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ABSTRACT This work sheds light on the effects of spatially multiplexed interference on multiple-input-
multiple-output (MIMO) networks. In particular, any increase in the number of interfering data streams
(while keeping the total interference power constant) is shown to degrade the quality of the interfered
link. Although this statement appears very intuitive, it has yet to be proven. In this work, we first give a
mathematical definition of the intuitive notion of ‘increasing the number of streams’ leads to proof that the
achievable rate of a link decreases when any of its interferers increases its number of data streams. The
achievable rate is measured by the mutual information of the link or by the spectral efficiency of the optimal
linear Minimum-Mean-Square (MMSE) receiver. Correlatively, we show that the worst power allocation for
an interferer is the equal power allocation for all the streams. This result highlights the importance of the
optimization of the number of data streams at each transmitter in MIMO networks.

INDEX TERMS Multiple-input-multiple-output (MIMO), wireless communication.

I. INTRODUCTION
Multiple-input-multiple-output (MIMO) communication can
increase the data rate in wireless networks. MIMO networks
simultaneously transmit several data streams from each trans-
mitter, using spatial multiplexing through multiple antennas.
However, coordinating all the data streams in the network
requires complete channel state information (CSI) in all the
transmitters. Such cooperation is rarely achieved in modern
communication system. Hence, it is also important to con-
sider the interference between uncoordinated links.

MIMO technologies have been thoroughly studied and
used in various applications, e.g., cellular, adhoc, heteroge-
neous and local area networks (LANs). In particular, MIMO
is considered as one of the main enablers to achieve connec-
tivity goals of cellular 5G and 6G networks.

While adhoc networks typically consider non-cooperating
transmitters, 5G+ networks allow various levels of cooper-
ation between different base stations (BSs) (e.g., [1], [2]).
Nevertheless, BS cooperation incurs significant backhaul
costs. Thus, most deployments are expected to use clusters
of cooperating BSs, while between the clusters, there is no
cooperation in the physical layer.
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Any part of the network that has complete cooperation can
be considered as a single transmitter. If this transmitter serves
a single user, then the transmission of multiple data streams,
together with optimal power allocation per stream enables the
maximization of the link throughput (e.g., [3]–[5]). In par-
ticular, in the presence of white noise solely, a singular
value decomposition (SVD) of the channel matrix together
with water filling power allocation was shown to be optimal
(e.g., [6], [7]).

The cooperation is more difficult between parts of the
network that share CSI but do not share the user data.
This setup is known as the interference channel and has
been studied extensively. Approaches for the optimization
of such network include for example game theory methods,
SLNR, max-SINR and other interference alignment methods
(see [8]–[15]).

In this work we focus on the case of interfering trans-
mitters with no CSI sharing. We assume that each receiver
can measure the channel states of all interfering transmitters.
But, each transmitter only acquires data on its served users.
We recall that this setup also allows us to consider sets of
cooperating BSs, if they also share user data (and hence can
be considered as a single transmitter). In this setup, there
is no coordination between the beamforming vectors of the
independent transmitters.
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We consider a network with non-cooperating transmitters;
e.g., MIMO cellular networks [16]–[20], or MIMO ad-hoc
networks [21]–[24]. We also assume that each receiver treats
the unknown interference as additional (spatially colored)
noise.

However, when each receiver considers the undesired
transmissions as additional noise, the selection of the num-
ber of data streams in each transmitter impacts the interfer-
ence characteristics. In this case, finding the optimal number
of data streams at each node is important (although quite
challenging).

This work proves an intuitive but non-trivial characteristic
of the interference in MIMO networks. We show that any
increase in the number of data streams of any interferer will
decrease the throughput of the interfered link, even if the total
transmission power of each interferer remains constant.

To clarify, it is obvious that any increase in the power of
any interfering data stream will degrade the performance of
the link. It is also obvious that adding an additional interfering
stream without changing the power of the previously interfer-
ing streams will decrease performance. We consider the case
where the same interference power that was used for a given
number of data streams is now divided into a larger number
of data streams. This change in power allocation can increase
the throughput of the interfering link in many cases, and may
be advantageous for the network. Nevertheless, we show that
it decreases the throughput of any interfered link.

This result appears intuitive since it seems logical that
transmitting a larger number of data streams ‘exploits more
of the spatial dimensions of the network and hence leaves less
spatial dimensions for other links’. However, this intuition
does not lead to a trivial proof. Furthermore, we first need
to define an ‘increase in the number of data streams’ mathe-
matically in this case.

In the absence of CSI on other transmitters, it is intuitive
to try to maximize the throughput of the desired transmitter.
Such a maximization will often lead to a transmission of a
maximal number of data streams. Yet, the throughput increase
from some of these data streams may be negligible.

The importance of our work is in proving that any increase
in the number of data streams will decrease the throughput
of the interfered links. Thus, we need to avoid the use of
additional data streams if their contribution is not significant.
The definition of ‘significant contribution’ varies between
different networks. Yet, our conclusion holds in any network:
data streams that do not bring significant throughput increase
will decrease the overall network throughput. This conclu-
sion is even more important in the case that the transmitter
is equipped with a large number of antennas (e.g. massive
MIMO [17]). Such a transmitter can support a large number
of data streams. Thus, each user must limit its number of data
streams in order to allow a good network throughput.

The main novelties in this work are as follows: (1) We
show that any increase in the number of interfering data
streams (when the total interference power is kept con-
stant) decreases the performance of the interfered links;

(2) Equal transmission power for all the data streams of an
interferer leads to worst case interference given the interfer-
ence power.

The rest of this paper is organized as follows. Section II
describes the structure of the analyzed MU-MIMO net-
work. Section III presents the interference characterization
in Multi-User MIMO (MU-MIMO). Section IV reports the
numerical results, and Section V presents the conclusions.

II. SYSTEM MODEL
We consider a wireless network with a finite or infinite
number of transmitters. All the transmitters operate in the
same frequency band and at the same time. We focus on
one transmitter-receiver pair (which we term probe pair) in
the presence of other (non-cooperating) transmitters. Without
loss of generality, we assume that the probe transmitter has
index 0.

Denote the number of antennas at transmitter j by Nj
and the number of antennas at the probe receiver by N .
The received vector at the probe receiver is given by
(e.g., [25], [26])

y =
∑
j

γjHjxj + v (1)

where γj is the mean channel gain from transmitter j to the
probe receiver (also considering the path loss attenuation;
see for example [27]), Hj is the channel matrix and v is the
(spatially colored) additive Gaussian noise with zero mean
and covariance matric Cv. We assume throughout that all the
elements of all channel matrices, {Hj}, are statistically inde-
pendent and identically distributed (i.i.d.) proper complex
Gaussian random variables with zero mean and unit variance.
This assumption is quite common, and represents Rayleigh
fading channels.

The channel input at transmitter j is denoted by xj ∈ CNj×Kj

and given by:

xj = Fj · diag(
√
ρj) · uj (2)

where ρj, Fj and uj denote the power allocation vector, pre-
coding matrix and transmitted symbol vector of transmitter j,
respectively. Transmitter j transmits Kj data streams through
uj = [uj,1, uj,2, . . . , uj,Kj ]

T
∈ CKj×1. We assume that all

the data symbols, {uj,k}, are i.i.d. standard complex Gaussian
random variables with zero mean and unit variance. Thus,
E{uj,k · um,`} = δj,mδk,` where δk,` is the Kronecker delta
(i.e., δk,` = 1 only if k = `, and 0 otherwise). We collect
the power allocations of each user into a vector and term it
the user power allocation vector, ρj = [ρj,1, ρj,2, . . . , ρj,Kj ]

T .
We also normalize all transmission powers such that∑Kj

k=1 ρj,k = 1 for all j.1

Since the network is not cooperative, we assume through-
out that the transmitters have no knowledge of the
receiver environment, and in particular the channel state of

1This does not limit the generality, since any different value for the total
transmission power can be absorbed in γj.
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FIGURE 1. Illustration of the analyzed MU-MIMO system. Each node in
the network, either a transmitter or a receiver, is equipped with multiple
antennas. The channel matrix between the probe transmitter and the
probe receiver is H0. The channel matrix between the j-th interfering
transmitter and the probe receiver is Hj .

their interferers. Thus, we assume that each transmitter
selects its precoding vectors based solely on its desired chan-
nel matrix. That is, the design of the precoding matrix of the
probe transmitter, F0, may depend on its channel,H0, but not
on any other channel.

We further assume that the j-th precoding matrix, Fj =
[fj,1, fj,2, . . . , fj,Kj ] ∈ CNj×Kj , is composed of orthonormal
precoding vectors (i.e., FHj Fj = I where I is the identity
matrix). This assumption is commonplace in most precoding
approaches (see for example singular-value-decomposition
(SVD) (e.g., [6], [24]) and zero-forcing beamforming
(e.g., [28]).

We assume that the probe receiver is only interested in the
transmission from the probe transmitter (transmitter 0) while
all the other transmitters are interferers. We denote the aggre-
gate interference vector from all the undesired transmitters by

z =
∑
j6=0

γjHjxj

=

∑
j6=0

γj

Kj∑
k=1

√
ρj,k ·Hjfj,kuj,k . (3)

The covariance matrix of the aggregate interference plus
noise is:

Cz , E{zzH } + E{vvH }
= E

{∑
j6=0

γ 2
j HjxjxHj H

H
j

}
+ Cv

=

∑
j6=0

γ 2
j HjFjdiag(ρj)F

H
j H

H
j + Cv. (4)

We consider performancewith either an optimal receiver or
an optimal linear receiver. Thus, the performance metrics are
themutual information and the achievable spectral efficiency
using the minimal mean square error (MMSE) equalizer
(which we denoteMMSE spectral efficiency).

The mutual information (MI) between input vector, x0, and
the output, y, represents the maximal achievable rate at a
receiver that treats the interference as noise. In our system
model, the MI is given by (e.g., [29]):

I (x0, y) , E
{
log2

(
det(I+ C−1z H0CxHH

0 )
) }

(5)

where

Cx , E{x0 · xH0 }. (6)

is the covariance matrix of the desired input signal. The
expectation in (5) is with respect to (w.r.t.) the channel matri-
ces and the expectation in (6) is w.r.t. the desired symbols.

The MMSE receiver decodes the data of the k-th stream by
multiplying the received vector by the optimal linear weight
vector,

wk = C−10 H0f0,k (7)

whereC0 is the noise plus the interference covariance matrix:

C0 = E{yyH } = H0CxHH
0 + Cz (8)

and Cz is defined in (4). Here we assume that the probe
receiver knows the covariance matrix of the received signal.
In practice this covariance matrix is easily estimated from the
received signal.

The resulting signal to noise ratio (SNR) for the decoding
of the k-th stream using the MMSE weight vector is (see
Appendix B):

1
1

γ 20 ρ0,k
(fH0,kH

H
0 C
−1
0 H0f0,k )−1 − 1

.

Assuming a near optimal coding scheme with a Gaussian
codebook and a long enough codeword, the achievable
MMSE spectral efficiency over K0 data streams is:

RMMSE

=

K0∑
k=1

E
{
log2

(
1+

1

γ 2
0 ρ0,k (f

H
0,kH

H
0 C
−1
0 H0f0,k )−1 − 1

)}
.

(9)

III. INTERFERENCE CHARACTERIZATION IN MU-MIMO
In this section we show that any increase in the number of
data streams of even a single interferer (keeping the total
interference power constant) will degrade the quality of the
probe transmitter-receiver link. Since we need to keep the
total power constant, increasing the number of data streams
requires a power decrease in at least one of the existing data
streams. Thus we first need to define what is considered an
increase in the number of data streams.

Furthermore, ‘‘quantifying’’ the spatial multiplexing allo-
cation depends not only on the number of data streams, but
also on their power allocation. Because we are comparing
power allocations with different numbers of data streams,
it is convenient to zero-pad the shortest allocation to produce
equal length vectors. Obviously, adding streams with zero
power does not change the network, and is done solely for
the convenience of notation.
Definition 1: A power allocation for user j, ρj, is consid-

ered as an increase in the number of data streams compared
to a reference power allocation, ρ̃j, if there exists a number
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of streams K̃ ≤ Kj such that ρj,k ≤ ρ̃j,k for any k ≤ K̃ ,
ρj,k > ρ̃j,k for any k > K̃ , and

max
k>K̃

ρj,k ≤ min
k≤K̃

ρj,k . (10)

Note that Definition 1 is more general, but in most cases we
will assume that the original number of active data streams
was K̃ , while Kj is used to denote the number of data streams
in the new power allocation scheme. That is, in most interest-
ing cases wewill have ρ̃j,k = 0 for any k > K̃ . This definition
is consistent with the two main power allocation approaches.

The simpler approach uses equal allocation for all active
streams. Thus we switch from ρ̃j,k = 1/K̃ for k ≤ K̃
(e.g., ρ̃j = [1/3, 1/3, 1/3, 0]) to ρj,k = 1/Kj (e.g., ρj =
[1/4, 1/4, 1/4, 1/4]) for all the data streams, which complies
with Definition 1.

A smarter approach assigns larger power to better streams
(e.g., water filling). In this approach, the better streams will
be activated first (k ≤ K̃ ). Then, when the number of streams
is increased, the power for the previously active streams will
be reduced, but the newly activated streams will have weaker
gains than the others. Thus, these streams will have lower
powers as stipulated in (10).

Using Definition 1, we can now present our main finding:
Theorem 1: If some of the interferers in the network

increase their number of data streams (as in Definition 1)
while all others keep the same power allocation, the MI and
the MMSE spectral efficiency of the probe receiver will
decrease.

Proof: We prove Theorem 1 by breaking down the
change in the interferers into a sequence of changes, each
involving power changes in only two streams. We next define
a change in which only the powers of two data streams are
altered, and these powers become closer to the average power:
Definition 2: A change in the power allocation from one

power allocation vector, ρj, to another, ρ̆j, is termed an inter-
ference balancing change if there exists ` 6= m such that
ρj,k = ρ̆j,k for any k 6= {`,m}, ρj,m + ρj,` = ρ̆j,m + ρ̆j,`,
and:

ρj,m < ρ̆j,m ≤ ρ̄ ≤ ρ̆j,` < ρj,` (11)

where ρ̄ = (ρj,` + ρj,m)/2.
Using Definition 2, the proof of Theorem 1 can be divided

into the following three lemmas:
Lemma 1: Any increase in the number of data streams of

an interferer can be written as a sequence of interference
balancing changes.
Lemma 2: Any interference balancing change decreases

the MI of the probe link.
Lemma 3: Any interference balancing change decreases

the MMSE spectral efficiency of the probe link.
Proof of Lemma 1: By Definition 1, any stream with

k ≤ K̃ requires a power decrease, and any stream with k > K̃
requires a power increase. Note that all the powers in the first
group are higher than all the powers in the second group,

which guarantees the existence of an appropriate sequence
of interference balancing changes.

To further illustrate this proof, consider the example above:
the vector ρ̃j = [1/3, 1/3, 1/3, 0], can be changed through
the sequence [1/3, 1/3, 1/4, 1/12], [1/3, 1/4, 1/4, 2/12]
and eventually ρj = [1/4, 1/4, 1/4, 1/4], where all changes
are interference balancing. �

Proof of Lemma 2: See Appendix A. �
Proof of Lemma 3: See Appendix B. �

Corollary 1: Dividing the transmission power equally
over all streams of all interferers will lead to the lowest probe
rate, given the power of each interferer.

Proof: The corollary immediately follows from
Lemma 2, by noting that a uniform power allocation across
all streams can always be obtained from any other power
allocation by interference balancing changes.

Intuitively, increasing the number of data streams by one
user can be understood as taking more of the system degrees
of freedom (DoF) and hence leaving less DoF to other users.
But, the above statement does not hold mathematically, as the
DoF is measured when the SNR grows to infinity (and hence
cannot allow any interference). In a non-cooperating network
(without CSI of the interfered users) any interference from
another transmitter (also with SNR growing to infinity) will
reduce the number of network’s DoF to zero. Thus, the DoF
in such networks is bounded by the maximal DoF of a single
transmitter in the network [30]. Our proof cannot character-
ize the total achievable network throughput. Yet, we show
that even at a finite SNR, any increase in the number of data
streams by a single transmitter will reduce the throughput of
all interfered links.

IV. NUMERICAL RESULTS
This section presents simulation results illustrating Theo-
rem 1. We first report the results for specific node locations,
and then consider a random setup that enables us to study
behavior over many spatial realizations of the node locations.

The simulated thermal noise has a proper complex
Gaussian distribution with zero mean and E{vvH } = I. The
precoding vectors were chosen using eigen-beamforming,
and the transmission power was divided equally between
the active data streams (uniform power allocation):
ρj = (1/Kj)·[1, 1, . . . , 1]T . In all the simulations, the channel
matrices experienced Rayleigh fading as described above
(i.e., the elements of all channel matrices are statistically
i.i.d. proper complex Gaussian random variables with zero
mean and unit variance). All the results are averaged over
104 network realizations.

We start with a scenario that composed solely of a sin-
gle interferer, located so that the signal to interference
ratio (SIR) is γ 2

0 /γ
2
1 = 20dB. The location and transmis-

sion power of the desired transmitter are set so that its
SNR = γ 2

0 /N = 0dB. Both transmitters and the desired
receiver have N = N0 = N1 = 4 antennas.
Fig. 2 presents the spectral efficiency of the MI, (5), and

the MMSE spectral efficiency, (9), at the desired receiver,
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FIGURE 2. Mutual-Information (MI), (5), and the MMSE spectral
efficiency, (9), as a function of K1, the number of streams of a single
interferer, where N = 4, SNR= 0dB and SIR= 20dB.

as a function of the number of data streams transmitted by
the interfering transmitter, K1. The figure depicts the perfor-
mance when the desired transmitter transmits K0 = 1, 2 and
4 data streams.

As expected by Theorem 1, Fig. 2 shows that in all cases,
the spectral efficiency and the MMSE spectral efficiency
decrease with the number of interferer data streams.

To capture a broader picture, we next examine the case of
a random network where the locations of the nodes follow
a homogenous Poisson point process (PPP) (e.g., [24], [31])
and the node density is set to λ = 2.5 [nodes/km2] over a
disk of radius r = 6.18km, centered at the probe receiver,
and zero everywhere else (i.e., the average number of nodes
in the network is πλr2 = 300). The channel gain is set to
γ 2
j = d−αj where dj is the distance between transmitter j

and the probe receiver, and α is the path loss exponent. The
transmission power is set such that the signal to noise ratio
at a distance of 1km is d−α0 /N = 3dB. We also use the bias
correction of [32].

FIGURE 3. MI and MMSE spectral efficiency as a function of the number
of antennas, N , for PPP nodes and a path loss exponent of α = 4. All
transmitters use Kj = 2N/3, except for the nearest interferer which uses
K1 = 2N/3+ 1 streams, but only for the curves of MI+1 and MMSE+1.
The plot shows that performance decreases when the nearest interferer
increases its number of streams.

All the nodes in the network have the same number of
antennas (Nj = N ). Fig. 3 shows the MI and the MMSE

spectral efficiency as a function of the number of antennas
per node, N , for a path loss exponent of α = 4.

The figure depicts two curves for each metric. The baseline
curve (labeled MI and MMSE) used Kj = 2N/3 data streams
for all interferers (including K0 = 2N/3). The other curves
depict performance in a scenario that only differs from the
baseline scenarios for one additional stream transmitted by
the nearest interferer (i.e., K1 = 2N/3+ 1). These scenarios
are labeled byMI+1 and MMSE+1.

As can be seen, in all cases, even if only a single interferer
increases its number of streams by a single stream, the MI
and the MMSE spectral efficiency decrease. Again, this is
consistent with Theorem 1.

For the simulation of Fig. 4, all the nodes were equipped
withNj = N = 4 antennas. Here, the desired transmitter used
K0 = 2 data streams, while all the other transmitters used an
identical number of data streams (Ki = Kj for all i, j ≥ 1).
Fig. 4 depicts the MI and the MMSE spectral efficiency at the
desired receiver, as a function of the number of data streams
of each interferer.

FIGURE 4. MI as a function of the number of streams transmitted by each
interferer (Kj , j ≥ 1). All nodes use Nj = N = 4 antennas and the desired
transmitter uses K0 = 2 streams.

Fig. 4 shows, for three different path loss exponents, α, that
the MI decrease when the number of interferer data streams
increases. The MMSE spectral efficiency is not shown here
since it is indistinguishable from the MI in this scenario.
Thus, all of our numerical results support the claim of The-
orem 1, and demonstrate that any increase in the number of
interfering data streams leads to a decrease in the rate of the
desired link.

V. CONCLUSION
In this paper we characterized the effect of interferer spatial
multiplexing in MIMO wireless networks. We started by
providing amathematical definition for the phrase ‘increasing
the number of streams’ and then proved that the MI and the
MMSE spectral efficiency of a link decrease whenever one or
more of its interferers increases its number of data streams.
This statement holds even when the total transmitted power
by each interferer does not change.

As a corollary, we showed that the worst power allocation
for an interferer is the equal power allocation per stream.
The results are proven for MI and MMSE spectral efficiency,
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and the numerical results confirmed performance for various
cases.

This paper highlights the importance of the optimization of
the number of data streams at each transmitter, and the need
to consider the effects of this optimization on all the affected
receivers in the network. Furthermore, ‘‘quantifying’’ the
spatial multiplexing depends not only on the number of data
streams, but also on their power allocation.

APPENDIX A
PROOF OF LEMMA 2
We assume that a single interferer makes an interference
balancing change, and prove that the MI of the probe pair
decreases. Without loss of generality, we assume that only
interferer m makes the interference balancing change within
its first two streams. That is, interfererm starts with the power
allocation ρm = [ρm,1, ρm,2, ρm,3, . . . , ρm,Km ]

T and changes
to: ρ̆m = [ρ̆m,1, ρ̆m,2, ρm,3, . . . , ρm,Km ]

T .
In the following, it is convenient to consider both cases as a

function of a single parameter. To that end, we define ρ(ε) =
[ρ̄+ε, ρ̄−ε, ρm,3, . . . , ρm,Km ]

T , where ρ̄ = (ρm,1+ρm,2)/2.
Thus, we have: ρm = ρ

(
(ρm,1−ρm,2)/2

)
and ρ̆m = ρ

(
(ρ̆m,1−

ρ̆m,2)/2
)
.We also defineCz(ε) as the covariancematrix in (4),

with ρm replaced by ρ(ε), and I (ε) as the MI in (5) with Cz
replaced by Cz(ε).
Recalling that ρm,1 − ρm,2 > ρ̆m,1 − ρ̆m,2, and using

the ε notation, we can prove Lemma 2 by proving that I (ε)
increases monotonically with ε for ε > 0. We prove the
monotonic increase of I (ε) by showing that:

d2I (ε)
dε2

> 0 (12)

dI (ε)
dε

∣∣∣
ε=0
= 0 (13)

where (12) shows the convexity in ε, and (13) states that it
has a single minimum point at ε = 0.
We start by noting that the signal covariance matrix,

Cx (6), is symmetric and positive definite. Using the
Cholesky decomposition we can find Rx that satisfies:

Cx = RxRH
x . (14)

By also using the Weinstein-Aronszajn identity, the MI of the
MIMO channel, (5), can be rewritten as:

I (ε) = E
{
log2

(
det(I+ H̃H

0 C
−1
z (ε)H̃0)

) }
(15)

where H̃0 , H0Rx .
The first derivative of (15) w.r.t. ε is given by:

dI (ε)
dε
=

1
log 2

E
{
Tr
(
(I+ H̃H

0 C
−1
z (ε)H̃0)−1

·H̃H
0
dC−1z (ε)

dε
H̃0

)}
(16)

where we used the derivative rules d
dε log

(
det(X(ε))

)
=

Tr
(
X−1(ε) dX(ε)dε

)
(e.g., [33, Equation (43)]). By also using

d
dεX
−1(ε) = −X−1(ε) dX(ε)dε X−1(ε) (e.g., [33, Equa-

tion (40)]) we get:

dI (ε)
dε
= −

1
log 2

E
{
Tr
(
(I+ H̃H

0 C
−1
z (ε)H̃0)−1

·H̃H
0 C
−1
z (ε)

dCz(ε)
dε

C−1z (ε)H̃0

)}
. (17)

We next define the random vectors f̃j,` , Hjfj,`. To charac-
terize the distribution of f̃j,`, we first consider the conditional
distribution of f̃j,` and f̃j,v givenFj. Recalling thatHj follows a
Gaussian distribution, the conditional distribution is Gaussian
with zero mean and the following cross covariance matrix:

E
{
f̃j,`f̃Hj,v|Fj

}
= E

{
Hjfj,`fHj,vH

H
j |fj,`, fj,v

}
. (18)

Denote by hHj,k the k-th row ofHj; then, the [k,m]-th element
of E

{
f̃j,` f̃Hj,v|fj,`, fj,v

}
is given by:

E
{
hHj,k fj,`f

H
j,vhj,m|fj,`, fj,v

}
= tr

(
E
{
hj,mhHj,k

}
fj,`fHj,v

)
= tr(δm,kI · fj,`fHj,v)

= δm,k · δ`,v. (19)

where the second line used the statistical independence of the
elements of matrix Hj, and the third line used the orthonor-
mality assumption on Fj.

Thus, we can write

E
{
f̃j,` f̃Hj,v|Fj

}
= δ`,v · I (20)

and conclude that given Fj, vectors f̃j,` and f̃j,v are jointly
Gaussian, statistically independent for ` 6= v and each have
a zero mean and covariance matrix of I. Furthermore, as this
holds for any allowed Fj, it also holds for the unconditional
distribution of f̃j,` and f̃j,v (see for example, [21, Lemma 1]).
Furthermore, for any k 6= j, Hj is independent of Hk and fj,`
is independent of fk,v. Hence, f̃j,` is statistically independent
of f̃k,v for any j 6= k and/or ` 6= v.
To evaluate (17) we need the derivative of Cz(ε)

w.r.t. ε. This is given by:

dCz(ε)
dε

= γ 2
m

[
Hmfm,1fHm,1H

H
m −Hmfm,2fHm,2H

H
m

]
= γ 2

m

[
f̃m,1 f̃Hm,1 − f̃m,2 f̃Hm,2

]
. (21)

Substituting in (17):

dI (ε)
dε
= −

γ 2
m

log 2
E
{
Tr
(
(I+ H̃H

0 C
−1
z (ε)H̃0)−1

·H̃H
0 C
−1
z (ε)f̃m,1 f̃Hm,1C

−1
z (ε)H̃0

)}
+
γ 2
m

log 2
E
{
Tr
(
(I+ H̃H

0 C
−1
z (ε)H̃0)−1

·H̃H
0 C
−1
z (ε)f̃m,2 f̃Hm,2C

−1
z (ε)H̃0

)}
. (22)

To prove (13), note that for ε = 0, Cz(ε) is symmetric
with respect to interchanging f̃m,1 and f̃m,2. Noting also that
these two vectors are i.i.d., and statistically independent of
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any other quantity in the expectation, we conclude that the
two expectations in (22) are equal and hence their difference
is indeed 0.

To prove (12), we consider the second derivative of I (ε).
Taking the derivative of (16) we write:

d2 I (ε)
dε2

=
1

log 2
E {a1(ε)+ a2(ε)} (23)

where

a1(ε) , Tr
[
d
dε

[
(I+ H̃H

0 C
−1
z (ε)H̃0)−1

]
· H̃H

0
dC−1z (ε)

dε H̃0

]
(24)

and

a2(ε) , Tr
[
(I+ H̃H

0 C
−1
z (ε)H̃0)−1

d
dε

[
H̃H

0
dC−1z (ε)

dε H̃0

]]
.

(25)

Starting with a1(ε), the derivative of the term within the
internal square brackets in (24) is:

d
dε

[
(I+ H̃H

0 C
−1
z (ε)H̃0)−1

]
= −(I+ H̃H

0 C
−1
z (ε)H̃0)−1

·H̃H
0
dC−1z (ε)

dε
H̃0 · (I+ H̃H

0 C
−1
z (ε)H̃0)−1. (26)

Thus, a1(ε) can be written as

a1(ε) = −Tr(A · A) (27)

where

A , (I+ H̃H
0 C
−1
z (ε)H̃0)−1H̃H

0
dC−1z (ε)

dε
H̃0

= −(I+ H̃H
0 C
−1
z (ε)H̃0)−1H̃H

0 C
−1
z (ε)

dCz(ε)
dε

C−1z (ε)H̃0.

(28)

Noting that (I + H̃H
0 C
−1
z (ε)H̃0)−1 is positive definite,

we can find a matrix, RA, that satisfies

RARH
A =

(
I+ H̃H

0 C
−1
z (ε)H̃0

)−1
. (29)

Hence, (28) can be written as:

A = −RARH
A H̃

H
0 C
−1
z (ε)

dCz(ε)
dε

C−1z (ε)H̃0. (30)

Substituting in (27) and using the cyclic property of the trace:

a1(ε) = −Tr(RH
A H̃

H
0 C
−1
z (ε)

dCz(ε)
dε

C−1z (ε)H̃0RA

·RH
A H̃

H
0 C
−1
z (ε)

dCz(ε)
dε

C−1z (ε)H̃0RA).

= −Tr
(
QRz(ε)H̃0RARH

A H̃
H
0 R

H
z (ε)Q

H
)

(31)

where we defined

Q , RH
A H̃

H
0 C
−1
z (ε)

dCz(ε)
dε

RH
z (ε) (32)

and Rz(ε) is defined such that

C−1z (ε) = RH
z (ε)Rz(ε). (33)

Next, we simplify a2(ε) by evaluating the derivative of the
term in the internal square brackets in (25):

d
dε

[
H̃H

0
dC−1z (ε)

dε H̃0

]
= −

d
dε

[
H̃H

0 C
−1
z (ε) dCz(ε)dε C−1z (ε)H̃0

]
= −H̃H

0
dC−1z (ε)

dε
dCz(ε)
dε C−1z (ε)H̃0

−H̃H
0 C
−1
z (ε) d

2Cz(ε)
dε2

C−1z (ε)H̃0

−H̃H
0 C
−1
z (ε) dCz(ε)dε

dC−1z (ε)
dε H̃0

= −2H̃H
0 C
−1
z (ε) dCz(ε)dε

dC−1z (ε)
dε H̃0 (34)

where the last line used d2Cz(ε)
dε2

= 0 and the fact that all
matrices in the product are Hermitian. Substituting (29) and
(34), we have:

a2(ε) = −2Tr
(
RARH

A H̃
H
0 C
−1
z (ε) dCz(ε)dε

dC−1z (ε)
dε H̃0

)
= −2Tr

(
RH
A H̃

H
0 C
−1
z (ε) dCz(ε)dε

dC−1z (ε)
dε H̃0RA

)
= 2Tr

(
RH
A H̃

H
0 C
−1
z (ε) dCz(ε)dε C−1z (ε) dCz(ε)dε

·C−1z (ε)H̃0RA

)
(35)

where the second equality used the cyclic property of the
trace and the third equality evaluated the derivative ofC−1z (ε).
By also using the definitions of Q and Rz(ε), (35) can be
simplified to:

a2(ε) = 2Tr
(
QQH

)
. (36)

Finally, substituting a1(ε) from (31) and a2(ε) from (36)
into (23) we have

d2 I (ε)
dε2

=
1

log 2
E
{
Tr
[
Q1QH

]}
(37)

where

1 , 2I− Rz(ε)H̃0RARH
A H̃

H
0 R

H
z (ε) (38)

Thus, to prove that d
2 I (ε)
dε2

> 0 it is sufficient to prove that the
matrix 1 is positive definite. Substituting (29) and (33):

1 = 2I− Rz(ε)H̃0(I+ H̃H
0 R

H
z (ε)Rz(ε)H̃0)−1H̃H

0 R
H
z (ε).

By also using the identity (I+ AB)−1 = I− A(I+ BA)−1B
(e.g., [33, Equation (166)]) leads to:

1 = I+
(
I+ Rz(ε)H̃0H̃H

0 R
H
z (ε)

)−1
(39)

which is obviously positive definite, which completes the
proof of Lemma 2.
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APPENDIX B
PROOF OF LEMMA 3
This appendix presents the proof of Lemma 3 , and hence
completes the proof of Theorem 1 for the MMSE spectral
efficiency, (9). The receiver extracts the decision variable of
the k-th data stream by x̂k = wH

k y, where wk ∈ CN×1 is
the MMSE equalizer, (7). The total energy of the decision
variable of the k-th stream is given by:

E{|x̂k |2} = E{wH
k yy

Hwk} = wH
k C0wk

= fH0,kH
H
0 C
−1
0 H0f0,k . (40)

The energy of the desired signal in the decision variable of
the k-th stream satisfies:

Sk =
∣∣∣wH

k (γ0
√
ρ0,kH0f0,k )

∣∣∣2 E {∣∣u0,k ∣∣2} (41)

= γ 2
0 ρ0,k (f

H
0,kH

H
0 C
−1
0 H0f0,k )2. (42)

Thus, the SINR of the k-th stream is:

SINRk =
Sk

E{|x̂k |2} − Sk

=
γ 2
0 ρ0,k (f

H
0,kH

H
0 C
−1
0 H0f0,k )2

fH0,kH
H
0 C
−1
0 H0f0,k − γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 H0f0,k )2

=
1

1
γ 20 ρ0,k

(fH0,kH
H
0 C
−1
0 H0f0,k )−1 − 1

, (43)

and the MMSE spectral efficiency of the k-th stream is
Rk = E{log2(1+ SINRk )}.
As in the proof of Lemma 2, we consider an interference

balancing change and replace Rk with Rk (ε), where C0 is
replaced byC0(ε), and ρm is replaced by ρ(ε). Noting that the
MMSE spectral efficiency, (9), is R =

∑K0
k=1 Rk (ε), we prove

the monotonic increase of the MMSE spectral efficiency by
showing that each stream satisfies:

d2Rk (ε)
dε2

> 0 (44)

dRk (ε)
dε

∣∣∣
ε=0
= 0. (45)

Substituting (43) into the spectral efficiency expression,
the spectral efficiency of the k-th stream using MMSE equal-
izer is given by:

Rk (ε) = E

{
log2

γ 2
0 ρ0,k (f

H
0,kH

H
0 C
−1
0 (ε)H0f0,k )−1

γ 2
0 ρ0,k (f

H
0,kH

H
0 C
−1
0 (ε)H0f0,k )−1 − 1

}
= −E

{
log2

(
1− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)}
.

(46)

The first derivative of (46) is given by:

dRk (ε)
dε

=
1

log2
E
{(

1− γ 2
0 ρ0,k (f

H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)−1
·

(
γ 2
0 ρ0,k (f

H
0,kH

H
0
dC−10 (ε)

dε
H0f0,k )

)}
. (47)

Focusing on the second line, we have

dC−10 (ε)

dε
= C−10 (ε)

dC0(ε)
dε

C−10 (ε). (48)

Recalling that dC0(ε)
dε =

dCz(ε)
dε , we again have (as in (22))

dCz(ε)
dε

∣∣
ε=0 due to the symmetry with respect to interchanging

f̃m,1 and f̃m,2. Thus, (45) is satisfied.
To prove (44), we consider the second derivative of Rk (ε).

Taking the derivative of (47):

d2 Rk (ε)
dε2

=
1

log2
E
{
b1(ε)+ b2(ε)

}
(49)

where

b1(ε) ,
d
dε

[(
1− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)−1]
(50)

·

(
γ 2
0 ρ0,k (f

H
0,kH

H
0
dC−10 (ε)

dε
H0f0,k )

)
(51)

and

b2(ε) ,
(
1− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)−1
(52)

·
d
dε

[(
γ 2
0 ρ0,k (f

H
0,kH

H
0
dC−10 (ε)

dε
H0f0,k )

)]
. (53)

In the following we show that b1(ε) ≥ 0 and b2(ε) ≥ 0.
Starting with

b1(ε) = −
(
1− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)−2
(54)

·
d
dε

[(
− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)]
(55)

·

(
γ 2
0 ρ0,k (f

H
0,kH

H
0
dC−10 (ε)

dε
H0f0,k )

)
(56)

=

(
1− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)−2
(57)

·

(
γ 2
0 ρ0,k (f

H
0,kH

H
0
dC−10 (ε)

dε
H0f0,k )

)2
. (58)

From (46) we see that 1 − γ 2
0 ρ0,k (f

H
0,kH

H
0 C
−1
0 (ε)H0f0,k ) =

1/(1+ SINRk ) ≥ 0 and hence b1(ε) ≥ 0.
Next, considering b2(ε) we have:

b2(ε)

=

(
1− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)−1
·
d
dε

[(
− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε) dCz(ε)dε C−10 (ε)H0f0,k )

)]
= 2

(
1− γ 2

0 ρ0,k (f
H
0,kH

H
0 C
−1
0 (ε)H0f0,k )

)−1
·

[(
γ 2
0 ρ0,k (f

H
0,kH

H
0 C
−1
0 (ε) dCz(ε)dε

·C−10 (ε) dCz(ε)dε C−10 (ε)H0f0,k )
)]
≥ 0.

where we used d2Cz(ε)
dε2

= 0. This concludes the proof of
Lemma 3 and Theorem 1 in the case of MMSE spectral
efficiency.
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