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ABSTRACT In traditional spread-spectrum techniques, a wideband transmit signal is obtained by modu-
lating a wideband carrier by a narrowband signal containing a relatively low-rate message. In the receiver,
the respective demodulation/despreading restores the information-carrying narrowband signal. In this paper,
we introduce an alternative approach, where the low-rate information is encoded directly into a wideband
waveform of a given bandwidth, without physical ‘‘spreading’’ of the carrier’s frequency. The main
advantages of this approach lie in extended options for encoding the information, and in retaining a
reversible control over the temporal and amplitude structures of the modulating wideband waveforms.
Significant ‘‘excess bandwidth’’ (over that needed to carry the information) enables us to use allpass filters
to manage statistical properties and time-domain appearances of these waveforms without changing their
spectral composition. For example, a mixture of transmitted waveforms can be shaped as a low-crest-
factor signal (e.g. to reduce the burden on the power amplifier), and/or made statistically indistinguishable
from Gaussian noise (e.g. for covert transmissions and physical layer steganography), while the selected
components of the received waveform can be transformed into high-crest-factor pulse trains suitable for
multiplexing and/or low-SNR communications. Further, control over the temporal and amplitude structures
of widebandwaveforms carrying low-rate information enables effective use of nonlinear filtering techniques.
Such techniques can be employed for robust real-time asynchronous extraction of the information, as well
as for separation of wideband signal components with identical spectral content from each other. This can
facilitate development of a large variety of low-SNR and covert communication configurations.

INDEX TERMS Aggregate spread pulse modulation, covert communications, hard-to-intercept communi-
cations, low-power communications, intermittently nonlinear filtering, physical layer, pileup effect, spread
spectrum, steganography.

I. INTRODUCTION
The additive white Gaussian noise (AWGN) capacity C of
a channel operating in the power-limited regime (i.e. when
the received signal-to-noise ratio (SNR) is small, SNR �
0 dB) can be expressed as C ≈ P̄/(N0 ln 2), where P̄ is
the average received power and N0 is the power spectral
density (PSD) of the noise [1]. This capacity is linear in power
and insensitive to bandwidth and, therefore, by spreading
the average transmitted power of the information-carrying
signal over a large frequency band, the average PSD of the
signal could be made much smaller than the PSD of the
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noise. This would ‘‘hide’’ the signal in the channel noise,
making the transmission covert and insensitive to narrowband
interference.

Various techniques to achieve such ‘‘spreading’’ are
commonly referred to as spread-spectrum. These include
such well known approaches as frequency-hopping spread
spectrum (FHSS) and direct-sequence spread spectrum
(DSSS) [2], [3], as well as chirp spread spectrum (CSS) [4],
[5]. Within these techniques, a narrowband signal in the
transmitter modulates a carrier that spans a wide frequency
range. In the receiver, the respective demodulation, combined
with despreading, is used to produce the information-carrying
narrowband signal. Thus, even though the total SNR of
the wideband transmitted signal can be low, obtaining the
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information about the carrier enables us to detect the pres-
ence of a narrowband signal through spectral measurements.
For example, the FHSS is widely used in legacy military
equipment for low-probability-of-intercept (LPI) communi-
cations. However, using frequency hopping for covert com-
munications is nearly obsolete today, since modern wideband
software-defined radio (SDR) receivers can capture all of
the hops and put them back together (J. E. Gilley, personal
communication, Feb. 9, 2020).

In DSSS, a wideband unit-power pseudorandom sig-
nal, known as a spreading sequence, is modulated by a
narrow-band information-carrying signal of a given power.
After demodulation/despreading in the receiver, the origi-
nal information-carrying signal is restored. However, such
demodulation requires precise synchronization, which is
perhaps the most difficult and expensive aspect of a DSSS
receiver design. Also, while despreading cannot be performed
without the knowledge of the spreading sequence by the
receiver, the spreading code by itself may not be usable to
secure the channel. For example, linear spreading codes are
easily decipherable once a short sequential set of chips from
the sequence is known. To improve security, it would be
desirable to perform a ‘‘code hopping’’ in a manner akin
to the frequency hopping. However, synchronization can be
an extremely slow process for pseudorandom sequences,
especially for large spreading waveforms (long codes), and
thus such DSSS code hopping may be difficult to realize in
practice.

In the power-limited regime, we would normally use
binary coding and modulation (e.g. binary phase-shift key-
ing (BPSK) or quadrature phase-shift keying (QPSK)) for the
narrow-band information-carrying signal, and this signal will
be significantly oversampled to enable wideband spreading.
Thus an idealized narrow-band information-carrying signal
that is to be ‘‘spread’’ can be viewed as a discrete-level
signal that is a linear combination of analog Heaviside unit
step functions [6] delayed by multiples of the bit duration.
Such a signal would have a limited bandwidth and a finite
power. Since the derivative of the Heaviside unit step function
is the Dirac δ-function [7], the derivative of this idealized
signal will be a ‘‘pulse train’’ that is a linear combination of
Dirac δ-functions. This pulse train will contain all the infor-
mation encoded in the discrete-level signal, but it will have
infinitely wide bandwidth and infinitely large power. Both the
bandwidth and the power can then be reduced to the desired
levels by filtering the pulse train with a lowpass or bandpass
filter. As discussed in Section II, if the time-bandwidth prod-
uct (TBP) of the filter is sufficiently small so that the pulses
in the filtered pulse train do not overlap, these pulses will still
contain all the intended information. Such an approach is the
basis for various ‘‘impulse,’’ ‘‘carrier-free,’’ and ‘‘baseband’’
communication and radar systems which are collectively
referred to as ‘‘ultra wideband’’ (UWB) [8].

Relaxing the current technical (and mostly regulatory) lim-
itations imposed on the term ‘‘UWB’’ (e.g., that the emitted
signal bandwidth exceeds the lesser of 500 MHz or 20% of

the arithmetic center frequency [9]), the UWB concept can be
extended to a pulsed signal in any provided frequency band.
For instance, a baseband pulse train confined to a given phys-
ical band can be used for modulation of a single-frequency
carrier. Then the relative bandwidth of the resulting transmit
signal can be made arbitrary ‘‘wide’’ (e.g. larger than 20%
of the carrier frequency) or ‘‘narrow’’ (e.g., <1%). If the
pulse repetition rate in such a train is much smaller than
its bandwidth, then such an approach can be considered a
‘‘spread-spectrum technique.’’

On the one hand, transmitting low-rate information by
a wideband pulsed waveform (pulse train) has an apparent
appeal of no need for despreading: After demodulation, one
can simply ‘‘capture’’ the pulses (e.g. their amplitudes, polar-
ities, and/or interarrival times) to obtain the encoded infor-
mation. On the other hand, at first glance such a pulse train is
not suitable for use as a modulating signal in practical com-
munication systems, especially for covert communications.
Indeed, let us consider a pulse train with a given average pulse
rate and power. The average PSD of this train can be made
arbitrary small, since it is inversely proportional to the band-
width. However, the peak-to-average power ratio (PAPR) of
such a train would be proportional to the bandwidth, making
the wideband signal extremely impulsive (super-Gaussian).
This leads to several considerable challenges in adapting such
a signal to covert transmissions. Firstly, a high crest factor of
the pulse train can put a serious burden on the transmitter
hardware, potentially making this burden prohibitive (e.g. for
PAPR > 30 dB). Secondly, the high-PAPR structure of this
waveform makes it easily detectable in the time domain by
a large variety of techniques [8], even at very low signal-
to-noise ratios (SNRs), seemingly making it unsuitable for
covert communications. Thirdly, it may appear that shar-
ing the wideband channel by multiple users would require
explicit allocation of the transmit and/or pulse arrival times
for each sub-channel, which would be impractical in most
cases.

Favorably, the temporal and amplitude structure of a wide-
band pulse train is modifiable by linear filtering, and such
filtering can convert a high-PAPR train into a low-PAPR sig-
nal, and vice versa. Therefore, as detailed in this paper, such
PAPR-modifying filtering enables us to use pulsed wave-
forms for low-SNR covert communications. Fig. 1 provides
a simplified illustration of such an approach. The designed
digital pulse sequence is a ‘‘pulse train’’ x̂[k] with only some
of the samples having non-zero values:

x̂[k] =
∑
j

Jk = kjKAj, (1)

where kj is the sample index of the j-th pulse, Aj is its
amplitude, and the double square brackets denote the Iverson
bracket [10]

JPK =

{
1 if P is true
0 otherwise,

(2)
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FIGURE 1. Using pulse trains for low-SNR communications: Large-TBP pulse shaping (i) ‘‘hides’’ pulse train, obscuring its temporal and amplitude
structure, and (ii) reduces its PAPR, making signal suitable for transmission. In receiver, pulse train is restored by matched large-TBP filtering. High PAPR
of restored pulse train enables low-SNR messaging. To make link more robust to outlier interference and to increase apparent SNR, analog-to-digital
conversion in receiver can be combined with intermittently nonlinear filtering.

where P is a statement that can be true or false. The ampli-
tudes of the pulses Aj in such a pulse train, and/or the
time intervals kj − kj−1 between the pulses, can encode the
intended information. For example, the ‘‘equidistant’’ train

x̂[k] =
∑
j

Jk = jN K (−1)bj , (3)

where N is the distance between pulses and bj is either ‘‘0’’
or ‘‘1,’’ can encode the binary sequence (b1b2 . . . bj . . . ). The
PAPR of such a pulse train is equal to N , PAPR = N , and it
will be high when only a small fraction of the samples has
non-zero values (i.e. N � 1).
We can ‘‘re-shape’’ the designed pulse train x̂[k] by linear

filtering:

x[k] = (x̂ ∗ w)[k] =
∑
j

Aj w[k − kj], (4)

where w[k] is the impulse response of the filter and the aster-
isk denotes convolution. The filter w[k] can be, for example,
a lowpass filter with a given bandwidth (smaller or equal
to the Nyquist rate of the designed digital pulse sequence).
As discussed in Section II, when this filter has a sufficiently
large TBP, most of the samples in the reshaped train x[k]
will have non-zero values, and x[k] will have a much smaller
PAPR than the designed sequence x̂[k]. As illustrated in
Fig. 1, in addition to reducing the PAPR of the signal and
making it suitable for modulating the carrier, large-TBP pulse
shaping in the transmitter can ‘‘hide’’ the pulse train, obscur-
ing its temporal and amplitude structure.

In contrast to other modulation techniques, large-TBP
pulse shaping does not attempt to avoid intersymbol inter-
ference (ISI). As we demonstrate throughout the paper, quite
the opposite is true: Intentionally increasing the ‘‘interpulse
interference’’ in the modulating waveform carries multiple
utilities. In addition to enhancing security of communications

and enabling various ‘‘layered’’ and multi-user configura-
tions, these include relaxed power amplifier requirements and
increased resistance to non-Gaussian noise. As the time dura-
tion of the pulse shaping filter extends over multiple inter-
pulse intervals, the instantaneous amplitudes and/or phases
of the resulting waveform [11] are no longer representative
of individual pulses. Instead, they are a ‘‘piled-up’’ aggregate
of the contributions from multiple ‘‘stretched’’ pulses. Thus
modulation with such a waveform may be referred to as
Aggregate Spread Pulse Modulation (ASPM).

In the receiver, the demodulated signal is filtered by a
large-TBP filter matched to the pulse shaping filter in the
transmitter. Such filtering restores the distinct high-PAPR
structure of the pulse train, without respective increase in
the PAPR of the uncorrelated noise, facilitating detection
of pulses even at low SNRs. For example, in Fig. 1 the
received signal and noise powers are equal to each other (0 dB
SNR in baseband). However, after the matched filtering the
temporal and amplitude structure of the ‘‘noisy’’ high-PAPR
pulse train becomes clearly apparent and comparable with
that of the designed ‘‘ideal’’ pulse train. Further, to make this
link more robust to outlier interference and to increase the
baseband SNR, analog-to-digital conversion in the receiver
can be combined with intermittently nonlinear filtering (INF)
described in [12], [13] and in Section V.
Subsequently, we interchangeably employ continuous-time

(analog) and discrete (digital) representations for time-varying
quantities. We use the analog representation of a signal x(t)
when there are no explicit constraints on its bandwidth.When
a discrete (digital) representation x[k] is used, it is assumed
that x(t) is band-limited, and it is appropriately sampled
so that x(t) is completely determined by x[k]. Throughout
the paper, while keeping some parts of the presentation
rather abbreviated, we attempted to provide sufficient amount
of detail required for further practical development of this
approach.
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II. SCRAMBLING AND PAPR CONTROL UTILITY OF
PILEUP EFFECT
A pulse train x(t) can be viewed as a sum of pulses with the
same shape (impulse response) w(t), same or different ampli-
tudes Aj, and distinct arrival times tj: x(t) =

∑
j Ajw(t − tj).

When the width of the pulses in a train becomes greater than
the distance between them, the pulses begin to overlap and
interfere with each other. This is illustrated in Fig. 2: For the
same interarrival times, the pulses in the sequence consisting
of the narrow pulses w(t) remain separate, while the wider
(more ‘‘spread out’’) pulses g(t) are ‘‘piling up on top of each
other.’’ In this example, g(t) is obtained by filtering w(t) with
an allpass filter (consisting of 6 cascaded biquad sections),
and thus the PSDs of the pulse sequences are identical. How-
ever, the ‘‘pileup effect’’ causes the temporal and amplitude
structures of these sequences to be substantially different. For
a random pulse train, when the ratio of the bandwidth and
the pulse arrival rate becomes significantly smaller than the
TBP of a pulse, the pileup effect causes the resulting signal to
become effectively Gaussian [14, e.g.], making it impossible
to distinguish between the individual pulses.

Indeed, let x̂(t) be an ‘‘ideal’’ pulse train: x̂(t) =∑
j Ajδ(t − tj), where δ(x) is the Dirac δ-function [7]. The

moving average of this ideal train in a boxcar window of
width 2T can be represented by the convolution integral

x(t) =
∫
∞

−∞

ds
θ (t + T )− θ (t − T )

2T
x̂(t − s), (5)

where θ (x) is the Heaviside unit step function [6]. At any
given time ti, the value of x(ti) is proportional to the sum of Aj
for the pulses that occur within the interval [ti − T , ti + T ].
Then, if the amplitudesAj and/or the interarrival times tj+1−tj
are independent and identically distributed (i.i.d.) random
variables with finite mean and variance, it follows from the
Central Limit Theorem [15, e.g.] that the distribution of x(ti)
approaches Gaussian for a sufficiently large interval [−T ,T ].

If we replace the boxcar weighting function in (5) with an
arbitrary moving window w(t), then (5) becomes a weighted
moving average

x(t) =
∫
∞

−∞

ds w(t) x̂(t − s) = (x̂ ∗ w)(t) =
∑
j

Ajw(t − tj),

(6)

which is a ‘‘real’’ pulse train with the impulse response w(t).
If w(t) is normalized so that

∫
∞

−∞
ds w(s) = 1, w(t) is an

averaging (i.e. lowpass) filter. Then, if w(t) has both the
bandwidth and the TBP similar to that of the boxcar pulse
of width 2T , the distribution of x(ti) would be similar to that
of x(ti) (e.g. Gaussian for a sufficiently large T ).

A. PAPR CONTROL BY LARGE-TBP PULSE SHAPING
There are various ways to define the ‘‘time duration’’ and the
‘‘bandwidth’’ of a pulse [8, e.g.]. This can lead to a significant
ambiguity in the definitions of the time-bandwidth products
(TBPs), especially for waveforms with complicated temporal

FIGURE 2. Illustration of pileup effect: When ‘‘width’’ of pulses becomes
greater than distance between them, pulses begin to overlap and
interfere with each other. For pulses with same spectral content, PSDs of
pulse sequences are identical, yet their temporal and amplitude
structures are substantially different.

FIGURE 3. Transmitter waveform is constructed as sum of scaled and
time-shifted large-TBP pulses. In receiver, IIR allpass filter recovers
small-TBP pulse train.

structures and/or frequency responses. For example, while
compact support cannot be simultaneously achieved for the
temporal and the spectral power densities of any pulse, the
standard deviations, σt and σf , of these power densities can
be used as measures of their width [16], [17]. Then, e.g., the
TBP of a pulse can be defined as TBP = 4πσtσf ≥ 1, with
the equality (the smallest TBP = 1) achieved for a Gaussian
pulse. However, in the context of a PAPR control function
of the pileup effect, our main concern is that the change in
the TBP occurs only due to the change in the temporal struc-
ture of a filter, without the respective change in its spectral
content. In this case, a change in the PAPR of a pulse is
indicative of the change in its ‘‘sharpness’’ (or ‘‘resolution’’)
in the time domain, and the reciprocal of the PAPR can serve
as a measure of the time duration of the pulse.
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FIGURE 4. Using large-TBP filtering and pileup effect for PAPR control and obfuscation of temporal and amplitude
structure of pulsed waveforms. In transmitter, pulse shaping with large-TBP filter reduces crest factor of pulse train,
making it appear sub-Gaussian or effectively Gaussian. In receiver, signal’s distinct temporal and amplitude structure is
restored.

For a single pulse w(t), its PAPR can be expressed as

PAPRw =
max

(
w2(t)

)
1

T2−T1

∫ T2
T1

dt w2(t)
, (7)

where the interval [T1,T2] includes the effective time support
of w(t). Then for filters with the same spectral content but
different impulse responses w(t) and g(t), the ratio of their
TBPs can be expressed as the reciprocal of the ratio of their
PAPRs,

TBPg
TBPw

=
max

(
w2(t)

)
max

(
g2(t)

) = PAPRw
PAPRg

, (8)

where the PAPRs are calculated over a sufficiently long time
interval [T1,T2] that includes the effective time support of
both filters. Note that from (8) it follows that, among all
possible pulses with the same spectral content, the one with
the smallest TBP will contain a dominant large-magnitude
peak. Hence any reasonable definition of a finite TBP for a
particular filter with a given frequency response allows us to
obtain comparable numerical values for the TBPs of all other
filters with the same frequency response, regardless of their
temporal structures.

There are multiple ways to construct pulses with identi-
cal spectral compositions (and thus identical autocorrelation
functions) yet significantly different TBPs. For example, the
autocorrelation function of an impulse response of any all-
pass filter is the Dirac δ-function. Therefore, given a ‘‘seed’’
small-TBP pulse with finite (FIR) or infinite (IIR) impulse
response w(t), a large-TBP pulse with the same spectral
content can be ‘‘grown’’ from w(t) by applying a sequence
of IIR allpass filters that leave the PSD of the seed pulse
unmodified [18, e.g.]. Then an FIR filter for pulse shaping in
the transmitter can be obtained by (i) ‘‘spreading’’ w(t) with

an IIR allpass filter, (ii) truncating the pulse when it suffi-
ciently decays to zero, and (iii) time-inverting the resulting
waveform. Applying the same sequence of IIR allpass filters
in the receiver to this waveform will produce the matched
filter w(−t) to the original seed pulse.
In the example of Fig. 3, the transmitter waveform is

a ‘‘piled-up’’ sum of thus constructed large-TBP pulses
(obtained by ‘‘spreading’’ w(t) with the allpass filter ĝ(t)),
scaled and time-shifted. In the receiver, the IIR allpass filter
g(t) (here consisting of 21 cascaded biquad allpass sections)
recovers the underlying high-PAPR pulse train. Fig. 4 further
illustrates how the pileup effect can be used to obscure (e.g.
to mimic as Gaussian or sub-Gaussian) a large-PAPR (super-
Gaussian) transmitted signal, while fully recovering its dis-
tinct temporal and amplitude structure in the receiver.

In Fig. 4, the first pulse shaping filter has a ‘‘narrow,’’
small-TBP impulse responsew[k]. The impulse response (w∗
ĝ)[k] of the second filter has about 20 times larger TBP, and
it approximately ‘‘fills’’ one interpulse interval. The impulse
response (w ∗ ĥ)[k] of the third pulse shaping filter spans
several interpulse intervals. After shapingwithw[k], the pulse
train remains highly impulsive, or super-Gaussian, and is
suitable neither for modulation nor covert communications.
After shaping with the second filter, the PAPR becomes about
20 times smaller, and the signal is sub-Gaussian. However,
the individual pulse shapes are still mostly apparent in the
time domain, and the signal is less ‘‘covert’’ than we might
like. After the third filter, the waveform is effectively Gaus-
sian, and it is impossible to distinguish between the individual
pulses. While the PAPR of this aggregate waveform is larger
than that of the sub-Gaussian signal (as can be seen from the
normal probability plots shown in the lower left corner), it is
not a serious practical limitation when using it for modulating
a carrier. The relatively rare outliers in the modulating signal
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can simply be ‘‘clipped,’’ without having much effect on the
restored pulse train.

The seed w(t) used in Figs. 3 and 4 is an FIR root-raised-
cosine (RRC) filter, and thus (w∗w)(t) is a raised-cosine (RC)
pulse [19, e.g]. While TBPs of RC pulses are generally larger
than those of a Gaussian or a Bessel pulse, compact frequency
support of RC filters is appealing for communication appli-
cations. The TBPs of these filters remain relatively small for
large roll-off factors (e.g., TBP . 1.5 for 1/3 . β ≤ 1), and
in the subsequent simulations and numerical examples we use
FIRRCpulseswith the roll-off factorβ = 1/2 (TBP ≈ 1.27).

III. PULSED WAVEFORMS FOR LOW-SNR AND COVERT
COMMUNICATIONS
Let us consider a pulse train consisting of pulses with a given
TBP and bandwidth 1B, and with the average pulse arrival
rate R. When R is sufficiently low, e.g. R� 1B/TBP,
pileup is negligible. As follows from the discussion in
Section II, the PAPR of such a pulse train will be inversely
proportional to the pulse rate, PAPR ∝ R−1. Then, for a pulse
train with a given bandwidth and average power, by reducing
the pulse arrival rate the pulses can be made arbitrarily large
and easily detectible even at low SNR. On the other hand,
for a small PAPR and/or obfuscation of the temporal and
amplitude structure of a pulsed waveform, pileup needs to
be sufficiently strong. For that, for a given rate R and band-
width1B, the TBP of the pulses needs to be sufficiently large,
e.g. TBP & 1B/R.
For the designed pulse train x̂(t) =

∑
j Ajδ(t − tj), the

waveforms xw(t) =
∑

j Ajw(t − tj) and xg(t) =
∑

j Ajg(t − tj)
can be obtained by filtering x̂(t) with filters having dif-
ferent impulse responses w(t) and g(t), but the same fre-
quency response and bandwidth 1B. Then xw(t) would be
a high-PAPR waveform suitable for messaging at a given
SNR < 0 dB, while xg(t) would be a low-PAPR or effectively
Gaussian ‘‘covert’’ waveform, when

TBPw
R
1B
� SNR < 1 . TBPg

R
1B

. (9)

Thus using a link with a given bandwidth 1B for covert
low-SNR communications would be mainly limited by the
practically obtainable value of TBPg. For example, for TBPw
of order unity and SNR = −20 dB, the ratio R/1B would
need to be smaller than approximately −30 dB and, conse-
quently, TBPg & 30 dB.
For effective use of large-TBP pulse shaping for conversion

of a high-PAPR pulse train with a distinct, super-Gaussian
temporal and amplitude structure into an effectively Gaussian
signal, the pulse train needs to be randomized. This can be
accomplished by randomizing the amplitude of the pulses
in the train, their arrival times, or both. The ways in which
the pulse train is randomized affect the ways in which the
information can be encoded and retrieved. For example, if the
timing structure of the pulse train is known, synchronous
pulse detection can be used. Otherwise, one may need to

FIGURE 5. PAPR for train of equal-magnitude RC pulses separated by
Np � Ns is equal to PAPR of single pulse calculated on interval
[−Np/2,Np/2].

FIGURE 6. AWGN SNR limits for different BER as functions of samples
between pulses for raised-cosine pulses with β = 1/2 and Ns = 2.

employ asynchronous pulse detection (e.g. the pulse counting
discussed in Section V).

A. SYNCHRONOUS PULSE DETECTION
Let us consider a pulse train consisting of pulses with
the bandwidth 1B and a small TBP, so that a single
large-magnitude peak in a pulse dominates, and assume that
the arrival rate R of the pulses is sufficiently small so that
pileup is negligible (e.g. R � R0 =

1
21B/TBP). When the

arrival time of a pulse with the peak magnitude |A| is known,
the probability of correctly detecting the polarity of this pulse
in the presence of additive white Gaussian noise (AWGN)
with zero mean and σ 2

n variance can be expressed, using the
complementary error function, as 1

2 erfc
(
−|A|
σn
√
2

)
. Then the

pulses with the magnitude |A| > σn
√
2 erfc−1(2ε) will have

a pulse identification error rate smaller than ε. For example,
ε . 1.3 × 10−3 for |A| & 3σn, and ε . 3.2 × 10−5 for
|A| & 4σn.
The pulse rate in a digitally sampled train with regu-

lar (periodic) arrival times is R = Fs/Np, where Fs is the
sampling frequency andNp is the number of samples between
two adjacent pulses in the train. For R that is sufficiently
smaller than R0, the PAPR of a train of equal-magnitude
pulses with regular arrival times is an increasing function of
the number of samples between two adjacent pulses Np, and
is proportional to Np:

PAPR = PAPR(Np) ∝ Np for large Np. (10)
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For example, for raised-cosine (RC) pulses R0 ≈

(4Ts)−1, where Ts is the symbol-period, and a ‘‘large Np’’
would mean Np � TsFs = Ns, where Ns is the number
of samples per symbol-period. As illustrated in Fig. 5,
PAPR(Np) ≈ 1.143Np/Ns forNp/Ns � 1 for RC pulses with
roll-off factor β = 1/2 and integer values of Ns.
From the lower limit on themagnitude of a pulse for a given

uncoded bit error rate (BER),

|A| = σn
√
SNR× PAPR > σn

√
2 erfc−1(2× BER), (11)

we can obtain the lower limit on the SNR for a given pulse
rate:

SNR(Np;BER) >
2
[
erfc−1(2× BER)

]2
PAPR(Np)

∝ N−1p , (12)

or

SNR(Np;BER) & 1.75
[
erfc−1(2× BER)

]2 Ns

Np
(13)

for Ns/Np � 1 and RC pulses with β = 1/2. For exam-
ple, SNR(Np; 10−3) & 9.6/PAPR(Np) ≈ 8.4Ns/Np, and
SNR(Np; 10−5) & 18.2/PAPR(Np) ≈ 15.9Ns/Np.
Fig. 6 illustrates the SNR limits for different BER as

functions of samples between pulses for RC pulses with
β = 1/2 and Ns = 2. For example, for the pulses sep-
arated by 128 symbol-periods, BER . 10−3 is achieved
for SNR & −12 dB. For comparison, the AWGN Shannon
capacity limit [20] for the bandwidth W = Fs/(2Ns), which
is the nominal bandwidth of the respective RRC filter, is also
shown.

B. ASYNCHRONOUS DETECTION (PULSE COUNTING)
When the time intervals between the pulses in a train do not
compose a periodic structure, one must use asynchronous
detection (pulse counting). In pulse counting, a pulse is
detected when it crosses a certain non-zero threshold. A false
positive (fp) detection occurs when such crossing is entirely
due to noise, and a false negative (fn) detection happens when
a pulse affected by the noise fails to cross the threshold. For
a positive threshold α+ > 0, the false negative rate will be
smaller than some tolerance rate εfn if the amplitude of a pulse
is A > α+ + σn

√
2 erfc−1(2εfn).

As shown in [21], [22], for a filtered noise with zero
mean and σ 2

n variance, its rate of up-crossing the thresh-
old α+ > 0 can be expressed as Rmax exp

(
−

1
2 (α
+/σn)2

)
,

where the saturation rate Rmax is determined entirely by
the filter’s frequency response. Then, for the average pulse
arrival rate R, the threshold value needs to be α+ >

σn
[
−2 ln(εfpR/Rmax)

] 1
2 in order to keep the false positive

rate below εfp. For example, forR/Rmax = 1/10, the thresh-
old value is α+ & 4.3σn for εfp = 10−3, and α+ & 4.8σn for
εfp = 10−4. Note that, as shown in [21], for an ideal ‘‘brick
wall’’ lowpass filter with the bandwidth 1B the saturation
rate Rmax = 1B/

√
3. Hence, for example, for a root-raised-

cosine or a raised-cosine filterRmax ≈ (2Ts
√
3)−1, where Ts

is the reciprocal of the symbol-rate parameter of the filter.

For a pulse rate R that is sufficiently smaller than R0 =
1
21B/TBP, the PAPR of a train of equal-magnitude pulses is
inversely proportional toR. Then, for a given signal-to-noise
ratio (SNR) of a pulse train affected by additive Gaussian
noise, and for a given false negative rate constraint εfn, the
pulse rate needs to be sufficiently small to ensure the pulse
detection with the error rate below εfn.
The asynchronous pulse detection (pulse counting) is dis-

cussed in more detail in Section V. While the rate limit for
pulse counting is approximately an order of magnitude lower
than for synchronous pulse detection with a similar BER,
pulse counting does not rely on any a priori knowledge of
pulse arrival times, and can be used as a backbone method
for pulse detection. In addition, randomizing the pulse arrival
times allows us tomore effectively hide the temporal structure
of the pulse train, prioritizing security over the data rates. Fur-
ther, intermittently nonlinear filtering (INF) used in combina-
tion with synchronous and/or asynchronous pulse detection
enables ‘‘layering’’ of pulse trains with significantly different
powers, physical-layer steganography, and ‘‘friendly jam-
ming’’ applications. However, since synchronous detection
enables much higher data rates for the same SNR, the focus
of the next section is on the technique that can be used for
synchronous detection of pulses in a train with a periodic
structure of interarrival times. In practice, both pulse counting
and synchronous pulse detection can be used in combination.
For example, given a constraint on the total power of the pulse
train, counting of relatively rare, higher-magnitude pulses can
be used to establish the timing patterns for synchronization,
and synchronous detection of smaller, more frequent pulses
can be used for a higher data rate.

IV. SYNCHRONIZATION FOR REGULAR PULSE TRAINS
Let us consider the basic link shown in Fig. 1, where in
the transmitter a binary sequence is encoded in a periodic
pulse train according to (3), with N = Np. To recover this
sequence with minimal raw BER, we would need to sample
the received pulse train x[k] at the instances where the pulses
of the ‘‘ideal’’ (without noise) pulse train have maximum
magnitudes. To determine the respective sampling indexes,
the following modulo power averaging (MPA) function can
be constructed as an exponentially decaying average of the
instantaneous signal power x2[k] in a window of size Np+ 1:

p̄[i; kj,M ] =
M − 1
M

p̄[i; kj−1,M ]

+
1
M

∑
k

Jk ≥ kj − NpKJk ≤ kjK

× Ji = mod(k,Np)K x2[k], (14)

where kj is the sample index of the j-th pulse, and M > 1.
Thus the window kj − Np ≤ k ≤ kj includes two transmitted
pulses, kj−1 and kj, and the index i in p̄[i; kj,M ] takes the val-
ues i = 0, . . . ,Np−1. Note that using exponentially decaying
average in (14) would roughly correspond to averaging N ≈
2M − 1 such windows. The exponentially decaying average,

173256 VOLUME 8, 2020



A. V. Nikitin, R. L. Davidchack: Pulsed Waveforms and INF in Synthesis of Low-SNR and Covert Communications

FIGURE 7. Illustration of synchronization procedure described by (14–16). AWGN SNR = −20 dB is chosen
to be low, and M = 32 respectively high, to emphasize robustness even when BER ≈ 1/3.

FIGURE 8. Calculated and simulated BERs as functions of AWGN SNRs for
Np = 32 and Np = 256. For shown SNR ranges, MPA function with M = 8
provides reliable synchronization. (Compare with SNR limits in Fig. 6).

however, has the advantage of lower computational andmem-
ory burden, especially for large M , and faster adaptability to
dynamically changing conditions.

For a sufficiently large M , the peak in p̄[i; kj,M ] corre-
sponding to the pulses of the ideal pulse train will dominate.
Therefore, the index kj+1 for sampling of the (j+ 1)-th pulse
can be obtained as

kj+1 = imax + (j+ 1)Np, (15)

where imax is given by

p̄[imax; kj,M ] = max
i

(
p̄[i; kj,M ]

)
. (16)

Note that reliance on the global maximum of p̄[i; kj,M ] is
also likely to provide resilience to multipath interference,
as this maximum will be mainly determined by the dominat-
ing (e.g. a line-of-sight) signal component.

Fig. 7 illustrates this synchronization procedure. The MPA
function shown on the right-hand side of the figure is com-
puted according to (14). To emphasize the robustness of this
synchronization technique even when the bit error rates are
very high, the SNR is chosen to be respectively low (SNR =
−20 dB, BER ≈ 1/3 in this example).
For the link shown in Fig. 1, and for the RC pulses with

β = 1/2 and Ns = 2 used in Section III, Fig. 8 compares the
calculated (dashed lines) and the simulated (dots connected

by solid lines) BERs, for the ‘‘ideal’’ synchronization (black
dots), and for the synchronization with the MPA function
described above. The AWGN noise is added at the receiver
input, and the SNR is calculated at the output of the matched
filter in the receiver. One can see that forM = 2 (red dots) the
errors in synchronization are relatively high, which increases
the overall BER, but the MPA function with M = 8 (blue
dots) provides reliable yet still fast synchronization. The
BERs and the respective SNRs in Fig. 8 are presented for the
pulse repetition rates indicated by the vertical dashed lines in
Fig. 6.

A. MODULO MAGNITUDE AVERAGING
When a pulse train is used for communications rather
than, say, radar applications, reliable synchronization may
only need to be achievable for relatively low BER, e.g.
BER . 1/10. Then the followingmodulo magnitude averag-
ing (MMA) function can replace theMPA function in the syn-
chronization procedure, in order to reduce the computational
burden by avoiding squaring operations:

ā[i; kj,M ] =
M − 1
M

ā[i; kj−1,M ]

+
1
M

∑
k

Jk > kj − NpKJk ≤ kjK

× Ji = mod(k,Np)K |x[k]| . (17)

Note that the window kj − Np < k ≤ kj in (17) includes only
the j-th transmitted pulse, instead of two pulses used in (14).
The reason behind this is illustrated in Fig. 9, which compares
(for AWGN) the MPA function p̄[i; kj,M ] with the respective
squaredMMA function ā2[i; kj,M ] computed for the window
kj −Np ≤ k ≤ kj that includes the ‘‘extra point’’ (the (j− 1)-
th pulse). The relatively long averaging (M = 64) is used
to reduce the variations in the function values due to noise,
and to make the comparison with the levels indicated by the
dashed lines more apparent.

When a correct synchronization has already been obtained,
and the maxima are ‘‘locked’’ at the correct imax values (black
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FIGURE 9. If used in modulo magnitude averaging, ‘‘extra point’’
significantly increases probability of synchronization failure.

dots connected by solid lines in Fig. 9), both the MPA and
the MMA functions would adequately maintain the position
of their maxima. However, an offset in the synchronization
(e.g. by n points shown in the figure) significantly more
unfavorably affects the margin between the extrema at imax
and imax + n in the MMA function, compared with the MPA
function (blue dots connected by solid lines). Thus the ‘‘extra
point’’ may cause the ‘‘failure to synchronize’’ even at a
relatively high SNR, and it should be removed from the cal-
culation of the MMA function. Then, as illustrated in Fig. 10,
for BER . 1/10 synchronization with the MMA function
ā[i; kj,M ] would be effectively equivalent to synchronization
with the MPA function p̄[i; kj,M ]. When reliable synchro-
nization for larger BERs is desired (e.g. in timing and ranging
applications), then the MPA given by (14) should be used.

V. INTERMITTENTLY NONLINEAR FILTERING (INF) FOR
OUTLIER NOISE MITIGATION AND PULSE COUNTING
In addition to ever-present thermal noise (which can be appro-
priately modeled as AWGN), the received signal can contain
significant amounts of non-Gaussian interference originating
from amultitude of natural and technogenic (man-made) phe-
nomena. Then the overall noise would be non-Gaussian and,
depending on the noise coupling mechanisms and the sys-
tem’s filtering properties and propagation conditions, it may
contain distinct amplitude outliers when observed in the time
domain. The presence of different types of such outlier noise
is widely recognized in multiple applications under various
general and application-specific names, most commonly as
impulsive, transient , burst , or crackling noise. The outlier
noise can be efficiently mitigated in real-time using intermit-
tently nonlinear filters (INF) [12, e.g.], and, depending on the
noise nature and composition, improvements in the quality of
the signal of interest can vary from ‘‘no harm’’ to substantial.

Since in the power-limited regime the channel capacity is
proportional to the SNR, even relatively small increase in the
latter can be beneficial. For example, as can be seen in Fig. 6,
for a given raw BER a 3 dB increase in the SNR enables
doubling of the bit rate. Alternatively, for a given pulse rate, a
3 dB increase in the SNR can reduce the raw BER by several
orders of magnitude. This is why, as illustrated in Fig. 1,
it would be useful to deploy INF formitigation of outlier noise
in practical implementations of low-SNR links described in

FIGURE 10. For BER smaller than about 10−1, less computationally
expensive modulo magnitude averaging (e.g. given by (17)) can be used
for synchronization. Modulo power averaging (with ‘‘extra point,’’ e.g.
given by (14)) should be used when reliable synchronization for full BER
range is desired.

FIGURE 11. Intermittently Nonlinear Filtering (INF): Outliers are identified
as protrusions outside of fenced range, and their values are replaced by
those in mid-range. Otherwise, signal is not affected. ‘‘Auxiliary’’ output is
difference between input and ‘‘prime’’ INF output.

this paper. Note that INF should be performed before the
large-TBP filtering in the receiver, when the signal of interest
is still Gaussian or sub-Gaussian, and the outlier structure of
the noise is still apparent and not affected by the pileup.

In general, a nonlinear filter is capable of disproportion-
ately affecting spectral densities of signals with distinct tem-
poral and/or amplitude structures even when these signals
have the same spectral content. In particular, the separation
of a large-PAPR pulse train and a small-PAPR signal can be
viewed as either (i) mitigation of impulsive noise affecting the
small-PAPR signal, or (ii) extraction of impulsive signal from
the small-PAPR background. In this paper, a specific type of
Intermittently Nonlinear Filters (INF) is used to accomplish
either or both tasks. While various INF configurations, their
different uses, and the approaches to their analog and/or
digital implementations are described elsewhere [12], [13],
[23]–[25], Fig. 11 illustrates their basic concept. In an INF,
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the upper and the lower fences establish a robust range that
excludes high-amplitude pulses while effectively containing
the small-PAPR component. The prime INF output simply
contains the input signal in which the outliers (i.e. the pulses
that protrude from the range) are replaced with mid-range
values. This constitutes mitigation of impulsive noise affect-
ing the small-PAPR signal. The auxiliary INF output is the
difference between its input and the prime output. This is
akin to extraction of impulsive signal from the small-PAPR
background (or ‘‘pulse counting’’).

A. ROBUST RANGE/FENCING IN INF
For an INF to be effective in separation of small-PAPR and
impulsive signals regardless of their relative powers, its range
needs to be robust (insensitive) to the pulse train. Favorably,
for a mixture of a small-PAPR signal with the bandwidth1B,
and a pulse train with the same bandwidth and the rate
sufficiently below R0, when pileup effect is insignificant,
the value of the interquartile range (IQR) of the mixture is
insensitive to the power of the pulse train. This is illustrated in
Fig. 12 for a pulse train affected by additive Gaussian noise.
Thus robust upper (α+) and lower (α−) fences for INF can
be constructed as linear combinations of the 1st (Q[1]) and
the 3rd (Q[3]) quartiles of the signal (Tukey’s fences [26])
obtained in a moving time window:

[α−, α+]=
[
Q[1]−β

(
Q[3] − Q[1]

)
, Q[3]+β

(
Q[3] − Q[1]

)]
,

(18)

where α+, α−,Q[1], andQ[3] are time-varying quantities, and
β is a scaling parameter of order unity. When an INF is used
for pulse counting in the presence of AWGN, the particular
value of β may be chosen based on the constraint on the
relative rate εfp of false positive detections. Then, as follows
from the discussion in Section III-B,

β ≈ 1.05×

√
ln
(
Rmax

εfpR

)
−

1
2
. (19)

For example, for Rmax/R = 10, β ≈ 2.7 for εfp = 10−3,
and β ≈ 3.1 for εfp = 10−4.

For Tukey’s fences with β given by (19), the probability of
a false negative count of a pulse with the magnitude |A| can
be expressed as

εfn ≈
1
2
erfc

(
|A|

σn
√
2
−

√
ln
(
Rmax

εfpR

))
. (20)

Then, for example, for a train of equal-magnitude RC pulses
with the roll-off factor 1/2, and with the average interarrival
interval N p � Ns (with a possible constraint on the minimal
interarrival distance to avoid pileup), the lower limit on the
SNR for a given average pulse rate 1/N p can be expressed as

SNR(N p; εfp, εfn)

& 1.75

erfc−1(2εfn)+
√√√√ln

(
N p

3.5 εfpNs

)2

Ns

N p
. (21)

FIGURE 12. For low pulse rates (e.g. R� 1
21B/TBP), IQR provides

reliable measure of additive Gaussian noise power, σn ∝ IQR.
Root-raised-cosine pulses (for which R0 ≈ (4Ts)−1) are used in this
example. For completeness, IQRs for higher rates are also shown, but
details of their change with SNR are not discussed.

Fig. 13 provides illustrative comparison of the AWGN
SNR limits for synchronous and asynchronous detection.
Note that while the rate limit for asynchronous detection is
almost an order of magnitude lower than that for synchronous
with a similar error rate, randomizing the pulse arrival times
allows us to more effectively hide the temporal structure of
the pulse train by a large-TBP pulse shaping, prioritizing
security over the data rates.

B. QUANTILE TRACKING FILTERS FOR ROBUST FENCING
As a practical matter, quantile tracking filters (QTFs) are an
appealing choice for such robust fencing in INF, as QTFs are
analog filters suitable for wideband real-time processing of
continuous-time signals and are easily implemented in analog
circuitry [12], [13], [23]–[25]. Further, their numerical com-
putations are O(1) per output value in both time and storage,
which also enables their high-rate digital implementations in
real time.

In brief, the signal Qq(t) that is related to the given
input x(t) by the equation

d
dt
Qq = µ

[
lim
ε→0

Sε(x − Qq)+ 2q− 1
]
, (22)

where µ is the rate parameter and 0 < q < 1 is the
quantile parameter , can be used to approximate (‘‘track’’)
the q-th quantile of x(t) for the purpose of establishing
a robust range [α−, α+]. In (22), the comparator func-
tion Sε(x) can be any continuous function such that Sε(x) =
sgn(x) for |x| � ε, and Sε(x) changes monotonically
from ‘‘−1’’ to ‘‘1’’ so that most of this change occurs over
the range [−ε, ε]. As discussed in detail in [24], for a con-
tinuous stationary signal x(t) with a constant mean and a
positive IQR, the outputs Q[1](t) and Q[3](t) of QTFs with
a sufficiently small rate parameter µwill approximate the 1st
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FIGURE 13. Illustrative comparison of SNR limits under AWGN for
synchronous and asynchronous detection. Trains of equal-magnitude RC
pulses with roll-off factor 1/2 and with average interarrival
intervals Np � Ns are used.

and the 3rd quartiles, respectively, of the signal obtained
in a moving boxcar time window with the width 1T of
order 2× IQR/µ� 〈f 〉−1, where 〈f 〉 is the average cross-
ing rate of x(t) with the 1st and the 3rd quartiles of x(t).
Consequently, as illustrated in Fig. 14, the overall behav-
ior of the QTF fencing for a stationary constant-mean
signal with a given IQR would be similar to the fenc-
ing with the ‘‘exact’’ quartile filters in a moving boxcar
window [θ (t)− θ (t −1T )] /1T , where 1T = 2× IQR/µ
and µ is the QTF rate parameter. However, for a sam-
pling rate Fs, numerical computations of an ‘‘exact’’ quartile
require O (Fs1T log(Fs1T )) per output value in time, and
O(Fs1T ) in storage, becoming prohibitively expensive for
high-rate real-time processing.

C. ASYNCHRONOUS SAMPLING OF PULSE TRAINS
Let us assume that the designed pulse train x̂[k] in the trans-
mitter can be represented by (1), so that only kj-th samples
have non-zero values Aj, and that the information is encoded
by the amplitudes Aj and/or the interarrival times kj − kj−1.
Further, the impulse response w[k] of the small-TBP filter
has a dominant peak, and the pulse arrival rate is small so
that pileup is negligible. When a simple binary sequence is
transmitted (say, ‘‘0’’ or ‘‘1’’ for negative or positive pulses),
it can be recovered by measuring, for appropriately chosen
thresholds α+ > 0 and α− < 0, the upward and the
downward crossings, respectively, of α+ and α− by the pulse
train x[k].
The threshold crossings, however, do not characterize the

amplitudes of the pulses. Also, the front edges of pulses with
different magnitudes would have different slew rates, thus
contributing to timing arrows when the level crossings are
used for timing. Instead, to extract the information about the
amplitudes Aj in the train, and to reduce the error in obtaining
the interarrival times kj − kj−1, the following pulse counting

FIGURE 14. Overall behavior of QTF fencing is similar to that with ‘‘exact’’
quartile filters in moving boxcar window of width 1T = 2× IQR/µ.

FIGURE 15. Sampling waveform x[k] at peaks of pulses protruding from
range formed by Tukey’s fences

[
α−k , α

+

k

]
. Pulse train x̂[k] is computed

according to (24).

function Cα+
α−
(x[k]) can be used:

Cα
+

α−
(xk) = Jxk > α+k KJxk > xk−1KJxk ≥ xk+1K

+ Jxk < α−k KJxk < xk−1KJxk ≤ xk+1K. (23)

This function takes unit values at the local extrema of x[k]
that protrude from the range

[
α−k , α

+

k

]
, and is zero otherwise.

(In (23), for better readability, we use xk and α
±

k in place of
x[k] and α±[k].) Then x̂[k], obtained as a product of the pulse
train x[k] and the respective counting function,

x̂[k] = Cα
+

α−
(x[k]) x[k] =

∑
j

Jk = kjKAj, (24)
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FIGURE 16. Example of autocorrelation (red) and cross-correlation
responses for three filters ĝi (t) constructed by applying different allpass
filters (consisting of 100 cascaded biquad sections) to RRC pulse.

will represent sampling of the train at the peaks of
those pulses that protrude from the range formed by the
fences α±[k]. This is illustrated in Fig. 15. When noise is
negligible, and for appropriately chosen fences, x̂[k] given
by (24) will be equivalent to the designed pulse train in the
transmitter.

VI. PHYSICAL LAYER STEGANOGRAPHY
To meet the undetectability requirement, in a steganographic
system the stego signals should be statistically indistinguish-
able from the cover signals [27]–[30]. For physical layer
transmissions, this can perhaps be enhanced by requiring
that the payload and the cover have the same bandwidth and
spectral content, the same apparent temporal and amplitude
structures, and that there are no explicit differences in the
spectral and/or temporal allocations for the cover signals and
the payload messages.

As discussed in Section II, by filtering a signal with a
large-TBP filter one can ‘‘mimic’’ the signal as effectively
Gaussian, without affecting its spectral composition. Given
a small-TBP filter v(t) with a particular frequency response,
one can construct a great variety of filters ĝi(t) and gi(t) =
ĝi(−t) with the same frequency response yet much larger
TBPs (e.g., orders of magnitude larger). Thus the filters ĝi(t)
can be used in the transmitter to transform both the cover and
the payload signals into effectively Gaussian, making them
statistically indistinguishable from each other, while having
the same spectral content. These filters can be constructed
in such a way that their combined matched (autocorrelation)
responses are equal to each other, (ĝi ∗gi)(t) = v(t)∗v(−t) =
w(t) for any i, and have a small TPB, yet the convolutions of
any ĝi(t) with gj(t) for i 6= j (cross-correlations) have large
TBPs. Fig. 16 illustrates this for three filters constructed by
applying different allpass filters (consisting of 100 cascaded
biquad sections) to an RRC pulse. Then a selected i-th signal
component can be ‘‘recovered’’ in the receiver by apply-
ing gi(t), while the rest of the signal would remain effectively
Gaussian.

FIGURE 17. Using channel noise as cover signal.

For example, let us consider K ≥ 2 effectively Gaussian
waveforms xi = (x̂i ∗ ĝi)(t) =

∑
m Am ĝi(t − tm). Then any

i-th component in the sum x =
∑K

i=1 xi can be viewed as a
‘‘payload,’’ while the rest of the mixture can be considered
a ‘‘cover.’’ To ‘‘extract’’ the payload, we apply gi(t) to this
mixture:

(x ∗ gi)(t)=
∑
m

Amw(t − tm)+
∑
j

Jj 6= iK (x̂j ∗ gji)(t), (25)

where gji(t) = (ĝj ∗ gi)(t). The right-hand side of (25) can be
treated as a pulse train affected by Gaussian noise. When the
external noise is negligible (i.e. when the total SNR is much
larger than K ), for a mixture of equal-power waveforms the
SNR for such a train will be ≈1/(K − 1) (e.g. −7 dB for a
6-component mixture).

A. USING CHANNEL NOISE AS COVER SIGNAL
The very existence of a detectable carrier (cover signal) may
be a dead giveaway for the stego payload. For example, the
mere presence of a sheet of paper implies the possibility
of a message written in invisible ink. Therefore, the best
steganography should be ‘‘carrier-less,’’ when the payload
is covertly embedded into something ‘‘ever-present.’’ In the
physical layer, such ‘‘ideal’’ and unidentifiable cover sig-
nal is the channel noise. Such noise always includes the
ever-present thermal noise as one of its components, and
typically contains other (in general, non-Gaussian) natural
and/or technogenic (man-made) components which make the
noise non-white and characterized by time-variant parame-
ters. Then, if the stego payload ‘‘pretends’’ to be Gaussian,
and its PSD everywhere is small enough to be well within
the ‘‘natural’’ variations in the PSD of the channel noise,
any physically available band can be used to carry a virtually
undetectable covert message. This approach is schematically
illustrated in Fig. 17, where it is assumed that the messages
are sent by pulse trains shaped with large-TBP filters.

In essence, all spread spectrum techniques for covert
communications involve transmitting a signal that requires
a limited bandwidth on a much wider bandwidth, thereby
suppressing the PSD of the transmission below the noise
floor [29], [30]. Even if the noise is stationary and accu-
rate wideband measurements of its PSD N are available,
detection of the mere presence of a signal with the peak
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FIGURE 18. Illustrative example of using channel noise as cover signal for two-component payload. Overall covert message is split into two
individually covert components. In receiver, filter matched to selected pulse shaping filter in transmitter converts respective signal component into
corresponding pulse train, while second component remains as effectively Gaussian contribution to noise.

FIGURE 19. Additional INF-removable cover for low-SNR payloads.

PSD S � N would require identifying an approximately
4.3 × S/N . 1 dB small ‘‘bump’’ in the measured noise
PSD during the transmission. (This task rapidly becomes
more challenging for intermittent, short-duration transmis-
sions, and/or for non-stationary noise.) Note, however, that
even when the correct de-scrambling filter is applied to a
pulse train shaped with a large-TBP filter, it does not change
the average PSD of the transmitted signal, and so spectral
measurements alone would still be insufficient for detection
of the covert transmission. In contrast, for example, apply-
ing a known spreading sequence to a DSSS signal converts
a wideband low-PSD signal into a narrowband high-PSD
peak, and therefore enables its detection through spectral
measurements.

As outlined in Fig. 17, the covert messages can be
sent by several same-bandwidth pulse trains, each shaped
with its own large-TBP filter, and Fig. 18 provides a
detailed illustrative example for a two-component mix-
ture. In Fig. 18, for each of the designed pulse trains
x̂1[k] and x̂2[k] we use respective large-TPB pulse shaping
filters, ĝ1[k] and ĝ2[k], with the impulse responses extending
over multiple interpulse intervals. By design, ĝ1[k] and ĝ2[k]
have identical, small-TPB autocorrelation functions, but their
cross-correlations have large TBPs. Then, after the demodu-
lation in the receiver, a filter matched to the selected pulse
shaping filter converts the respective signal component into
a corresponding pulse train, while the second component
remains as an effectively Gaussian contribution to the noise.

For K ≥ 1 equal-power components and dominant noise
(e.g. when the noise power is much larger than the power
of K − 1 components), the SNR per component will be
≈SNR/K . Thus the available pulse rate for the total SNR
can be equally shared among K low-SNR payloads, each
requiring its own ‘‘key’’ to extract the information. This can
be used, for example, for splitting the overall covert message
into multiple, individually covert components.

B. ADDING INF-REMOVABLE COVER FOR LOW-SNR
PAYLOADS
For a stego pulse train with a given rate, further increasing
the power of the channel noise (say, by 10 dB) can make the
pulse train undetectable. For example, when the pulse rate
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FIGURE 20. Illustrative example of adding INF-removable cover as outlined in Fig. 19. Power of cover exceeds power of payload by ×100 (20 dB), while
both occupy effectively same spectral band. In receiver, removal of cover component by INF provides access to much weaker payload.

FIGURE 21. Basic concept of ‘‘friendly in-band jamming’’.

is higher than the Shannon limit for the given SNR, neither
synchronous nor asynchronous detection would be possible.
However, such increase in the channel noise power can be
accomplished by an additional pulse train, simply disguised
as Gaussian. Then an INF in the receiver, in combination with
the respective ‘‘de-scrambling’’ filter, can effectively remove
this additional noise, enabling the detection of the low-power
payload. In addition, the higher-power pulse train can itself
carry a lower-security (or decoy) message, and/or the timing
information that enables synchronous pulse detection in the
stego pulse train. Recovering this information from the ‘‘extra
cover’’ signal would still require knowledge of the respective

FIGURE 22. OFDM PAPR reduction by large-TBP filtering.

scrambling filter used by the transmitter. This concept is
schematically illustrated in Fig. 19, and Fig. 20 provides its
detailed illustrative example.

In Fig. 20, the large-TBP filters ĝ1[k] and (ĝ1 ∗ ĝ2)[k] are
used for shaping the cover (x̂1[k]) and the payload (x̂2[k])
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FIGURE 23. Friendly in-band jamming of OFDM signal: Combination of linear and nonlinear filtering in receiver is used for effective separation of
OFDM and ‘‘friendly jamming’’ signals, although both signals in received mixture have effectively same spectral characteristics and temporal and
amplitude structures, and there are no explicit differences in their temporal allocations.

pulse trains, and the power of the cover exceeds the power of
the payload by a factor of 100 (by 20 dB). The TBP of ĝ2[k]
is also large, and the autocorrelation responses of ĝ1[k] and
ĝ2[k] are identical and have a small TBP. In the receiver, the
demodulated signal is first filtered with g1[k], which converts
the cover component into an impulsive pulse train, while the
rest of the signal (that contains the payload and the noise)
remains a ‘‘diffused,’’ low-PAPR waveform. Thus INF can
be used for effective separation of the cover pulse train from
the rest of the signal. After removal of the cover signal by
the INF, the filter g2[k] is applied to the residual low-PAPR
waveform. This converts the component corresponding to
the weak payload pulse train x̂2[k] into a high-PAPR signal,
enabling its reliable detection.

C. FRIENDLY IN-BAND JAMMING
In our third example, the main message is transmitted using
one of the existing communication protocols, but its tem-
poral and amplitude structure is obscured by employing a
large-TBP filter in the transmitter, e.g., made to be effectively
Gaussian. This alone provides a certain level of security, since
the intersymbol interference becomes excessively large and
the signal cannot be recovered in the receiver without the
knowledge of the scrambling filter. In addition, a jamming
pulse train, disguised as Gaussian by another (and different)
large-TBP filter, is added to the main signal. This jamming
signal has effectively the same spectral content as the main

signal, and its power is sufficiently large so that the main
signal is unrecoverable even if the first scrambling filter is
known. In the receiver, the jamming pulse train is removed
from the mixture (and recovered, if it itself contains informa-
tion), enabling the subsequent recovery of the main message.
This concept is schematically illustrated in Fig. 21.

1) OFDM PAPR REDUCTION
In addition to improved security, applying a large-TBP filter
to the main signal reduces PAPR of large-crest-factor signals
such as those in orthogonal frequency-division multiplexing
(OFDM), as illustrated in Fig. 22. Here, the simulated OFDM
signals are generated without restrictions of the proportion
of ‘‘ones’’ and ‘‘zeros’’ in a symbol, and thus they have the
maximum achievable PAPRs (i.e. 2N , where N is the number
of carriers).

2) ILLUSTRATIVE EXAMPLE
In Fig. 23, the main signal is a high-PAPR OFDM signal,
and the jamming signal is a high-PAPR impulse train with
the spectral content in effectively the same band (see the
frequency responses of the filters in the lower left panel of
Fig. 23). After the filteringwith large-TBPfilters (ĝ∗ĥ)(t) and
ĥ(t), respectively, both the OFDM and the jamming signals
become effectively Gaussian, and so does their mixture that
is being transmitted and received (see the black line in the
normal probability plots shown in the lower middle panel
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FIGURE 24. Effect of filtering on temporal and amplitude structure of
signal is more apparent at wider bandwidth.

of Fig. 23). (In this example, the channel noise is assumed
to be relatively small and is not shown.) However, applying
a filter h(t) matched for ĥ(t) in the receiver restores the
high-PAPR structure of the jamming signal (see the red line
in the normal probability plots), while the OFDM compo-
nent remains Gaussian. Subsequently, the INF accomplishes
both the mitigation of the jamming pulse train affecting the
OFDM component and the extraction of the jamming signal.
Applying the filter g(t) to the prime INF output effectively
restores the original high-PAPR OFDM signal. If desired, the
jamming pulse train is restored by applying the filter v(t) to
the auxiliary INF output.

The main properties of the filters used in this example are
listed in the lower right panel of Fig. 23, and their frequency
responses are shown in the lower left panel of the figure.

VII. CONCLUSION
For a finite pulse rate, the ideal pulse train x̂(t) =

∑
j Ajδ(t−

tj) has infinite bandwidth. Similarly, the designed digital
pulse sequence x̂[k] =

∑
j Jk = kjKAj occupies the full

Nyquist range of frequencies. On the other hand, the infor-
mation encoded in a low-rate pulse train can also be trans-
mitted, with simple binary coding and modulation, utilizing
much smaller bandwidth. This is why communication with
pulse trains can be considered a spread-spectrum technique.
In contrast to other such techniques, however, wideband pulse
trains are constructed without actual physical ‘‘spreading’’
of a narrowband signal, and the ‘‘spreading factor’’ (i.e. the
fraction of a given bandwidth that is utilized) can be managed
by changes in the information rate and/or the bandwidth of
the pulse shaping filter. The main advantage of this approach
lies in retaining control over the temporal and amplitude
structure of the pulsed waveform. Such control, especially
when combined with nonlinear filtering techniques, enables
the development of a large variety of low-SNR and covert
communication configurations.

Somewhat simplistically, other spread-spectrum
approaches can be viewed as modulating a wideband carrier
by a narrowband signal in the transmitter, then recovering
the narrowband signal in the receiver. For example, since
multiplication is associative, the spreading sequence in DSSS

can be applied first to the carrier, forming a wideband car-
rier signal; then the wideband carrier is modulated by the
narrowband signal. In FHSS and CSS, the frequency range
of the carrier also spans a wide range. In the receiver, the
respective demodulation (now combined with despreading) is
used to produce the information-carrying narrowband signal.
Because of the lack of ‘‘excess bandwidth’’ over that needed
to carry the information (for the given modulation type),
the statistical properties of such a narrowband signal can no
longer be significantly changed by linear filtering that leaves
the spectral composition of the signal intact. On the other
hand, as we illustrate throughout the paper, the temporal and
amplitude structures of wideband signals are easily managed,
and distinct outliers in pulsed waveforms can bemade appear,
disappear, and reappear without affecting the signals’ spectral
content.

In general, the effect of filtering on the temporal and/or
the amplitude structure of a signal is more apparent at wider
bandwidths, as a broader frequency range results in finer time
resolution. This is illustrated in Fig. 24, where the impulse,
the chirp, and the ‘‘burst’’ signals have the same spectral con-
tent, and only the phases in their Fourier representations are
different. These three signals can be morphed into each other
by all-pass filtering that leaves their power spectral densities
unmodified. In a wide band, such filtering drastically changes
the time-domain appearance of the signal and its amplitude
density, while in a narrow band (after the bandpass filtering)
these changes are much less apparent and all signals maintain
similar temporal and amplitude structures. Thus wideband
pulsed waveforms extend our options for encoding low-rate
information. Since wider bandwidth offers increased time
resolution, the message can be encoded not only in the ampli-
tudes of the pulses (e.g. as a binary sequence given by (3)),
but also in the pulse interarrival times, as represented by (1).
This also adds to increased security, as various non-binary
encoding protocols can be used for signals within the same
physical band.

Further, control over the temporal and amplitude structures
of wideband pulse trains carrying low-rate information pro-
vides for effective use of nonlinear filtering techniques.
Such techniques can be employed for robust real-time asyn-
chronous extraction of the information as well as for separa-
tion of signals with the same spectral content from each other.
For example, the interquartile range can provide reliable mea-
sure for the average power of a Gaussian or sub-Gaussian
signal, while being insensitive to changes in the power of
such sparse signals as high-PAPR pulse trains. This enables
the use of asynchronous detection (pulse counting) to extract
both the amplitude and the timing information from random-
ized pulse trains. More generally, intermittently nonlinear
filtering, when combined with waveform control by linear
pulse shaping, allows effective separation of different signals
with identical spectral profiles, facilitating development of
versatile mixtures of same-band signals for covert and/or
hard-to-intercept communications, and increasing robustness
and quality of such communications in the presence of
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non-Gaussian noise. Two particular illustrative examples of
using such mixtures are detailed in the previous section.
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