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ABSTRACT Distinguishing among different kinds of features as well as noises on 3Dmeshmodels is crucial
for feature-preserving mesh denoising. This paper proposes to address this issue via in-depth analysis of the
intermediate products of the denoising processes, and one framework is presented for raising adaptive and
feature-preserving mesh denoising schemes. Firstly, by analyzing the changes of the facet normals during the
denoising process, we propose the definition of developmental guidance, which helps to assess the current
filtering status and predict the positions of feature and smooth regions. Then, by incorporating the guidance,
we put forward one interpolation-based denoising scheme, which affords an efficient way to interpolate and
recover different levels of features and is robust to severe noises. Besides, we also introduce the guidance to
the optimization-based model, and the achieved global scheme is tested to be stable and robust to irregular
samplings. Both the theoretical analysis and extensive experimental results on synthetic and real-world noises
have demonstrated the attractive advantages of our whole framework, such as being adaptive, efficient,
robust, feature-preserving, etc.

INDEX TERMS Bilateral filtering, feature-preserving, guided filter, linear interpolation, mesh denoising.

I. INTRODUCTION
Feature preserving 3D model denoising plays an essential
role in preprocessing of point clouds [1], [2] or triangular
meshes [3]–[10], which are obtained by scanning devices or
via various kinds of digitalization processes. Previous meth-
ods can be roughly divided into four categories, namely, local
methods, global methods, multi-step and deep learning based
methods.

The local average schemes [11]–[15] are well-known
to be fast. However, the operation of averaging can not
avoid losing the original information, which usually obtains
over-smoothed results or lost of weak features, espe-
cially when the number of iterations is large. Global opti-
mization based methods, both isotropic [16], [17] and
anisotropic [18]–[20], treat all the facet normals on feature
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and smooth regions equally. This may lead to the lost of
details or weak features. Multi-step methods [21]–[23] usu-
ally add feature detection process prior to the filtering or the
vertex updating process, which usually need heavy param-
eters tuning work and are time-consuming. Deep learning
based methods [9], [24] have achieved success for certain
dataset. However, the time-consuming training processes and
the generalization ability of the networks still need to be
researched.

Although lots of previous works have been carried out for
mesh denoising, the research in this area is still active due
to the existing challenges. From one hand, distinguishing
the features from noises is not an easy work, especially
when the noises are in high frequency. From the other hand,
weak features are hard to be preserved or even recovered
in the denoising processes. Faced with these challenges,
the above conventional methods treating all the vertices or
facets equally seem ineffective to some extent. Therefore,
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in this work, we propose a novel way to adaptively analyze
the denoising process using the facet normals, which helps
treat the feature and smooth regions differently and gives
rise to one framework for putting forward adaptive denoising
schemes.

In this paper, we propose a general adaptive and
feature-preserving denoising framework based on a devel-
opmental guidance as shown in Fig. 1. Firstly, the given
noisy model is over-smoothed to reflect the general structure
information. Then the developmental guidance is introduced
based on analyzing the changes of the facet normals of the
original noisy model, over-smoothed one and the current
denoised model in the denoising iteration. By introducing the
developmental guidance into the linear interpolation of facet
normals, we propose the adaptive and feature-preserving
interpolation-based denoising scheme, which is fast and effi-
cient. Furthermore, we incorporate the developmental guid-
ance into a global optimization to adaptively penalize the
noises. Our primary contributions can be summarized as:

• A framework is proposed for putting forward adap-
tive and feature-preserving denoising schemes for mesh
models based on the newly defined developmental guid-
ance.

• A linear interpolation based denoising scheme is pro-
posed, which affords an efficient way to recover differ-
ent levels of features and is robust to extremely noisy
models.

• A global optimization based scheme is proposed, which
is non-iterative and stable, and robust to irregular mesh
sampling.

II. RELATED WORKS
The mesh filtering methods mainly include local average
based methods, global optimization based methods, multi-
step methods, and deep learning based methods.

A. LOCAL METHODS
Local methods include the classical ones for mesh filter-
ing. Given that the facet normals can better represent the
local surface geometric information than the vertex positions,
researchers usually prefer to filter the facet normals and then
use the filtered normals to update the positions of the vertices.

The local methods usually use kernel functions to weight
the geometric differences between the concerned facet and
its neighborhood to achieve the purpose of average-based
denoising. Researchers usually consider using different geo-
metric information of the facets or modifying the convo-
lution kernel functions [15], [25] to improve the denoising
performance. Fleishman et al. [26] and Zheng et al. [27]
proposed the extensions of bilateral filtering on images [28].
Fleishman et al. [26] considered local differences in vertex
positions and vertex normal differences to perform Gaussian
convolutions. Zheng et al. [27] considered Gaussian convo-
lutions based on centroid distances and facet normal differ-
ences, which provided more detailed processing for features

compared to [26]. Unlike previous filtering methods, which
consider facet normal information and vertex information,
Centin et al. [14] updated normals based on model curva-
ture information through local curvature changes and overall
neighborhood curvature changes to maintain the features.
Liu et al. [15] and Yadav et al. [25] changed the normal
weights by changing the convolution kernel functions.

Since preserving the feature is always the core of denois-
ing, a series of techniques have been proposed by researchers
to guide the denoising process to protect or even recover the
features. Zhang et al. [29] proposed to use the guidance signal
to improve the bilateral filtering. Wang et al. [30] proposed
the rolling guidance filtering on the basis of Zheng et al. [27].
Each step in the iteration process uses the original normal
direction as a guide to better maintain the characteristics of
the original model. Liu et al. [11] enhanced features by iden-
tifying feature and non-feature surfaces and proposing a mea-
surement of neighborhood selection on the basis of guided
filtering [29] and achieved better results than guided filtering.
In the filtering process, the proper selection of the neigh-
borhood patches can also afford ideal results. Li et al. [12]
utilized the edge-based neighborhood to preserve sharp fea-
tures. Hurtado et al. [13] selected the neighborhood by con-
sidering the gradient information in addition to the normal
information. The local iterative method can gradually recover
the features well, and the calculation efficiency is high.
However, the number of iterations for these methods should
be adjusted manually, and improper settings may lead to
over-smoothing.

B. GLOBAL METHODS
Global algorithms for mesh filtering based on optimiza-
tion models have also received much attention during these
years. Zheng et al. [27] proposed an anisotropic denois-
ing method based on bilateral weighted Laplace operator,
however, the Laplace operator cannot well distinguish weak
features from noises, and it also cannot handle models with
large noises very well. He et al. [31] proposed a mini-
mal mesh denoising algorithm based on edge operators and
Zhang et al. [32] raised the TV normal filtering, which
can, to some extent, solve the problems existed in [27], but
they suffered undesired staircase effects in curved regions,
especially for the method of [31]. Later on, Zhao et al. [18]
optimized the non-convex problem and proposed an upgraded
alternating strategy to solve the minimum problem. And
Wang et al. [33] used the theory of compressed perception
to recover features from the residuals of the Laplacian fac-
torization. Recently, the second-order normalization has been
well exploited in optimization-based algorithms. Liu et al. [7]
combined the second-order normalization with the normal
fidelity term. On the basis of [7], Zhong et al. [8] consid-
ered the overall variational differences and the fidelity of the
normal, and better maintained the details of the model. The
global method can better retain the overall structure of the
concerned model, but it is not that good at maintaining local
geometric details.
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FIGURE 1. The illustration of our framework. The blue and green rectangles show the two proposed denoising schemes, and the red dashed rectangle
shows the construction of the proposed developmental guidance.

C. MULTI-STEP APPROACH
To better preserve the features during the denoising process,
many methods propose to detect the features firstly, thus
giving rise to the multi-step approaches. Feature detection
methods based on tensor voting are widely used to identify
noises and features of the mesh. Wei et al. [34] processed the
noises and features differently by voting on the types of ver-
tices based onmulti-scale normal tensor. Yadav et al. [35] per-
formed a binary optimization of the proposed tensor equation
by introducing the concept of a local binary neighborhood,
which can better maintain the features. In order to improve the
performance of the existed methods through multiple steps,
a series of global filtering [23], [36], local filtering [37],
median filtering [38], feature detection [21]–[23], and neigh-
borhood searching [21] methods are introduced. Themethods
in [21]–[23] are typical multi-step methods, which add fea-
ture detection processes to the filtering process or the vertex
updating process.Wei et al. [37] utilized the advantages of the
local consistency of the vertex normal field and the surface
normal field to make the two fields complement each other,
thereby improving the denoising results. The method from
Lu et al. [36] combines the global method with l1-median
filtering to remove noises. Since the multi-step methods are
meticulous, they usually can achieve good results. However,
the calculation complexity is usually large and there are a
number of parameters need to be adjusted.

D. DEEP LEARNING METHODS
Deep learning has seen a booming in various research areas
in recent years, and some successes have been achieved in
the area of mesh filtering. Wang et al. [24] proposed a mesh

filter by learning cascaded non-linear regression functions
from a set of noisy meshes and their ground-truth counter-
parts. Compared with [24] with one-step learning technique,
Wang et al. [9] learned one more step, that was from filtered
models to their ground-truths for recovering the geometry
lost during the first-step denoising procedure. The first step
in [9] is to learn the mapping function from the noisy model
set to its ground-truth counterpart set using neural networks
for removing noises. And then the second step is to learn
the reverse procedure of mesh filtering using the learned
regression function sequences for the recovery of geometry.
Deep learning methods have performed well, but the training
processes are time-consuming. And the achieved well trained
models are heavily affected by the data set, namely, features
that are not included in the training data set cannot be recov-
ered.

III. PREPARATION AND OVERVIEW
A. NOTATIONS AND RELATED CLASSICAL MESH
DENOISING ALGORITHMS
Mesh denoising methods usually operate on the triangular
meshes, which i-th facet is denoted as fi, and its correspond-
ing facet normal and centroid are represented as ni and ci
respectively.

Zheng et al. [27] proposed one classical filtering algorithm
based on facet normals, which extends the classical bilateral
filtering from 2D images to 3D triangular meshes in a natural
way as follows:

nt+1i =

∑
j∈N (i) ωc(||ci − cj||)ωs(||n

t
i − n

t
j ||)ξijn

t
j∑

j∈N (i) ωc(||ci − cj||)ωs(||n
t
i − n

t
j ||)ξij

, (1)
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where, nti denotes the i-th facet normal achieved by the t-
th iteration, N (i) represents the neighborhood of fi, ξij is a
parameter related to the sampling rate, and ωc and ωs repre-
sent the Gaussian kernel functions for smoothing differences
in centrods and normals. Neighbor facets which are closer in
the centroids or are similar in facet normals contribute larger
weights in the above filtering. And ωc and ωs are defined as:

ωc(||ci − cj||) = exp(−
||ci − cj||2

2σ 2
c

)

ωs(||nti − n
t
j ||) = exp(−

||nti − n
t
j ||

2

2σ 2
s

).
(2)

Here, σc and σs are the variance parameters of the correspond-
ing Gaussian functions. σs is sensitive to the geometry of the
mesh model, and only a proper settings of it can afford desir-
able feature-preserving denoising results. Therefore, various
algorithms have been raised to pre-process the noisy models
for the prediction of the feature locations. And the other way
to preserve the feature information during denoising process
is to add the information from the original noisy model back
in an iterative way as shown in [30]. The core formula in [30]
is:

nt+1i =

∑
j∈N (i) ωc(||ci − cj||)ωs(||n

t
i − n

t
j ||)ξijnj∑

j∈N (i) ωc(||ci − cj||)ωs(||n
t
i − n

t
j ||)ξij

. (3)

It’s clear that, the only difference between Eq. (1) and Eq. (3)
is the filtering objects, which changes from ntj to nj. This
avoids the lost of original information from the noisy model,
thus helping preserve the features.

B. OVERVIEW OF OUR FRAMEWORK
The main purpose of this paper is to provide one simple
but efficient way for putting forward adaptive and feature-
preserving mesh denoising schemes. Since there exists heavy
computational cost in the preprocessing of other methods
for feature detection, we propose to analyze and detect the
potential features and smooth regions during the denoising
process. And this idea can be introduced to various kinds
of denoising methods, either new methods or conventional
methods. We, in this paper, come up with two schemes, one
scheme based on linear interpolation is a brand new way for
denoising and other one is the modification of one existed
optimization-based denoising method.

As stated in the related works, denoising methods usually
rely on multiple steps or iterations, thus the facet normals
are adjusted gradually. Take the bilateral filtering introduced
above as an example, the facet normals in smooth regions
are adjusted in the first several iterations and then tend to
be unchanged. That is to say, if we measure the differences
between the filtered facet normals and the original noisy facet
normals, the differences in smooth regions are tend to be
small, and those in the feature regions are relatively large.
Therefore, we propose to utilize the observation for raising
the developmental guidance for further adaptive denoising.

Then, we introduce the proposed developmental guidance
to one brand new denoising scheme based on linear inter-
polation. It has been verified that the over-smoothed models
contain the structure information of the original models. And
the noisy models, though contaminated with noises, contain
the complete feature and detail information (as stated in [30]).
Therefore, we propose to exploit the information contained in
the over-smoothed models and noisy models simultaneously
through the simple but effective way of linear interpola-
tion. And by setting the interpolation parameter adaptively
based on the developmental guidance, the proposed scheme
become adaptive to local geometry and feature-preserving.
This also provides an efficient way to recover different levels
of features for the concerned model. Then by proposing a
stop criterion, the iterative scheme can obtain ideal denoising
results.

In order to demonstrate the generalization ability of our
framework, we also propose one global scheme viamodifying
one well-known optimization based method. The global filter
is known to be non-interative and robust to sampling, how-
ever, since the facet normals are treated equally in the opti-
mization process, the weak features are not preserved well.
So we introduce the developmental guidance (constructed
via one-step pre-filtering) to reweight facet-wise items in
the global optimization model. The facet-wise reweighting
operation takes much consideration of the local geometric
shape, thus helping preserve the features adaptively.

IV. ADAPTIVE LOCAL SCHEME FOR DENOISING
A. LINEAR INTERPOLATION BASED SCHEME
Inspired by the guided normal filter, we propose to
preserve the original feature information by incorporat-
ing the noisy model into the iterative filtering process.
Since over-smoothed models are well-known to contain the
low-frequency and structural information. Here, we set up
our first scheme based on the linear interpolation between
the noisy model and the over-smoothed model to preserve
both the low-frequency (structure information) and high-
frequency (detailed feature information) features.

For a given noisy model, the above idea can be expressed
as:

nt+1i = (1− α)nti + αni, (4)

where, nti denotes the updated normal of the i-th facet in the t-
th iteration (t = 0, 1, 2, . . .), the α is a balance parameter and
n0i is the over-smoothedmodel. It can be seen that, we directly
add the original facet normals back in a linear interpolation
way iteratively. And the Eq. (4) can be rewrote as:

nt+1i = nti + α(ni − n
t
i ). (5)

The second item in the above equation can be seen as the
increment in the t-th iteration, and it is determined by the
difference between ni and nti . We define this difference as
the developmental guidance, which is denoted as Dti =
||ni−nti ||2 (as illustrated in the red dashed rectangle in Fig. 1).
Fig. 2 shows the results (on the cube model) from the above
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FIGURE 2. The variation of facet normals on the cube model in the process of linear interpolation (from (a) to (d)), with red and
green rectangles zooming in to view the feature and smooth regions respectively.

linear interpolation process. It’s clear that the features are
recovered gradually (from Fig. 2(a) to Fig. 2(d)). During this
process, the facet normals on the smooth regions (in green
rectangles) change less compared with those on the feature
regions (in red rectangles). That is to say, the developmental
guidance Dti is relatively small in the smooth regions. Thus
little information is added to the smooth region during the
interpolation, namely, this required that nt+1i ≈ nti . To this
end, we change the balance parameter to be a function φ(x)
related to Dti , and then Eq. (5) is turned into:

nt+1i = nti + φ(D
t
i )(ni − n

t
i ). (6)

Then, from the above analysis, the nonlinear function φ(x)
should satisfy: lim|x|→0 φ(x) = 0. On the other hand,
Dti should be relatively large on the feature regions due to
the smoothing effect. That is to say, the features should be
added back to the over-smoothed model. Although the noisy
model contains noises, it also holds the complete feature
information. Therefore, the feature regions should be similar
to those on the noisy model, namely, for the facet on the
feature regions, it requires: nti ≈ ni and lim|x|→+∞ φ(x) = 1.
With all of the above considerations, we finally define φ(x)
as:

φ(x) = 1− exp(−
x2

2σ 2 ). (7)

σ is a scale parameter to control the speed for φ to increase to
1 and decrease to 0, and it can be empirically set in the interval
of (0.1, 3). It can be seen that, if |Dti | ≥ 3σ , φ(Dti ) ≥ 0.99,
which guarantees the restoration of feature information from
the noisy model. From Eq. (6) and Eq. (7), it can be seen
that our local scheme is actually an adaptive interpolation
process, which judges the i-th facet belongs to feature regions
or smooth regions according to the developmental guidance
Dti and adaptively interpolates from the over-smoothed model
and noisy model based on φ(Dti ).

B. THEORETICAL ANALYSIS ON THE INTERPOLATION
BASED SCHEME
We, in this subsection, will conduct further theoretical anal-
ysis on the interpolation based scheme. From Eq. (6) and the
fact that n0i is the facet normal from the over-smoothedmodel,
we can use mathematical induction to prove that:

nt+1i = 8tn0i + (1−8t )ni, (8)

where

8t
=

t∏
k=1

(1− φ(Dki )) = exp(−
1

2σ 2

t∑
k=1

(Dki )
2). (9)

And this equation can better reflect our interpolation-based
denoising idea. That is, the denoised model can be seen as
the interpolated results from the over-smoothed model and
the noisy model.

Then, we can easily prove that our iterative local scheme
converges to the original noisy model. Since

∑t
k=1(D

k
i )

2
≥∑t−1

k=1(D
k
i )

2, we have{
8t < 8t−1 if nti 6= ni
8t
= 8t−1 if nti = ni.

(10)

And if we define εt = |nt+1i − ni| = 8t
|n0i − ni|, we have

0 ≤ εt < εt−1. Therefore, εt is a decreasing function
of t , ensuring that the output of Eq. (8) is getting closer
to the noisy model as the iterations proceed. From Fig. 3,
it can be seen that, the interpolation outputs are added with
more details iteratively (from Fig. 3(a) to Fig. 3(d)), namely
different levels of features are recovered. And this also illus-
trates the convergence of the interpolation algorithm. Fig. 4(a)
demonstrates the convergence measured by the mean squared
difference (on the fandisk model with 0.2 Gaussian noises)
defined as:

ηt =
1
M

M∑
i=1

|nti − ni|
2, (11)

whereM is the number of the facets on the mesh model.
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FIGURE 3. The intermediate outputs of our iterative interpolation based denoising scheme, with (a)-(d) denoting the bunny models
with more and more details (namely, different levels of features are recovered).

FIGURE 4. (a) shows the convergence of our iterative scheme measured by the mean squared difference, and (b) shows the
variation of the proposed objective function for selecting the number of iterations.

TABLE 1. Run time for different methods.

C. STOPPING CRITERION
To avoid the manual adjustment of the number of iterations,
we propose to determine the iteration number based on one
stopping criterion defined by the minimization of the follow-
ing objective function:

J (t) =
M∑
i=1

Dti + β
M∑
i=1

L(nti ), (12)

where, L(nti ) = ||nti − Ki
∑

j∈N (i) ωijn
t
j ||

2 and Ki =
1/

∑
j∈N (i) ωij, ωij can be directly defined as the same with

the bilateral weights proposed in [27] (the settings of which
will be detailed in the section of experiments and discus-
sions), and β is the balance parameter between the first
item (sum of differences) and the second item (smooth mea-
surement). This objective function is tested to be effective
in measuring the denoising results. As can be seen from
Fig. 4(b), with different settings of β, 4 or 5 iterations can
afford the minimal values of J (t), and the denoising results
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Algorithm 1 Linear Interpolation Based Denoising Algo-
rithm
Require: Noisy model.
Ensure: Denoised model.
1: Compute the facet normals (denoted as {ni}) of the noisy

model.
2: Achieve the over-smoothed model (denoted as n0i ) with

any kind of smoothing/denoising algorithm.
3: for t = 0→ tS do

(tS is the iteration number set according to the stopping
criterion)

4: Compute developmental guidance Dti = ||ni − n
t
i ||

2;
5: Compute the interpolation parameter φ

according to Eq. (7);
6: Update the facet normals based on adaptive linear

interpolation according to Eq. (6);
7: end for
8: Update the positions based on the final nti .

are also visually ideal. The overall algorithm is detailed in
Algorithm 1.

V. ADAPTIVE GLOBAL SCHEME FOR MESH DENOISING
A. GLOBAL SCHEME BASED ON ADAPTIVE OPTIMIZATION
Global algorithms are well-known to be more stable com-
pared with local schemes due to the non-iterative nature.
Zheng et al. [27] proposed the global method based on the
following global optimization model:

ñi = argmin
ñi

(1− λ)
M∑
i=1

AiL(ñi)+ λ
M∑
i=1

Ai||ñi − ni||22,

(13)

where Ai denotes the area of the i-th facet. The minimization
of the above objective function is well-known to be effec-
tive in smoothing the geometric details, namely, the high-
frequency information including the noises together with the
weak features. That is to say, it smooths the model surfaces
without specific consideration of the features and noises, thus
leading to the loss of the features to some level. Although
Zheng et al. [27] provided the anisotropic setting of L,
the strength for smoothing all the facets on the whole model is
the same. However, the facet normals on the smooth regions
are expected to be smoothed with more strength, while those
on the feature regions should be smoothed with less strength.
Then, under the action of global optimization, the noises can
be removed while the features can be preserved.

To this end, we propose our global scheme as follows:

ñi = argmin
ñi

(1− λ)
M∑
i=1

AiGiL(ñi)+ λ
M∑
i=1

Ai||ñi − ni||22,

(14)

where λ can be empirically set in the interval of (0.05, 0.1),
and Gi is defined based on the developmental guidance (as

TABLE 2. Comparisons with other methods by setting proper parameters
for all the methods.

stated in the above section) as:

Gi = exp(
Di
2σ 2

g
), (15)

where, σg can be empirically set according to the scale
of Di (e.g. 0.5 ∗ mean(Di)). The developmental guidance
here is not computed in any iterative process, it is inferred
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FIGURE 5. Demonstration of the robustness of our schemes to different categories and levels of noises on the
Nicolo model. (a) shows the original Nicolo model without noise, (b) and (c) show the models added with
0.3 and 0.5 Gaussian noises, (d) shows the model added with 50% impulse noises with scale of 0.6 mean
edge length, and (e) shows the model added with mixed Gaussian-impulse noises (0.3 Gaussian and 50%
0.3 impulse noises).

FIGURE 6. Demonstration of the robustness to irregular sampling and defects, with the upper and lower rows showing the models with irregular
samplings and defects respectively.

from the one-step over-smoothing as illustrated in the red
dashed rectangle in Fig. 1. Given the facet normals of the
over-smoothed model n0i , then Di = ni − n0i . For original

model with large noises, the resultedDi may be contaminated
with noises to some level, we find that a simple step of
Gaussian filter on Di can afford ideal results. It is easy to
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FIGURE 7. Comparisons on feature detection based on the denoised models (achieved by different methods), with yellow dashed ellipses indicating the
positions of weak features.

FIGURE 8. Visual comparisons on the synthetic pyramid model.

see that, our global scheme actually reweights the global
optimization model based on the developmental guidance.
This reweighting operation helps penalize the smooth and
feature regions adaptively, enabling the feature-preserving
denoising.

B. UPDATES OF VERTEX POSITIONS
With the facet normals filtered, we adopt the method
introduced in Yadav [25] to update the vertex positions.
There are two main parameters in this method, namely,
the number of vertex updating and the isotropic factor,
which will be discussed in the experiment and discussion
section.

VI. EXPERIMENTS AND DISCUSSIONS
In this section, we demonstrate the performance of our
approach via experiments in various aspects. All the exper-
iments were conducted on a 3.5GHz Intel(R) Core(TM)
i7 computer with 16GB memory. Since the iterative scheme
of our work is based on the simple linear interpolation, and
the global scheme is not iterative, both of them are with low
time cost. For all the experiments in our work, we utilize
the method in [26] to generate the over-smoothed model.
More timing details concerning versatile models for our lin-
ear interpolation based scheme (denoted as LI scheme) and
global optimization based scheme (denoted as GO scheme)
are shown in Table 1. For the methods concerned in this
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FIGURE 9. Visual comparisons on the synthetic dragon model.

FIGURE 10. Visual comparisons on the synthetic Julius model.

table, we implemented Zheng [27] (Local and global) in
Matlab as our methods and implemented Zhang et al. [29]
and He et al. [31] in C++. We adjusted the parameters as
shown in Table 2 and achieved the ideal results with the same
running time as reported in the corresponding papers.

A. PROPERTIES OF OUR SCHEMES
To show the performances and properties of our schemes,
we conduct experiments on a number of models in various
complex cases.

1) ROBUSTNESS TO DIFFERENT CATEGORIES AND LEVELS
OF NOISES
Here, we add three kinds of synthetic noises to the 3D mod-
els, which mainly include the zero-mean Gaussian noises,

impluse and mixed Gaussian-impulse noises. We add 0.3 and
0.5 Gaussian noises (with standard deviation proportional to
the average edge length of the original model) to the Nicolo
model and achieve the noisy model as shown in Fig. 5(b)
and Fig. 5(c). Then we add 50% impulse noises with
scale of 0.6 mean edge length to the Nicolo model as
shown in Fig. 5(d), and add mixed Gaussian-impulse noises
(0.3 Gaussian and 50% 0.3 impulse noises) to the Nicolo
model as shown in Fig. 5(e). And the denoised results in
the second and third rows demonstrate the robustness of our
shemes. It can be seen that, both of our schemes can achieve
ideal feature-preserving denoising results even when the
models are contaminated with severe noises that are visually
unclear. And the linear interpolation based scheme performs
better in dealing with severe noises due to the iterative and
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FIGURE 11. Visual comparisons on the synthetic skull model.

adaptive interpolation process for preserving and recovering
the geometric features.

2) ROBUSTNESS IRREGULAR SAMPLING
Our global scheme is based on the global optimization
with sampling rate parameter incorporated in the optimiza-
tion model, therefore it is robust to the irregular sampling.
As shown in the upper row in Fig. 6, the left and right parts of
the Max model is with different sampling rate. The Nicolo
model shown in the Fig. 5 is also with irregular sampling
rate. From the denoising results in these two figures, it can
be seen that both of our schemes can well deal with such
complex cases and obtain the visually correct results. Our
global scheme can better preserve the geometric features
in case of irregular sampling and obtain uniform denoising
results.

3) ROBUSTNESS TO DEFECTS
The raw models obtained with scanning devices are usu-
ally contaminated with different kinds of defects. Holes are
among themost common defects. Sowe specifically dig holes
on the bunny model as shown in the lower row in Fig. 6.

It’s clear that both of our schemes can obtain ideal denoising
results with the boundaries preserved smooth and complete.

B. QUALITATIVE AND QUANTITATIVE COMPARISONS
In this section, we will make vast comparisons with the
classical methods and the state-of-the-arts. The contrastive
methods and their parameters are as follows: the bilateral
filtering proposed by Fleishman et al. [26] (n1), the robust
statistics proposed by Jones et al. [39] (σr1, σg), the unilateral
filtering algorithm proposed by sun et al. [20] (T , n1, n2) the
normal filter proposed by Zhang et al. [29] (r , σr , kiter , Viter ),
the L0 minimization proposed byHe et al. [31] (λ1, α0, β0, uα ,
βmax), the global (λ2, σs1,n1) and local (σs2,n1,n2) methods
proposed by Zheng et al. [27], and robust feature-preserving
denoising proposed by Yadav et al. [25] (σs, σc, Viter ). The
LI and GO methods proposed in this paper contain four
parameters(σ , n1, n2, λI ) and five parameters(λ, σs, σg, n2,
λI ) respectively. Among them, n2, λ1 are the shared parame-
ters in the methods concerned. n1 is the number of iterations
for normal updating, n2 is the number of iterations for vertice
position updating, λI is the isotropic smoothing or the mesh
fidelity factor, which can be empirically set to the range of
[0.2,0.5]. λ is the balance parameter for our global filter. σs
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FIGURE 12. Visual comparisons on the synthetic iH-bunny model.

is the Gaussian convolution parameter of the global filter.
σ and σg are the adaptive coefficients of local and global
algorithms, respectively. The adaptive coefficients may be
selected according to the noise level of the model concerned.

1) QUANTITATIVE COMPARISONS
To present fair comparisons, we adjust all the parameters in
the above methods as shown in Table 2. Here, we introduce
the Mean Square Angular Error (MSAE) to measure the
filtering results, which is defined as:

MSAE = E
[
(nGTi , ñi)

]
, (16)

where, nGTi and ñi denote the ground truth facet normal
and filtered facet normal respectively, and E [·] represents
the expectation. It can be seen from the table that, our lin-
ear interpolation scheme can obtain low MSAE values on
different models. And the global scheme also obtains ideal
results.

2) QUALITATIVE COMPARISONS
For the qualitative comparisons, we conduct experiments on
two main categories of models, namely, synthetic models
and real-world raw models, and we add different levels of
Gaussian noises to the concerned models. We specifically

choose the classical synthetic models of fandisk, pyramid,
skull, dragon, bunny, Julius and Max. The fandisk model
(as shown in Fig. 7) contains both strong features and weak
features, which are the focal points of denoising algorithms.
We adopt the feature detection method introduced in [40] to
detect the features on filtered models achieved with different
algorithms. It can be seen that, both of our schemes can
preserve the features very well and the weak features detected
by our schemes can better approximate those on the original
model.

Furthermore, the denoising results in Fig. 8 to Fig. 13
demonstrate that our method can obtain more feature-
preserving results compared with other methods, which can
be seen more clearly via the zoom-in figures. For the curve
on the head of the skull model, the teeth on the skull model,
the details on the dragon head, Fleishman et al. [26] and
Jones et al. [39] preserve the details, however, the noises
are not removed thoroughly, and more artifacts are brought
in. Although Zhang et al. [29] and Yadav et al. [25] can
remove the noises, the geometric features have been removed
to different levels. The local and global methods from
Zheng et al. [27] obtain better results compared with others,
while our method takes additional consideration on the dis-
criminations on features and noises, thus can better preserve
the geometric details. For the pyramid and Max model with
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FIGURE 13. Visual comparisons on the synthetic Max model with irregular sampling rate.

FIGURE 14. Visual comparisons on the raw angel model.

irregular sampling rate, the methods from Sun et al. [20],
Fleishman et al. [26] and Yadav et al. [25] obtain the obvious
asymmetric denoising results. The global optimization based
methods (e.g. Zheng et al. [27] and ourGO scheme) can better
deal with the irregular sampling. Besides, our schemes can
preserve the detailed features.

As for the real-world raw data, we conduct experiments
on the angel, wilhelm, rabbit and vase model (as shown
from Fig. 14 to Fig. 17). Although the raw models contain
low level of noises, they are contaminated with different
kinds of defects, such as the open boundaries, holes, etc.
From the zoom-in subfigures in Fig. 14, it can be seen that
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FIGURE 15. Visual comparisons on the raw wilhelm model, with the red dashed circles indicating the recovered feature regions.

FIGURE 16. Visual comparisons on the raw rabbit model.

Zhang et al. [29], Yadav et al. [25] and the others remove the
features around eyes and nose of the angel model. In com-
parison, our methods can remove the noises, and at the same
time well preserve the geometric structures and details (esp.
the eyes of the angels). The wilhelm model and rabbit model

(as shown in Fig. 15 and Fig. 16) both contain the hairs and
muscles. And the denoising results show that our methods can
simultaneously remove the noises and preserve the details and
weak features as highlighted with the dashed red circles in the
figures. As for the vase model in Fig. 17, since the boundary
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FIGURE 17. Visual comparisons on the raw vase model.

of it is open and irregular, the method in Jones et al. [39]
may encounter the boundary problem. And the other methods
destroy the textures in the vase model to different levels.
Thanks to our developmental guidance, our adaptive schemes
can better detect and protect the features and main textures.

VII. CONCLUSION
This paper has proposed two schemes for mesh denois-
ing, namely, adaptive linear interpolation based scheme and
global optimization based scheme for feature-preserving
denoising. By introducing developmental guidance into both
of the proposed schemes, we make the denoising processes
adaptive to the positions of feature and smooth regions.
Extensive experiments have shown the feature-preserving
results obtained by the two schemes. With the proposed
stop criterion, the iterative linear interpolation based scheme
is time-saving and robust to severe noises. And the global
scheme can better preserve the details compared to the exist-
ing global methods, and shows robustness to irregular sam-
pling. The feature-preserving property of the two schemes
verify the effectiveness of the proposed developmental guid-
ance. Our future work will concentrate on exploring more
kinds of developmental kind of guidance and dealing with
more complex models in the real world with different defects.
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