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ABSTRACT Two important aspects in dealing with autonomous navigation of a swarm of drones are
collision avoidance mechanism and formation control strategy; a possible competition between these two
modes of operation may have negative implications for success and efficiency of the mission. This issue
is exacerbated in the case of distributed formation control in leader-follower based swarms of drones since
nodes concurrently decide and act through individual observation of neighbouring nodes’ states and actions.
To dynamically handle this duality of control, a plan of action for multi-priority control is required. In this
paper, we propose amethod for formation-collision co-awareness by adapting the thin-plate splines algorithm
tominimize deformation of the swarm’s formation while avoiding obstacles. Furthermore, we use a non-rigid
mapping function to reduce the lag caused by such maneuvers. Simulation results show that the proposed
methodology maintains the desired formation very closely in the presence of obstacles, while the response
time and overall energy efficiency of the swarm is significantly improved in comparison with the existing
methods where collision avoidance and formation control are only loosely coupled. Another important result
of using non-rigid mapping is that the slowing down effect of obstacles on the overall speed of the swarm is
significantly reduced, making our approach especially suitable for time critical missions.

INDEX TERMS Autonomous aerial vehicles, collision avoidance, multi-robot systems, formation mainte-
nance, swarm intelligence, leader follower.

I. INTRODUCTION
Resource utilization and decision making optimization in
autonomous navigation for a swarm of robots is gaining
traction in the research community [1]. The motive for this
is the absence of a multi-objective strategy in the tradi-
tional operation of robots, e.g., drones/UAVs, for optimally or
near-optimally achieving various system goals under various
mission or design constraints such as the flight time and
energy payload [2], [3].

Swarms of drones have demand in vast and diverse appli-
cation areas for instance in the military, commercial use,
search and rescue, monitoring traffic, threat detection espe-
cially at borders, and atmospheric research purposes [4],
[5]. Due to the ability to work in a collaborative manner
in a 3-dimensional space, research on optimal navigation of
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swarms is gaining even more attention in the research com-
munity [6]. The deployment of an efficient navigation sys-
tem for swarms or multiple UAVs adds significant research
challenges over single UAVs. Two important raised chal-
lenges while focusing on navigation in a swarm of drones
are: 1) the formation and its maintenance and 2) collision
avoidance [7], [8]. Collision avoidance primarily focuses on
path planning of individual drones to steer clear of possible
collisions between the drones themselves within the swarm
and between drones and external obstacles in the environment
[8]. The responsibility of formation algorithms, in turn, is to
define the location of each drone with respect to the other
drones [9].

The interdependence of formation control and collision
avoidance is of significant importance as collision avoidance
needs to be considered in order to maintain the formation, and
similarly, in order to avoid collisions, the intended formation
needs to be considered. In the decision making for both
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processes, the stabilization time and energy consumption
minimization should be considered. Mainly a swarm deviates
from the formation for collision avoidance, i.e., to avoid an
obstacle, and after passing the obstacle the swarm turns back
again to the formation. This sequential process of deviation
and turning back must be safe, fast, and energy-efficient.

Several unanticipated parameters or factors may affect the
optimal implementation of collision avoidance along with a
dynamic formation control algorithm. For instance, a change
in the formation may be forced by prioritizing collision
avoidance over formation maintenance due to unaccounted
objects/obstacles or narrow gaps/openings between multiple
obstacles. In order to do the whole process autonomously,
we need to analyse how collision avoidance and formation
control can be systematically integrated together. In this
paper, the proposed algorithm considers these factors by
taking into account the strategy of maintaining the swarm
formation dynamically with variable speeds of UAVs along
with an efficient collision avoidance methodology. To make
it safe, each drone should obey a maximum possible distance
from the obstacle and other drones. To make it fast and
energy-efficient, the shortest spatial deviation and turning
back should be considered. In our proposed method, the devi-
ation phase follows reflexive decision making due to the
uncertainty of the obstacle. The main objective is to reduce
the spatial deviation while keeping a safe distance. For the
turn back phase, we propose an energy function for the swarm
formation inspired by the energy function of a thin-plate
spline, where the result of minimizing this energy function,
determines the navigation decision for each drone to resume
the formation. Our approach focuses on integrating all these
features together along with reducing the total energy of the
system. Once these factors have been taken into account,
and the pattern has been developed for switching between
the formation maintenance and collision avoidance modes
autonomously, the thin-plate splines technique is integrated
into the algorithm in order to optimize it further by reducing
the overall energy of the system. This technique helps by
optimally reducing the disturbances caused by obstacle(s) by
bringing the node(s)1 orUAVs back to their stable coordinates
in a timely yet aggressive manner.

The contributions of this paper compared with our previous
paper and the state-of-the-art are listed as follows:

1) Proposing a new idea to reduce the time and energy
through random dispersion of drones in the first phase
of detecting an obstacle.

2) Proposing a new idea to reduce the time and energy by
applying the thin-plate splines algorithm in the second
phase of detecting an obstacle.

3) Providing comprehensive simulation results for a
swarm of drones for the proposed idea and implement-
ing recent existing methods to show the efficiency of
our technique in comparison with those ideas.

1Terminologies UAVs, drones, and nodes are used interchangeably in this
paper.

The rest of the paper is organized as follows. Section 2
covers the related work. In Section 3, basic concepts of
formation, swarm, and collisions are briefly described. The
proposed algorithm and its development is given in Section 4.
Optimal swarm reconfiguration is explained in Section 5.
Section 6 focuses on simulation results and related discus-
sion. Finally, concluding remarks are presented in Section 7.

II. RELATED WORK
Formation control algorithms can be categorized into three
general approaches [10], [11], namely: 1) the virtual struc-
ture based approach, in which all the drones in the swarm
formation are navigated as if there was a single big drone
and hence the same trajectory is taken [12], [13]; 2) the
leader-follower based approach, where every drone functions
individually and autonomously by calibrating or altering its
position according to the leader and maintaining its position
in the formation as close as possible to the desired coor-
dinates [14], [15]; and 3) the behaviour based approach,
in which based on a pre-defined strategy the drone selects
one of the multiple behaviours [16], [17]. The leader-follower
based approach is more common out of the aforemen-
tioned approaches, due to its ease of analysis and imple-
mentation [18], [19]. In this approach, leaders are explicit,
and it is assumed that all or some of the followers have
access, when required, to relevant motion information such
as velocities and positions of the leaders within their sensing
range [20], [21].

With the integration of commercial, leisure based and
military UAVs and/or aircraft, a good collision avoidance
algorithm or system becomes exponentially important for
their safe operation in the civilian airspace [22]. During the
flight, they can encounter both stationary and moving obsta-
cles and objects that need to be safely and reliably evaded
using the collision avoidance system [23], [24]. Typically,
algorithms for collision avoidance can be divided into three
generic classes [25], [26]: 1) force-fieldmethods that work on
the principle of applying attractive/repulsive electric forces
existing amongst charged objects; each drone in a swarm
is considered a charged particle, and attractive or repulsive
forces between drones and the obstacles are used to generate
and choose the routes to be taken [27], [28]; 2) sense-and-
avoid based methods, where the process of collision avoid-
ance is simplified into individual detection and avoidance of
the objects and obstacles, resulting in short response times
and reducing the computational power needed [29], [30];
and 3) optimization based methods which focus on providing
the optimal or near-optimal solutions for path planning and
motion characteristics of each drone with respect to the other
drones and obstacles. In order to calculate efficient routes
within a finite time horizon, these methods rely on static
objects with known locations and dimensions [31], [32].

In formation flight, UAVs/nodes perform varying maneu-
vers like accelerating, decelerating, synchronized move-
ments, and turning in different directions, that require each
member of the formation to have a specificminimumdistance
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from other members. To successfully perform those maneu-
vers and missions, nodes must have the ability to avoid
collisions with other nodes in the swarm and with external
obstacles [27], [33].

Basically, the collision avoidance process while keeping
the formation consists of two main phases, i.e., 1) reform-
ing the swarm to avoid a collision while approaching an
obstacle and 2) resuming the formation after passing the
obstacle. Most of the existing works completely lack such
tight integration of dynamic formation maintenance and col-
lision avoidance strategies. They either focus on keeping
the formation or avoiding collisions based on state-of-the-
art collision avoidance algorithms. In our proposed method-
ology, we integrate dynamic formation maintenance along
with collision avoidance capabilities for swarms to address
an important research topic not properly covered by the state-
of-the-art. For formation control of the swarm, we utilize the
leader-follower based approach due to its ease of implemen-
tation, analysis, and scalability [20], [23]. The objective of
our approach is to reduce the collision avoidance time and
energy consumption during the reformation and resuming
processes. During this formation morphing, the leadership of
the swarm might be totally changed (as shown in Figure 1),
and an ex-follower drone may take the role of the leader,
further highlighting the novelty of the proposed method with
respect to the state-of-the-art. It is important to note here that
the overlapping of the UAV1 and UAV2 (shown as blue and
green paths) is at different times, that is due to the fact as
soon as UAV 2 detects UAV1 coming in front of it to bypass
the obstacle, UAV2 slows down to maintain safe distance
with UAV1 while maintaining its own trajectory for obstacle
avoidance. As shown in the figure, UAV3 had minimum
deviation and did not have to slow down as much, it may
bypass the obstacle before UAV1 (the original leader), and
hence UAV3 may take the role of the new leader as shown
in Figure 1.

FIGURE 1. Formation and collision avoidance.

III. PRELIMINARIES
This section describes the basic concepts essential for the
work presented in this paper.
Swarm robotics can be defined as the study of how a system

consisting of multiple collaborating robots can be designed
by analyzing the local interactions between the robots them-
selves and the robots and their environment [34]. It is strongly
inspired by real-life phenomena such as swarms of insects and

flocks of birds. It is also referred to as distributed robotics
[35], robot colonies [36], and collective robotics [37].

A formation in swarm robotics refers to a desired arrange-
ment of the robots in a swarm, a particular arrangement or
shape of positions the multiple robots aim to maintain with
respect to each other. The swarm can be ordered to maintain
a certain shape of formation to perform a given mission [38].
In a queue formation, drones or robots form a simple line or
sequence, following each other and maintaining the distance
between each other within a given range. Its key benefit is that
it enables a swarm to pass through obstacles without breaking
the formation. Any arbitrarily shaped formation may have
to reorganize itself into a queue formation in order to avoid
and navigate through multiple obstacles while maintaining
connectivity and tracking between the nodes.

A drone is defined to have a collision with an object,
i.e., another drone within the swarm or an external obstacle,
if the distance of the drone to the object is less than a predeter-
mined collision radius, Rc. Expressing this mathematically,
a collision is considered taking place when the following
condition is true:

||ru − ro|| < Rc (1)

where ru and ro are the position vectors of the UAV and the
object, respectively.

Similarly, an obstacle is detected by a drone, when the
following condition holds:

||ru − ro|| < dRange (2)

where dRange is the detection range radius of the UAV, which
varies and is dependent on the characteristics of the on-board
sensor system.

For ease of simplicity, the following assumptions and ini-
tial conditions are used in this study:

1) All obstacles are stationary and/or can be introduced in
front of the UAVs at any given time.

2) UAVs have variable speeds and accelerate or decelerate
as needed. Using an on-board sensor system, every
UAV obtains its own position and velocity vectors.
The on-board sensor system could include lidar, sonar,
radar, and GPS to mention a few.

3) There is no information loss in the communication
channels between the UAVs.

IV. THE PROPOSED APPROACH
In this section, we describe the proposed Energy-efficient
Formation morphing for Collision Avoidance (EFMCA)
algorithm for a swarm of drones. The overall strategy is
to combine swarm formation control and collision avoid-
ance mechanism to facilitate the process of autonomous
swarm navigation, Figure 1. To accomplish this, a novel
top-level algorithm is developed, composed of two partial
feedback-based algorithms: one for formation control and
one for collision avoidance. The feedback for each drone’s
controller comprises both collision radius and formation dis-
tance, and the goal is to minimize their errors, i.e., differences
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between the observed values and the reference values. The
angular error is the difference of the required angle from the
observed angle, indicating how much the node should turn
to maintain its position w.r.t. its neighbour. Correspondingly,
the distance error is the difference of the measured distance
from the reference distance, indicating how much the node
should get closer or farther to or from its neighbour.

If there is no feedback for an object detected by the
on-board sensor system, indicating there is no external object
in the vicinity, the algorithm maintains the formation by
dynamically checking and adjusting the distance of the drone
to its neighbours. The goal is to keep the distance greater than
the collision radius and close to the pre-specified formation
distance.

Upon detection of an obstacle, the algorithm raises the pri-
ority of the collision avoidance part. The collision avoidance
part of the algorithm gets the highest priority once the UAV
approaches the minimum safe distance from the obstacle.
After bypassing the obstacle(s), a Failsafe/Fault-Tolerance
check is executed to see if the UAV has lost its connection
or if it still has a connection with its respective leader.

A. FORMATION-COLLISION CO-AWARENESS
Algorithm 1 gives the general pseudo-code of the top-level
formation-collision co-awareness algorithm. As our initial
setup, we presume that the UAVs are spawned at random
coordinates, and also the IDs to the nodes/UAVs are assigned
before the mission is started. Every node executes this
top-level algorithm locally by deploying the algorithm on its
on-board processing unit. The path planning of the leaders
and the navigation of the swarm is out of the scope of this
work. Formation maintenance is initiated based on the feed-
back on the distance the node has to its neighbours (Line 2
in Algorithm 1). Then Eformation, i.e., the formation error,
is calculated. To achieve this, a threshold value is added to the
absolute value of the relative angular and distance position of
a drone with respect to its neighbours (Line 4). The degree
of freedom that each drone can have in the formation of
the swarm is determined by the threshold value. Depending
on whether an object is detected or not, the formation error
is processed accordingly. In case of an observed obstacle,
i.e., the obstacle comes within the detection range, the col-
lision error is calculated, specifying the difference between
the obstacle distance and the collision radius (Line 5).

There are three cases on which the algorithm works
(Lines 6-13). If there is a positive formation error, i.e., 0
< Eformation, but no probable obstacle in the vicinity, then,
in order to decrease the error, the algorithm utilizes the
Formation function to reconfigure the relative angular and
distance positions of the drones (Lines 8-9). The Collision-
aware formation function is executed in the case where an
obstacle is detected by the sensors, but there is no immediate
danger of a collision. Then the formation of the swarm is
reconfigured by considering the location of the obstacle under
observation (Lines 10-11). However, the Collision avoidance
function is launched, if the condition 0 < Ecollision is true

Algorithm 1 Formation-Collision Co-Awareness
procedure FORMATION-COLLISION CO-AWARENESS

2: formation← Initiate Formation;
while True do

4: Eformation ← Calculate distance and angular for-
mation error (formation);

Dobstacle, Ecollision← Calculate obstacle distance
and collision error if any;

6: STATE← (0< Eformation, Obstacle is probe-able
by local sensors, 0 < Ecollision);

switch STATE do
8: case (True, False, False)

Formation (Eformation);

10: case (-, True, False)
Collision-aware formation (Eformation,

Dobstacle);
12: case (-, -, True)

Collision avoidance (Ecollision);
14: TPS_Flag = True;

end switch
16: if TPS_Flag == True; then

Turn-Back(TPS_Flag);
18: end if

if MyLeader is out of range then
20: MyLeader ← Self ;

else
22: MyLeader ← Leader(Self );

end if
24: end while

end procedure

indicating the obstacle is too close to the drone (Lines 12-13).
This operation is oblivious of the formation, meaning that
formation protocols are completely ignored; only the distance
of the drone w.r.t. the obstacle matters. In this mode, only
Collision avoidance of the above three functions can be
executed; the two formation-adjusting functions are disabled,
independently of the value of Eformation.

Once a collision has been avoided successfully, the control
is transferred to the Turn-Back function to minimize the
disturbance caused by the evasive maneuvering, i.e., to bring
the nodes back into the formation as efficiently as possi-
ble (Lines 16-17). Since the disturbance caused by collision
avoidance might totally reform the swarm, this process might
be accompanied by selecting a new leader for the swarm.
As a fail-safe check, i.e., a special scenario in case the leader
is lost or undetectable by the follower, the follower drone
temporarily sets itself as its own leader, broadcasts this to
its followers, and starts navigating towards the destination
(Lines 19-20). However, as soon as the leader is detected,
i.e., gets back in the visible range, the drone immediately
comes back into the formation and the starts to follow the
leader (Lines 21-22). All the functions in Algorithm 1 are
explained in detail in the following subsections.
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Algorithm 2 Formation
procedure FORMATION ((Edistance, Eangular )← Eformation)

2: (distanceError , angularError) ← Rformation −
Eformation

if 0 < ABS(distanceError) then
4: Calculate Distance From Respective Leader;

Accelerate/decelerate Accordingly;
6: end if

if 0 < ABS(angularError) then
8: Set Angular Direction (Rangular );

end if
10: end procedure

FIGURE 2. Distance and direction calculation.

B. FORMATION ALGORITHM
A unique ID that is given to each node in the swarm, is used
by the other nodes and the leader for recognition purposes.
Then the leader starts navigating towards the destination; in
the meantime, the followers try and maintain the formation
by keeping the required distances from the respective neigh-
bours. The general pseudo-code of the formation function is
given in Algorithm 2. The input of the algorithm comprises
the pre-specified formation information that is considered the
reference, i.e., Rformation (consisting of the reference distance
Rdistance and angle Rangular ), and the instantaneous captured
formation information, i.e., Eformation, that is the estimated
distance and angle each drone has w.r.t. its neighbours (e.g.
the leader and follower in a queue formation) at a given
time. First, the deviation of each drone w.r.t. its pre-defined
position is determined by calculating the angular and distance
errors (Line 2 in Algorithm 2). The algorithm then starts to
change the state of the swarm by manipulating the node’s
mechanical actuators, in the case the angular or distance
error is greater than the defined threshold indicating that the
variation is significant and affects the formation negatively.
The distanceError is calculated as follows:

distanceError =
√
(Lx − Fx)2 + (Ly − Fy)2 (3)

where Fx , Fy and Lx , Ly are, respectively, the follower’s
and leader’s x and y-coordinates. If the distance error is
positive, indicating that the distance between the node and its
neighbour is too high, the drone accelerates to catch up and
attain the desired formation distance. Similarly, in the case
of a negative distance error, meaning that the distance of the
node to its neighbour is too low, the drone starts to decelerate
in order to decrease the absolute value of the distance error.

Algorithm 3 Collision-Aware Formation Algorithm
procedure COLLISION-AWARE

FORMATION(Eformation,Dobstacle)
2: newTemporaryFormation ← determineNewForma-

tion (Eformation,Dobstacle);
Formation (newTemporaryFormation);

4: end procedure

To maintain the desired distance and orientation, each drone
employs a local speed control for the possible manoeuvres.

Each follower determines the angle of the leader as shown
in Figure 2 and calculates as follows:

Angle(y, x) =



arctan(
y
x
) x > 0,

arctan(
y
x
)+ π x < 0 and y ≥ 0,

arctan(
y
x
)− π x < 0 and y < 0,

+
π
2 x = 0 and y > 0,
−
π
2 x = 0 and y < 0

(4)

The result is always between -π and π . Using the plane
vector from the origin to the target, the angle is formed w.r.t.
the positive X-axis. Since the signs of both inputs are known
and taken into consideration, the correct quadrant of the
computed angle, i.e., angularError , and the corresponding
direction values are calculated by using the result from the
above equation as follows:

angularError = (dx = cos(Angle), dy = sin(Angle)) (5)

C. COLLISION-AWARE FORMATION ALGORITHM
If it is not possible to maintain the formation due to the
detection of an obstacle by one of the nodes, Algorithm 1
calls the proposed collision-aware formation function. This
function is specified in Algorithm 3. The main plan of action
in situations, where Dobstacle (obstacle’s distance) is within
the range of a node but not small enough to justify the actual
collision avoidance measures, is to reshape the formation
while symmetrically shifting the swarm at the same time in
order to divert the observer node, and thereby its followers,
from the potential collision course. Based on this, the algo-
rithm first determines a new formation which is close to the
original one, making it easier to bypass the obstacle (Line 2 in
Algorithm 3). After this decision, the information regarding
the new formation is fed to the formation function in order
to reshape the swarm (Line 3). Then the obstacle distance
and the collision error are recalculated in the next iteration
of Algorithm 1 to check if the obstacle is still within the
detection range of the observer node or not. If the obstacle is
outside the detection range of the node, the formation returns
back to the original one (Lines 8-9 in Algorithm 1).

D. COLLISION AVOIDANCE ALGORITHM
The pseudo-code of the collision avoidance function is shown
in Algorithm 4. Collision avoidance function is invoked if
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an obstacle is encountered critically close to the node. First,
it starts to detect the edges of the obstacle, at which point
the angles between the node’s and obstacle’s positions as
well as the exact position of the obstacle can be determined
(Line 3 in Algorithm 4). If the edges of the obstacle are in
the visible range of the on-board sensor(s), it is checked if
there is only one obstacle or multiple obstacles in the vicinity
(Lines 4-5). In the case of multiple obstacles, the gap between
the obstacles is calculated as shown in Figure 4(a) (Line 6).
Then the algorithm checks and decides, based on the calcu-
lations, if it is safe and possible for the drone to go through
the detected gap (Lines 7-8). If the gap is not wide enough for
the drone to go through, the algorithm treats the obstacles as
a single entity and guides the drone around the obstacles to
avoid collisions (Lines 9-11). Moreover, if only one obstacle
is detected (Line 13), the short-term path planning is done
accordingly by calculating in which direction the node should
navigate to bypass the obstacle with minimal deviation from
its original path (Lines 13-14). However, in case neither edge
of the obstacle is visible/detected by the on-board sensor
system of the drone (Line 17), a tangent line is drawn from
the drone’s current position to the destination coordinates,
and the path is chosen accordingly by navigating towards
the destination while avoiding colliding with the obstacle and
staying as close to the tangent line as possible (Lines 18-19),
see Figure 4(b). The value of Ecollision is updated to check for
successful collision avoidance (Line 21).

Algorithm 4 Collision Avoidance Algorithm
procedure COLLISION AVOIDANCE(Ecollision)

2: while 0 < Ecollision do
edges← detect edges ();

4: if edges contains visible edges then
ifMore than one obstacle is detected then

6: Dsafe← Calculate gap between obstacles
(edges);

if Dsafe > Rc then
8: Short-term path planning (edges); F

Align UAV to pass through the obstacles
else

10: pathPlan ← Calculate path plan
(edges);

Short-term path planning (pathPlan);
12: end if

else
14: pathPlan← Calculate path plan (edges);

Short-term path planning (pathPlan);
16: end if

else
18: tangentLine← Calculate tangent line();

Short-term path planning (tangentLine);
20: end if

Ecollision← Update collision error;
22: end while

end procedure

To put in a nutshell, the proposed collision avoidance
function, i.e., Algorithm 4, operates based on three different
cases, namely: 1) there is a single obstacle in the vicinity and
its edges are detected, Figure 3; 2) there aremultiple obstacles
and their edges and gaps are detected, Figure 4(a); and 3) the
edges of the obstacle(s) are not visible, indicating the obstacle
is very large; in this scenario, the path is determined based
on a tangent line, Figure 4(b). If Dobstacle, i.e., the distance
from the drone to the obstacle, is within the middle ground of
the detection range and safe distance fs (Table 1, Figure 3),
the algorithm starts decelerating the drone while calculating
the angle at which the detected obstacle lies in order to
deviate from that path. The collision avoidance algorithm
takes complete control of the system as soon as Dobstacle gets
closer to fs and guides the drone to go around the obstacle
safely.

The situation in which the edges of a single obstacle are
detected by the nodes is illustrated in Figure 3. Table 1 lists
the used variables and their explanations.

FIGURE 3. Obstacle detection and avoidance using geometric guidance
law.

TABLE 1. Description of variables from Fig.

All possible combinations of the object’s location are anal-
ysed once the exact coordinates of the obstacle have been
calculated, and the decision is made accordingly. It is then
decided by the algorithm if it is safe to continue along the
current path or if the dronemust be diverted to a certain extent
to avoid colliding with the object. For instance, if a2 < (du/2)
+ fs (in Figure 3), the algorithm reroutes the drone to left
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FIGURE 4. Multiple objects and local decision making figures.

from its current route as continuing along the same path may
result in a collision with the obstacle on the right side of the
drone. However, in case a2 ≥ (du/2) + fs, no rerouting or
deviation from the original path is needed due to the fact that
the obstacle is on the right side of the drone and is not in the
critical collision radius.

Furthermore, upon detecting multiple obstacles and their
corresponding edges, two different actions can be performed,
i.e.: 1) extending the collision envelope whenDsafe ≤ Rc, and
2) activating the detection and gap calculation mode when
Dsafe > Rc. Here the distance between the inner edges of
the obstacles is indicated by Dsafe and the collision radius
is denoted by Rc. Based on action 1, both obstacles lying
in close proximity are considered a single entity, by extend-
ing the collision envelope, while calculating the avoidance
maneuver parameters (Lines 9-10 in Algorithm 4). In this
case, as shown in Figure 4(a), θ1L and θ2R are taken into
account due to the fact that both obstacles are treated as a
single obstacle. Then the calculations are performed to bypass
the combined obstacle by flying from either side (left or right)
of the obstacle.

In the latter case, i.e., the action 2, the algorithm analyses
the detected gap between the obstacles to determine if the
width Dsafe satisfies the condition Dsafe ≥ 2f s + du, where
du is the width of the drone and fs is the safe distance
(Table 1, Figure 3), indicating that the opening/gap between
the obstacles is wide enough for the drone to go through
them. However, if the condition is not satisfied, it indicates

that it is physically not possible for the drone to go through
the gap between the obstacles, i.e., the gap between the
obstacles is too narrow and smaller than thewidth of the drone
and hence does not provide sufficiently large safety margin.
Subsequently in this case, the algorithm switches back to the
action 1, i.e., instead of considering the angles θ1R and θ2L
like in the action 2, the algorithm opts for the angles θ1L and
θ2R (Figure 4(a)), and the obstacles are regarded as a single
obstacle which is then bypassed either from its left or right
side.

In the scenario where the obstacle extends beyond the vis-
ible range of the on-board sensor system and its dimensions
cannot be computed, the algorithm uses the data provided by
the local GPS unit to draw a tangent line to the destination,
that is the line defining the shortest path between the drone
and the destination, see Figure 4(b). The node, based on the
angle of the tangent, decides which direction it should opt
for. For example in Figure 4(b), in order to select from the
only possible choices that are west/left or east/right, using the
angle of the tangent line, it is determined that the destination
is towards the north-west of the drone. Consequently, to avoid
the obstacle and to stay as close to the tangent line as possible
while keeping the minimum safe distance from the obstacle
for safe maneuvering, the green path is chosen.

V. OPTIMAL SWARM RECONFIGURATION
After observing an obstacle in its flight path, a UAV needs
to maneuver around it according to rules set by the collision
avoidance algorithm. Such maneuvers generally distort the
shape of the swarm’s formation from the originally planned
shape that may, sometimes, be crucial to the success of its
mission. It is the intent of our submission to continually
guard the collision avoidance maneuvers such that the dis-
turbance from the planned, i.e. optimal, formation is kept at
the minimum during the course of the maneuver(s) and that,
after navigating past the obstacle(s), the swarm is returned
back to its initial formation. This process raises a formation
construction problem that is widely covered in the literature
[4], [39]. However, in our case, the formation algorithm,
or in other words the disturbance rejection of a swarm, must
be compatible with our obstacle avoidance algorithm whose
main target is to reduce the overall settling time and energy of
the system. It is worth mentioning that we deploy a non-rigid
mapping function for efficiency reasons. That is to say that
the process of returning the swarm formation to its original
shape is not required to re-establish initial neighbouring states
among the drones since all the drones are considered to be
identical. For example, in the original state drone 2 has two
neighbours drones 1 and 3, after reconstructing the formation
its new neighbours may be drones 4 and 5, it may even
become the new global leader. In the following text, we refer
to the original i.e. the desired formation shape as the model
formation, while the shape at any instant during the flight
is referred to as the scene. In the process of returning from
the scene to the model, there are two main questions to be
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addressed. Firstly, what is the optimal alignment of nodes in
the scene to node positions in the model? We name this as the
mapping problem. Secondly, what is the optimal trajectory of
each node in the scene so that it is mapped into the desired
node position in the model? For the first issue, we apply
the well-know concept of point set registration [40]–[42],
which is based on thin-plate splines formulation (TPS) that
is commonly used to solve data interpolation and smoothing
problems [43]. After determining the mapping strategy, for
the second problem, the proposed collision avoidance algo-
rithm utilizes the shortest path scheme for deciding trajec-
tories of individual nodes. Though a more efficient solution
for the second part may be possible, our current focus is on
designing an optimal mapping strategy, thus, it suffices to
indicate, here, that search for an efficient trajectory of each
node is one avenue for future work. In the following, we first
explain the concept of thin-plate splines (TPS), and then we
propose an algorithm based on the same.

A. THIN-PLATE SPLINES (TPS)
A spline is a function defined by polynomials in a piece-
wise manner. Spline curves are popular and are used for
approximation of complicated shapes via curve fitting due
to their ease of use and non-complicated construction [43].
We analyse the algorithm in 2D to make it simpler; conse-
quently, two sets of correspondence points, i.e., data sets,
are assumed X i.e. xi, i = 1, 2, 3, . . . , n and V i.e. vi, i =
1, 2, 3, . . . , n. Here, the locations of a point in the scene and
model are given by xi and vi respectively, where xi = (1, xix ,
xiy) and vi = (1, vix , viy). A mapping function, i.e., f (vi),
can be acquired while keeping the shape of the disturbed
formation/function under consideration, by minimizing the
energy function, ETPS , given by the following equation:

ETPS (f ) =
n∑
i=1

||xi − f (vi)||2

+ λ

∫∫
[(
∂2f
∂x2

)2+2(
∂2f
∂x∂y

)2 + (
∂2f
∂y2

)]dxdy (6)

The amount of formation disturbance is evaluated by the
energy function ETPS . The scaling factor is denoted by λ.
If we do not intend to keep the shape of the disturbed swarm
under consideration and only intend to map one point set over
the other, we set λ to zero then only the closest points are
mapped without the shape being considered. When the λ is
set to zero, ETPS , i.e., disturbance, is given by:

ETPS (f ) =
n∑
i=1

||xi − f (vi)||2 (7)

The mapping of points to the corresponding point sets
while considering the intended formation is represented by
the integral part of the equation. The mapping process from
the highest point in disturbance formation to the original
formation shape, i.e., the scene and the model, is determined
by minimizing of the temperature function. Once the desired

Algorithm 5 Turn-Back
procedure TURN-BACK (TPS_Flag)

2: while TPS_Flag == True do
FLocation = Determine the future location of the

swarm;
4: Determine the new coordinates for each drone;

Temperature function minimization:
TPS(FLocation);

6: if All nodes REACH new coordinates then
TPS_Flag← False;

8: end if
end while

10: end procedure

mapping is calculated, each drone in the scene starts follow-
ing the shortest path to reach its hypothetical position in the
model.

B. TURN-BACK FUNCTION
Algorithm 5 gives an overview of our TPS-based turn-back
function. First, the future location of each node in the swarm
is determined based on the current location of the nodes
(Line 3). Based on each node’s location, the new coordinates
are determined for each drone (Line 4). Next, these values
are fed to the TPS-based temperature minimization function,
to bring the drones to their new coordinates as optimally
as possible (Line 5). Once all drones have reached their
respective new coordinates (Line 6), TPS_Flag is set to False
and the control is returned to the main function (Line 7).

Figure 5 shows the example scenario where the swarm
comes across an obstacle and starts reshaping formation
while avoiding collision with the obstacle. Figure 5(a) shows
the initial phase of formation and the locations of all the
drones at the starting point. Figure 5(b), shows the distorted
formation and the locations of the drones at halfway stage.
In order to avoid the obstacle, UAV1 (red) had to slow down
and deviate from its original path, thus, it comes in front
of UAV2 (green). As soon as UAV2 detects UAV1 in its
way, it slows down to maintain safe distance from objects
ahead of itself. Whereas UAV3 (blue) needs only a small
deviation from its original path, thus, it gets ahead of the rest
of the formation and becomes a candidate for going to the
position of UAV1 instead of slowing down in order to retain
its earlier position in the model. UAVs 4 and 5, i.e., pink
and grey respectively, maintain their own trajectories as they
never camewithin colliding range of the obstacle. Figure 5(c),
shows the final reformation after collision avoidance. After
successfully avoiding the collision, in the reformation phase,
UAV3 moves to the original position of UAV1 in the model,
while UAV1 moves to the previous position of UAV2 and
UAV2 moves to the position which was originally occupied
by UAV3; all the while utilizing the shortest path to reach
their respective final locations.
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FIGURE 5. Flexible formation through obstacle scenario.

VI. SIMULATION & RESULTS
Simulation setup is as follows:
• area defined for simulations was setup as 700 × 500m
2D-XY plane

• all the UAVs are at the same altitude
• UAVs fly in horizon (self-leveling) mode instead of
space mode, since horizon mode offers stabilized
flight as the drone will self-level utilizing gyro and
accelerometer

• five UAVs are launched from random locations in close
proximity

• unique IDs are assigned to each UAV, incrementally
from 1 to 5

• a simple queue formation is chosen whereby each UAV
follows its immediate leader, while UAV with ID = 1,
is chosen as the global leader.

The point mass particle model is used for simulating and
visualizing the UAVs. By keeping the vertical axis constant,
the UAVs navigate only in the XY-plane. Therefore, the equa-
tions of motion applicable for a point-mass particle moving
in a 2D space are utilized here, and thus 6dof movements
are not considered in this work. Based on this, the dynamics
of the drone utilized in this work is only the mass of the
drone that has some initialized velocity vector and change
in the velocity, i.e., acceleration. Furthermore, it is important
to note here that algorithm is not restricted for rectangular
objects as it mainly depends on the perception precision of the
drone. Similarly, it can be perceived as during the perception
phase, each obstacle is encapsulated into a bounding box
and the algorithm takes into consideration those bounding
box. Increasing the precision of the perception, refines the
bounding box shape closer to the actual shape of the detected
obstacle.

Upon spawning, UAV1, the global leader, starts navigating
towards the destination, whereas the rest of the UAVs start to
maintain the desired formation by accelerating/decelerating
to reach their desired positions andmaintain the distance from
their respective leaders. To summarize, eachUAVi+1 starts to
track and follow UAVi, where i = 1, .., 4. Figure 6 shows the
scenario where fiveUAVs are spawned at random coordinates
in close proximity and come into formation by finding their
respective leaders. The positions and movement/trajectories
of the drones upon deployment and during early stages of
queue formation are depicted in Figure 6(a). The situation
emerging soon after the first obstacle, namely Obstacle A,

FIGURE 6. UAVs at random coordinates coming into formation by finding
their respective leaders and bypassing an obstacle. Here, the solid circle
in the center of each drone shows the Collision Radius, the outer hollow
circle depicts the Detection Range and the arrow indicates the direction
of movement.

comes within the visibility range of the leader is shown
in Figure 6(b). Here, the leader navigates along the obsta-
cle by keeping safe distance from it following Algorithm 4,
the remaining UAVs follow the leader while maintaining the
formation and keeping the safe distance from the obstacle as
well, as per Algorithm 3.

The trajectories of the drones while maintaining the forma-
tion and navigating through multiple obstacles are illustrated
in Figure 7. The situation whence the main leader observes
the second obstacle, namely Obstacle B, while traversing
along obstacle A is shown in Figure 7(a). Since there are two
obstacles with a large enough gap between them, the swarm’s
leader decides to go through the space between the two
obstacles, and the other UAVs follow the leader (multiple
obstacles case in Algorithm 4). Notice that in such a situation,
the shape of the queue formation is not a rigid line. Instead,
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FIGURE 7. Flexible queue formation through obstacles.

the drones reshape the formation into a bent/arched line e.g.
when passing between the obstacles, and return to a straight
line formation when they have passed the obstacles. This
demonstrates the robustness and agility/adaptability of the
proposed algorithm. The reformation process after coming
out of the obstacles and next to the destination is shown
in Figure 7(b).

An interesting situation, namely, the lost drone scenario is
illustrated in Figure 8, where one of the drones wanders too
far off from its immediate follower. Basically, it moves past
the obstacle before other drones come into formation and it
is, therefore, not in the range of its follower drone In the
instant scenario, the global leader, namely UAV1, is hidden
by an obstacle, therefore, its follower, namely UAV 2, loses
connection to it. Now, till such time that UAV1 comes in the
visible range of UAV2, the rest of the swarm continues its
journey toward the destination with UAV2 as the temporary
leader, as shown in Figure 8(a). When UAV1 becomes again
visible toUAV2, Figure 8(b), the swarm immediately resumes
the original formation and UAV2 and its followers accel-
erate towards the original leader UAV1. If UAV1 remains
invisible/lost, UAV2 and its followers continue their journey
without UAV1 until they reach the destination.

In order to analyse the efficiency and the performance
of the proposed algorithm, we report and compare some
acquiredmeasurements of the system that is based on our first
experiment as shown in Figure 6(b) above.

The velocity of eachUAV and the relative distance between
each UAV and its respective leader are shown in Figure 9.

FIGURE 8. Leader moves past the obstacle before formation.

FIGURE 9. Distance and velocity graph of the UAVs.

It is evident from the figure that, after the warm-up phase,
the relative distances and velocities remain within close range
avoiding considerable fluctuations in either parameter, please
see Figures 9(a) and 9(b) respectively. This validates our
claim that the proposed algorithm reliably maintains tracking
and keeps safe distance between each leader and its follower
in the swarm. The occurrence of momentary peaks in velocity
of some drones happens due to the collision avoidance scene
illustrated in Figure 7.
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FIGURE 10. Relative distance of all drones from each other.

TABLE 2. Calculated σ of UAVs before and after coming into formation.

The relative distances amongst all UAVs are shown in
Figure 10. This is a metric to show how well the formation is
being kept. As the graph shows, the UAVs are spawned from
random locations, then the formation algorithm is initiated
resulting in UAVs moving closer to their respective leaders
while maintaining the minimum required distance. Table 2
shows the standard deviation calculated before and after the
UAVs have reached queue formation. Here, σ1, denotes the
standard deviation of the drones’ distances from the starting
point when the nodes are at random coordinates and until
they come into formation. Whereas, the standard deviation of
the distances calculated from the point the drones reach the
formation until they arrive in the final destination is denoted
by σ2. It is evident from the values shown in the table that the
proposed algorithm maintains the formation tightly, without
any significant fluctuations in distances, especially after the
UAVs have reached the desired formation.

For comparing our proposed technique with the state-of-
the-art algorithms, we implemented the formation and colli-
sion avoidance algorithm presented in [23] and [27] and set
it side by side with our proposed method. Figures 11, 12,
and 13 show the simulation results for distance maintenance
between the first three nodes. It can be seen that our proposed
algorithm maintains the distances between the drone-pairs
within a tight range as compared with the reference methods
presented in [23], [27].

The reference algorithm [23] takes action when both edges
of an obstacle are visible, whereas the algorithm in [27]
starts taking collective measures as soon as an obstacle comes
within the detection range, and our algorithm is an extended
version of the implementation of [27] and with the help of
Thin-Plate Splines technique it maintains the formation even
more aggressively and reducing the overall energy of the
system. Furthermore, the authors in [23] have not considered
alternative measures for two or more closely placed obsta-
cles. If two obstacles are in close proximity to each other,

FIGURE 11. Comparison of distance maintenance from UAV2 to UAV1.

FIGURE 12. Comparison of distance maintenance from UAV3 to UAV1.

FIGURE 13. Comparison of distance maintenance from UAV3 to UAV2.

the method always considers them a single object, even in
the case where a clear gap exists between the obstacles. This
leads to sub-optimal flight paths. Since collision range is
around the obstacles, so the UAVs can go through the obsta-
cles rather than going around them. In our algorithm, on the
other hand, the detected gaps are taken into consideration.
The algorithm determines if there is sufficient space between
the obstacles for the UAV to go through and takes action
accordingly.

The change in temperature, i.e., the instantaneous value of
the TPS energy function ETPS , and the sum of this parameter
that represents total disturbance suffered by the system of
five drones during the complete flight from the launch of
individual drones to their arrival at the destination of our
proposed approach and the compared works are shown in
Figures 14 and 15.

There are a few interesting things to note from Figure 14.
Firstly, the initial few seconds show almost zero tempera-
ture for [23], the reason being that this algorithm assumes
that drones are launched in proper formation. The other two
algorithms show a large variation in temperature owing to
the fact that drones are assumed to have been launched from
random locations in close proximity. Here, EFMCA shows
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FIGURE 14. Change in temperature of the system as a whole.

FIGURE 15. Total energy of the system.

better management of formation as is evident from reduced
overshoots of temperature. The peaks around 40 seconds on
the timeline represent gradual deviation in route to avoid
Obstacle A with minimum disturbance in formation. Finally,
the comparison of widths of peaks around 140 seconds shows
that EFMCA resumes the formation considerably quickly as
compared with the algorithm in [27]. This is a direct conse-
quence of our approach of integrating TPSwith formation and
collision avoidance algorithm that brings the drones back in
formation in a timely manner after disturbances caused by the
obstacles. It is to be noted that algorithm in [23] does not try
to bring the drones back into formation after splitting, as is
evident from Figure 14 where the disturbance as measured
by temperature does not return to zero. Thus, our method is

more aggressive in balancing and bringing the system back
to its stable state after disturbances caused by any obstacles.
Also, as explained earlier we employ a non-rigid mapping
function for point set registration of individual drones to
formation locations. Therefore, in case a drone goes ahead
of its leader during a maneuver, rather than slowing down
to retain its original formation position as required by ear-
lier approaches, we make this drone the new leader. Con-
sequently, the speed of the formation as a whole increases,
resulting in faster completion of the mission. This effect may
be seen by EFMCA peaks occurring gradually earlier than
the peaks of [27] in Figure 14. In order to show the overall
efficiency of our scheme vis-a-vis the competing algorithms,
we calculated the sum of all disturbances suffered by the
system of drones during the complete mission. The result is
shown in Fig. 15 where energy of the system for each of the
three schemes refers to the area under the respective curve
in Figure 14. It is evident from Fig. 15 that a swarm under
our proposed EFMCA algorithm suffers much less overall
disturbance as compared with other known schemes.

A. VALIDATION OF OUR SIMULATION RESULTS
VIS-A-VIS INDUSTRY STANDARD
In order to validate our results further, we chose to deploy
our proposed algorithm on SwarmLab: a MATLAB Drone
Swarm Simulator [44], which is an open-source environ-
ment developed by Laboratory of Intelligent Systems (LIS),
Ecole Polytechnique Federale de Lausanne, Switzerland.
This simulation environment reflects the behaviour of the
industrial drones, and also with the least amount of redun-
dancy. Furthermore, the physical constraints (e.g. mass, iner-
tia) are also supported and modelled in this environment.

Figure 16 shows the snapshots of the simulation output,
taken at different intervals by implementing the EFMCA
algorithm in the SwarmLab for observing the behaviour and
effectiveness of the proposed algorithm in a different environ-
ment. Figures 16(a) and 16(b) show the initial placements of
the nodes in the 3D and 2D views, with cylindrical obstacles
placed in the environment. The nodes then accelerate and

FIGURE 16. Simulation snapshots in SwarmLab. (a) 3D view. (b) at the start of simulation. (c) halfway through the simulation, navigation through the
obstacles. (d) towards end of simulation.
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FIGURE 17. Average, minimum, and maximum distance maintained
between the nodes. a) In our environment, b) implementation in
SwarmLab.

decelerate to reach their desired positions w.r.t. their imme-
diate leaders, as visible from the average velocity graph
in Figure 18(b). Figure 16(c) shows the state of the swarm
navigating through the obstacles at the half-way stage of
the simulation. It is observed that the nodes maintain the
flexible queue formation and rapidly decrease any distur-
bances caused due to the presence of the obstacles in the
path. Figure 16(d) shows the snapshot towards the end of
the simulation, where the swarm has successfully managed
to avoid multiple obstacles in its path while maintaining the
defined safe distance from the obstacles.

Figure 17 shows the comparison of the distancemaintained
between the nodes utilizing the EFMCA algorithm in our own
environment and in SwarmLab. The analysis of the behaviour
of the distance maintained by the nodes shows similar trends
in the results obtained from the two environments. The dif-
ference in momentary peaks or disturbances in Figure 17(a),
as compared with Figure 17(b), is due to the absence of
some dynamics, such as a drone’s mass and inertial move-
ment, in our Python based environment which is still being
developed constantly. However, the average distance trend
comparison between the two environments provide enough
evidence that the algorithm performed as expected in the
state-of-the-art third party simulation environment.

Figures 18(a) and 18(b) show the overall trend of the
velocity of the swarm throughout the simulation, with aver-
age, average + standard deviation, and average - standard
deviation. The initial peaks in the graphs are due to the nodes
accelerating to reach their desired coordinates in the forma-
tion. Moreover, the average velocity trend in Figure 18(b)
showcases the smooth acceleration and deceleration, whereas
the sharp momentary peaks Figure 18(a) are due to the
absence of some of the dynamics in our environment. How-
ever, the average trend is similar as in the absence of the
obstacles, the average velocity of the swarm is maintained
at around 3.5 m/s.

FIGURE 18. Average velocity, average + standard deviation, and average -
standard deviation of the swarm. a) our environment, b) SwarmLab.

VII. CONCLUSION
In this paper, we proposed a Thin-Plate Spline inspired for-
mation maintenance algorithm for multiple UAVs, integrated
with a collision avoidance capability. We theoretically inves-
tigated the behaviour of the proposed algorithm and tested it
in a simulation environment. The simulations demonstrated,
that the simulated UAVs were able to dynamically and reli-
ably bypass obstacles without colliding with them while
maintaining the given swarm formation very closely during
maneuvers and reverting to it in a timely manner. By the
ability to accelerate and decelerate on demand, the drones
can efficiently reach their respective leaders or find their
places in the formation when they start at random coor-
dinates or wander off due to the presence of obstacles in
their vicinity. Furthermore, the decentralized distribution of
the algorithm allows the UAVs to take local decisions when
in close proximity to obstacles, making the method highly
robust and efficient. The collision avoidance scheme is able
to flexibly handle situations with multiple detected obstacles.
Moreover, the algorithm also takes care of the case where
a UAV goes outside the visibility range of its leader; such
lost UAVs are routed towards the destination by making a
temporary formation if necessary. The multi-priority strategy
works appropriately, changing the priorities of the differ-
ent parts/functions of the algorithm whenever needed. As a
comparison, we showed that the proposed algorithm outper-
forms the two known existing methods [23], [27], in terms
of the response time, flexibility, and robustness. Another
important contribution of our approach is that by employing
non-rigid mapping between drones and formation positions,
the overall speed of the swarm suffers minimum lag owing to
avoidance maneuvers, as compared with the above referred
earlier approaches. This effect can be quite significant for
those missions where the time to reach the destination is of
critical importance.

VOLUME 8, 2020 170693



J. N. Yasin et al.: Energy-Efficient Formation Morphing for Collision Avoidance in a Swarm of Drones

In our future work, we plan to extend the algorithm to
handle the 3-dimensional movement along with the intro-
duction of other environmental effects such as air drag on
the individual nodes as well as on the overall shape of the
swarm. For instance, in a queue formation, the preceding
nodes will experience a lesser effect of drag and will subse-
quently consume lesser power as compared with the leader.
Similarly, studying the effect of air drag on a multi-layered
V-shaped formation will be interesting to analyse as well.
This study can help in optimizing the resource management
in the swarm. Furthermore, we plan on testing the proposed
approach in real-time by performing practical experiments
and analyzing its effectiveness.
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