[
0 0
0 1

]
, F2 =

[
1 0
0 0

]
.

Remark 6: Note in Fig. 1b that the proposed gradient-
filtering produces a decoupling of gradients in the output
layer of the actor network. This leads to the specialization
of each of the actor’s output neurons on the minimization of
a given critic, i.e., each actor’s output neuron is trained to
minimize a distinct cost-partition.

Algorithm 2 GPI for DDPG-Like Multi-Critic Actor-Critic
Methods
1: Initialization: start with an arbitrary initial parameter-

ized control policy µ2(·), and with Np arbitrary initial
parameterized value functions Qµ8p(·, ·) for the actor and
the multiple critics, respectively. Define update frequen-
cies fµ and fQ for the actor and critics, respectively.

2: Beginning of training episode: set k = 0 and reset the
initial state of the system.

3: while k ≤ training steps do:
4: Execute action u[k] = µ2

(
x[k]

)
+ exploration noise.

5: Store in memory: x[k], u[k], x[k + 1], Cp
(
x[k],u[k]

)
for all p ∈ P .

6: if mod (k, fQ) = 0 then:
7: Sample a batch B of tuples from the memory buffer.
8: Perform one step update of each critic to minimize

(9) on B.
9: Perform one step update of all the target networks

using (5).
10: end if
11: if mod (k, fµ) = 0 then:
12: Sample a batch B of tuples from the memory buffer.
13: Perform one step update of the actor using (11)

averaged over B.
14: end if
15: k ← k + 1
16: end while
17: If maximum number of training episodes has been

achieved, end. Else, return to step 2.

IV. APPLICATION TO MULTI-TANK WATER SYSTEMS
In this work we explore the data-driven control of multi-tank
water systems as a testbed for our multi-critic approaches.
These systems, which are relevant for industrial process con-
trol, are an attractive benchmark for the multi-critic architec-
ture as they have multiple inputs and multiple outputs that are
usually characterized by nonlinear coupled dynamics. In par-
ticular, we study the data-driven control of the quadruple-
tank process benchmark of [23], and of a vertical two-tank
system inspired by the parameters of [23]. Both systems are
illustrated in Fig. 2 and in both cases the goal is to control
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the water-level heights of tanks 1 and 2 according to some
given reference signals r1[k] and r2[k], respectively.We study
the quadruple tank process as it allows a straightforward
variable adjustment in the strength of the different input-
state couplings, and, therefore, in the strength of dominance
between the different input-cost couplings. On the other hand,
we study the vertical two-tank system to further illustrate the
advantages of our multi-critic approach when the switches of
the control input are also penalized.

Following, the dynamics of the quadruple-tank process are
given by

x1[k + 1] = x1[k]+
1
A1
(−q1[k]+ q3[k]+ γ1k1u1[k]) ,

x2[k + 1] = x2[k]+
1
A2
(−q2[k]+ q4[k]+ γ2k2u2[k]) ,

x3[k + 1] = x3[k]+
1
A3
(−q3[k]+ (1− γ2)k2u2[k]) ,

x4[k + 1] = x4[k]+
1
A4
(−q4[k]+ (1− γ1)k1u1[k]) ,

while the dynamics of the vertical two-tank system are
described by

x1[k + 1] = x1[k]+
1
A1
(−q1[k]+ k1u1[k]) ,

x2[k + 1] = x2[k]+
1
A2
(−q2[k]+ q1[k]+ k2u2[k]) .

In the previous equations, xi[k] is the water level height of
the tank i at time k; Ai is the cross-section area of tank i; and
qi[k] = ai

√
2gxi[k] for all i, where ai is the cross-section area

of the outlet hole of tank i, and g denotes the acceleration
of gravity. The parameters k1 and k2 determine the flow of
water at the pumps given the input voltages u1[k] and u2[k],
respectively. For the quadruple-tank process, the parameters
γ1 ∈ [0, 1] and γ2 ∈ [0, 1] establish how the water flows are
split at the valves and determine the strength of the different
input-output couplings. Thus, for the experiments on this
systemwe evaluate different values of γ1 and γ2, but we select
such values so that γi > 0.5 for i = 1, 2. By doing so we
can deduce that x1[k + 1] is more influenced by u1[k] than
by u2[k], and, similarly, that x2[k + 1] is more influenced
by u2[k] than by u1[k]. Moreover, even though the objective
is to control only x1[k] and x2[k], in both cases we assume
that the heights of all tanks are measurable. The parameters
used for the simulation of both systems were inspired by the
benchmark of [23] and are summarized in Table 1 to stay self-
contained.

A. REINFORCEMENT LEARNING ON THE
QUADRUPLE-TANK PROCESS
To apply the RL approaches of Sections II and III on the
quadruple-tank process, we have to specify the cost C(·, ·)
to be used during the training of the actor and the critic
networks. Given that for this system the objective is to control
the x1[k] and x2[k] to track some reference signals r1[k] and

TABLE 1. Parameters of the water-tank systems.

FIGURE 2. Water-tank systems. (a) Quadruple-tank process. (b) Vertical
two-tank system.

r2[k], respectively, we can set the overall cost C(·, ·) as:

C(x[k],u[k]) = α1 |r1[k + 1]− x1[k + 1]|

+α2 |r2[k + 1]− x2[k + 1]| ,

where α1 and α2 are some non-negative scalars that weight
each term in the cost. Here we can recognize that C(·, ·) is
linearly separable into two cost-partitions. Namely:

C1(x[k],u[k]) = α1 |r1[k + 1]+ x1[k + 1]| ,

C2(x[k],u[k]) = α2 |r2[k + 1]+ x2[k + 1]| .

With the information so far we can apply both the single-
critic method of Section II and the unfiltered multi-critic
method of Section III-A to the quadruple-tank process.
To apply the filtered multi-critic method of Section III-B,
on the other hand, we need to know which input com-
ponent has the greatest influence on each cost parti-
tion. Given that γi > 0.5 for i = 1, 2, we have
that u1[k] has the greatest influence over x1[k + 1],
and that u2[k] has the greatest influence over x2[k + 1].
If we assume that we know this information, then we can
deduce that u1[k] has more influence overC1(x[k],u[k]) than
u2[k], and that u2[k] has more influence over C2(x[k],u[k])
than u1[k]. Therefore, we can design the filtering matrices as:

F1 =

[
1 0
0 0

]
, F2 =

[
0 0
0 1

]
.
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It is worth mentioning that to track the desired reference
signals r1[k] and r2[k], the state of the system has to be
extended with information regarding the tracking error. More
precisely, for the quadruple tank process we add two compo-
nents to x[k] given by x5[k] = r1[k] − x1[k], and x6[k] =
r2[k] − x2[k]. Thus, for this system we have that Nx = 6,
Nu = 2, and Np = 2.

B. REINFORCEMENT LEARNING ON THE VERTICAL
TWO-TANK SYSTEM
As with the quadruple-tank process, in this system we also
seek to track some reference signals r1[k] and r2[k] in x1[k]
and x2[k], respectively. However, in addition to that, we also
explore the penalization on switches of the control input.1 For
that, we set the cost C(·, ·) as

C(x[k],u[k]) = α1 |r1[k + 1]− x1[k + 1]|

+α2 |r2[k + 1]− x2[k + 1]|

+α3 |u1[k]− u1[k − 1]|

+α4 |u2[k]− u2[k − 1]| .

As before, αi is a non-negative scalar to weight the i-th
term of the cost. From such cost definition we can identify
several possible cost-partitions. In particular, in this work we
consider Np = 2 and set the partitions as follows:

C1(x[k],u[k]) = α1 |r1[k + 1]− x1[k + 1]|

+α3 |u1[k]− u1[k − 1]| ,

C2(x[k],u[k]) = α2 |r2[k + 1]− x2[k + 1]|

+α4 |u2[k]− u2[k − 1]| .

Furthermore, from the structure of the system (see Fig. 2b) we
can expectC1(·, ·) to bemore influenced by u1[k], andC2(·, ·)
to be more influenced by u2[k]. Thus, we set the filtering
matrices as:

F1 =

[
1 0
0 0

]
, F2 =

[
0 0
0 1

]
.

To cope with the objectives defined by the aforementioned
costs, for the vertical two-tank system we have to extend
the state x[k] with information regarding the tracking error
and the previously executed control input u[k − 1]. More
precisely, for this system we add four components to x[k]
such that x3[k] = r1[k] − x1[k], x4[k] = r2[k] − x2[k],
x5[k] = u1[k − 1], and x6[k] = u2[k − 1]. Therefore, for
the vertical two-tank system we have that Nx = 6, Nu = 2,
and Np = 2.

V. NUMERICAL EXPERIMENTS
In this section we implement both the standard and the
multi-critic actor-critic approaches on the water systems of
Section IV. For the standard actor-critic we implement the
DDPG algorithm of [18], and for the multi-critic approaches
we modify the DDPG following the guidelines of Sec-
tions III-A and III-B to turn it into the unfiltered multi-critic

1This kind of penalization has been studied before in other optimization-
based control methods as model predictive control.

DDPG (MCDDPG) and into the filtered multi-critic DDPG
(FMCDDPG), respectively. For the sake of clarity, we present
the implementation details and the simulation results in Sec-
tions V-A and V-B, respectively.

A. IMPLEMENTATION DETAILS
For all the experiments of this work, the actor neural networks
have two fully connected hidden layers with 20 neurons and
tanh activation functions. Similarly, the actors’ output layers
have 2 neurons representing the two-components of the sys-
tems’ input u[·], and have a tanh activation to bound the con-
trol actions within [−1, 1]. In the interaction with the system,
however, the outputs of the actors are scaled and shifted to be
within [umin, umax] of each system (see Table 1). The critic
networks, on the other hand, are defined under two different
schemes that seek a fair comparison among single-critic and
multi-critic approaches. Since the multi-critic approach intro-
duces an additional neural network, we do not consider totally
fair to perform the comparison against a standard actor-critic
with a single critic of the same size as the ones of the multi-
critic strategy. Therefore, we explore two schemes. In the
first scheme, used for the multi-critic approaches and for the
DDPGs tagged as small, we use critics with two hidden layers
of 40 neurons. In the second scheme, used for the DDPGs
tagged as big, we double the size of the critic’s hidden layers
to have 80 neurons. In both cases, all the hidden layers have
tanh activation functions and the output layers have a single
neuron with a linear activation. For all critics, as in [18],
the input state x[·] is received at the first hidden layer, while
the input action u[·] is received at the second hidden layer.
This is to mitigate the vanishing gradient effect in the gradi-
ents that are back-propagated to the actor network. Moreover,
all inputs to the neural networks are normalized within the
range [−1, 1] to avoid ill-conditioned feature vectors.
Remark 7: It is worth noting that the contribution of this

work is not on the specific architectures of the neural net-
works but rather on the proposed multi-critic schemes. The
aforementioned neural network sizes were selected so that
both the single-critic and multi-critic approaches were able to
achieve competitive levels of performance on the considered
systems. Nevertheless, with additional fine-tuning of hyper-
parameters, or better design of the feature vectors, it might be
possible to reduce the size of the neural networks if required.

Regarding the cost functions, in all cases we set the weight
coefficients αi so that the magnitude of each tracking error
term in the cost is bounded under 1, and each switching
penalty term in the cost is bounded under 0.5. Moreover,
given that the multi-critic approaches break the cost C(·, ·)
into Np partitions and uses each partition to train a different
critic network, the scale of the cost seen by each of the mul-
tiple critics is different than the one seen by the single-critic
of the DDPG approach (recall that the single-critic approach
uses the sum of all cost-partitions). As has been discussed
in [27], the scale of the cost (reward) signal might affect the
performance of the learning algorithm. Hence, to isolate this
variable, we train the single-critic DDPGs using both the sum
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and the mean over cost-partitions. We tag these agents as sum
and mean, respectively.

In this work, all the neural networks are implemented in
Python with the Tensorflow deep-learning framework [28].
For all experiments, we train the agents over 1500 episodes
of 400 and 200 steps of 1s for the quadruple-tank process
and the vertical two-tank system, respectively. Furthermore,
we repeat all training procedures for 5 different random seeds
as a way to measure reproducibility. For all cases we set the
discount factor γ in (1) as 0.99, we use the Adam optimizer
[29] with a learning rate of 0.001 for both the actor and
critic networks, and we set the targets’ learning rate τ to
be 0.001. Regarding the parameters of Algorithms 1 and 2,
we set the batch size |B| to be 128, we set the maximum
size of the memory buffer as 20000, and we set the update
frequencies fQ and fµ such that the critic and actor are updated
10 and 1 times per episode, respectively. That way the critic
networks are trained faster than the actors and thus provide
more accurate gradients. Moreover, in all cases we clip the
critics’ targets Q̂µ

8̂
(·, ·) within [−10, 10] to mitigate over-

confident bootstrapped estimates. Lastly, for the exploration
noise we use a Ornstein-Uhlenbeck random process [30] with
θ = 0.15 and with σ linearly annealed from 0.15 to 0.06 over
the training episodes.

B. SIMULATION RESULTS
In order to evaluate the performance of the different actor-
critic algorithms, we save the partial control policies obtained
after every 100 episodes of training, and evaluate each of
them on a fixed set of 50 randomly selected episodes2 of
300s. The initial conditions of such 50 evaluation episodes
are sampled randomly from a finite set of initial conditions
that are distributed over a wide region of the possible water-
levels of the tanks. Moreover, the desired reference levels of
the controlled tanks are selected to ensure their attainability,
i.e., to guarantee that the desired reference levels are feasible.
Unless stated otherwise, the evaluation is performed under the
cost (1) averaged over the set of 50 episodes. As an illustra-
tion, Fig. 3 depicts the training performance of all the actor-
critic approaches applied to an instance of the quadruple-
tank process with γ1 = γ2 = 0.6. The solid lines show
the mean performance taken over the random seeds and the
shadows depict its standard deviation over the different seeds.
Fig. 3a shows that with 1500 training episodes, the single-
critic architectures with small critics cannot match the mean
performance of the multi-critic approaches. Furthermore,
the performance of the single-critic architectures has far more
variance than the one of the multi-critic approaches. Fig. 3b,
on the other hand, presents the comparison against the single-
critic approaches with doubled critic’s sizes. In this case we
observe that, at the end of training, the DDPG under the
sum cost-scheme is able to match the mean performance of

2For reproducibility and comparison purposes, the precise settings of
the 50 evaluation episodes used to test our approaches are available
online at (copy and paste the link): https://drive.google.com/drive/folders/1-
UwYgXWXMtq6hzmHsbvxIR9hDN_OFeYb?usp=sharing.

FIGURE 3. Evaluation of the trained control policies at different training
episodes. (a) Comparison of multi-critic approaches against DDPGs with
small critics. (b) Comparison of multi-critic approaches against DDPGs
with big critics.

themulti-critic ones. Nonetheless, themulti-critic approaches
display a faster performance improvement in terms of the
number of training episodes. Similarly, if we compare the
training performance of the unfiltered multi-critic against
the filtered one, we see that the FMCDDPG outperforms
the MCDDPG in terms of such learning speed. We attribute
such improvement to a better credit assignment provided by
the filters applied to the gradients that are back-propagated
from the multiple critics. Namely, with the aid of such filters,
the back-propagated gradients received by each output neu-
ron of the actor network consider only certain component of
the approximated value function. Thus, in the filtered case,
each output neuron of the actor network is not only able to
specialize on a particular component of the approximated
value function (c.f., Remark 6), but is also less affected by the
performance of the other output neurons of the actor network.
Therefore, the applied filters play the role of an attention
mechanism that, for the considered multi-tank systems, leads
to a better learning performance both with respect to the
single-critic and unfiltered multi-critic approaches.

To further validate the previous results, we repeat the
training-testing procedure of Fig. 3 for various instances of
the quadruple-tank process with different values of γ1 and
γ2. In particular we use 4 symmetric values with γ1 = γ2,
ranging from 0.6 to 0.9, and an additional asymmetric one
with γ1 = 0.9 and γ2 = 0.6. We select such values in order
to test the methods under different strengths of the input-
output couplings, while considering only minimum phase
instances of the system.3 The results of these experiments are
summarized in the bar-plots of Fig. 4a. The top bar-plots show
the cumulative cost over the partial policies of the training
procedure (i.e., the cost under the curves of Fig. 3 but for the
corresponding system’s instances). Since the performance at
episode 0 is the same for all experiments, what these plots
seek to measure is the speed of learning over the training
episodes. The bottom bar-plots, on the other hand, evaluate
the final control policies that result at the end of each training
procedure. The evaluation in this case is performed under

3We leave the study of the non-minimum phase case for future work as it
involves additional difficulties that are out of the scope of this research.

VOLUME 8, 2020 173235



J. Martinez-Piazuelo et al.: Multi-Critic RL Method

FIGURE 4. Summary of training (top) and final (bottom) performances for: (a) different instances of the quadruple-tank process, (b) different
cost-schemes in the vertical two-tank system. The evaluation cost does not consider the 1u[k] = |u[k]− u[k − 1]| terms. This ensures a
comparable metric for both experiments of (b).

the average final mean absolute error metric. This metric is
defined as the average over the 50 evaluation episodes, and
over the control policies obtained with the 5 different random
seeds, of the mean absolute error (MAE) at the final time step
k = T = 300s of each evaluation episode. TheMAE[·] in this
case is defined as:

MAE[k] =
1
2

∣∣r1[k]− x1[k]∣∣+ 1
2

∣∣r2[k]− x2[k]∣∣, ∀k.
The results of Fig. 4a show that the multi-critic approaches

not only achieve, on average, the smallest cumulative costs,
but also are the only ones that consistently achieve low final
tracking errors across all instances of the quadruple-tank pro-
cess. This is an important result as it displays an improvement
in training speed and sensitivity to change in parameters when
compared to the single-critic methods. Regarding the differ-
ent variants of the single-critic approach, from the results
of Fig. 4a we cannot establish a significant trend as all of
the single-critic agents display high variance. In contrast,
we do recognize that the filtered multi-critic outperforms
the unfiltered one in all cases. Note that although both of
the multi-critic approaches are able to achieve low tracking
errors, the FMCDDPG achieves the best average performance
in the least number of training episodes and with the least
variance in all cases.

To illustrate the closed-loop performance that is achieved
at the end of training of the studied actor-criticmethods, Fig. 5
shows a set of MAE[k] trajectories, with 0 ≤ k ≤ 300,
for different evaluation episodes, different random seeds and
different instances of the quadruple-tank process. Figs. 5a and
5b display the results regarding the DDPG small-sum and
FMCDDPG agents, respectively. Clearly, the FMCDDPG
achieves a better controller more consistently, as it is able to
bring the errors close to zero in all cases. As was expected

FIGURE 5. MAE[k] trajectories, with 0 ≤ k ≤ 300, for different evaluation
episodes, different random seeds and different instances of the
quadruple-tank process. (a) Final policy of the DDPG (small-sum).
(b) Final policy of the FMCDDPG.

from the results of Fig. 4a, the final errors tend towards zero
but does not achieve zero. An interesting future work might
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focus on the addition of integral action as a way to guarantee
such zero-error at the steady state.

In order to validate the previous results on a different
system, we implement all the studied actor-critic strategies
on the vertical two-tank system as well. In this case, how-
ever, we test two different cost schemes with and without
the penalization in the switches of the control input (i.e.,
penalizing or not the 1u[k] = |u[k] − u[k − 1]| terms in
the cost). As shown in Fig. 4b, the multi-critic approaches
are again the ones with the fastest average learning speeds
in all the experiments. Moreover, the filtered multi-critic
strategy outperforms the unfiltered one in both cases. Here,
we observe that the addition of the1u[k] terms does produce
a significant drop in performance for all strategies besides the
FMCDDPG. We have found that the addition of the 1u[k]
term in the cost is a practical way to avoid large switches
in the control policies of RL agents. Therefore, an algorithm
robust to the addition of such term is an attractive approach
for a vast range of RL-based control applications, and, as is
shown in the bottom of Fig. 4b, the FMCDDPG does not
display a significant drop in training performance when the
1u[k] terms are included.

VI. CONCLUDING REMARKS
In this paper we have demonstrated the application of
neural-network-based controllers to the model-free control of
multi-tank water systems with unknown nonlinear dynamics.
We have proposed an unfiltered multi-critic RL method that
is able to consistently outperform the standard single-critic
approach in all our studied systems. Furthermore, we have
proposed a filtered multi-critic method which, with the
assumption of shallow prior knowledge about the system’s
dynamics, is able to improve the training performance beyond
the former multi-critic approach. It is worth to highlight that
the proposed multi-critic schemes do not change the structure
of the actor network, and, therefore, do not increase the
controller complexity compared to the one of the standard
single-critic method.

Future work should focus on the application of the multi-
critic architectures to different systems and different cost
schemes, and on the exploration of how to further improve
the data efficiency of the multi-critic training process so that
online training implementations could be feasible on modern
cyber-physical systems.
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