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ABSTRACT Large-scale wind farms (WFs) generally consist of hundreds of wind turbines (WTs), and the
WFs simulation model construction would be complex and even impossible if we develop each individual
WT in detail. Therefore, the WFs equivalent simulation model with required accuracy is essential to be
developed to explore the WFs operation characteristics. This article proposes an equivalent method for
large-scale WFs using incremental clustering and key parameters optimization. Firstly, to acquire more
comprehensive and distinguishable representations of WTs operation characteristics, the time series of
WT active power, reactive power, voltage and current are selected as the multi-view clustering indicator
(CI). Then, considering the computer memory pressures encountered by traditional clustering algorithms in
dealing with large-scale WFs, a novel clustering algorithm namely multi-view incremental transfer fuzzy
C-means (MVIT-FCM) is proposed, and this algorithm can process the WTs clustering problems without
requiring to consider the scale of the WFs. Finally, to further increase the equivalent accuracy of the WFs
equivalent simulation model, key parameters in the equivalent model are found using Sobol’ criterion and
then optimized using the designed Q-learning based non-dominated sorting genetic algorithm II (NSGA-II).
To verify the effectiveness of the proposed method, the modified WFs system in China is utilized for
case study, and the performance of the proposed model is compared with several state-of-the-art models.
Simulation results show that the equivalent accuracy of the proposed model is higher when comparing with
other models. Also, the proposed model has the advantage of processing the WFs equivalent problems with
any scales.

INDEX TERMS Wind farm equivalence, MVIT-FCM, Q-NSGA-II, multi-view, incremental technique.

NOMENCLATURE
A. MVIT-FCM
m weighted index, and m ∈ (1,8)
N number of clustering samples, j = 1, . . .,N
K number of views, k = 1, . . .,K
C number of clusters, i = 1, . . .,C
M number of blocks, l = 1, . . .,M
Nl number of clustering samples in the lth block
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xj,k the jth sample in the kth view
Xk clustering sample matrix, and xj,k is its element
vi,k the ith clustering center in the kth view
Vk clustering center matrix, and vi,k is its element
µij,k membership degree of xj,k to vi,k
Uk membership degree matrix, and µij,k is its

element
dij,k distance between xj,k and vi,k
w(l)
i,k weight coefficient in the lth block, ith clustering

center and kth view
w(l)
k weight coefficient matrix, and w(l)

i,k is its
element
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x(l)j,k the jth sample in the lth block and kth view

X(l)
k clustering sample matrix, and x(l)j,k is its element

v(l)i,k the ith clustering center in the lth block and kth
view

V(l)
k clustering center matrix, and v(l)i,k is its

element
µ
(l)
ij,k membership degree of xj,k to vi,k in the lth block

U(l)
k membership degree matrix, and µ(l)

ij,k is its
element

αj,k importance coefficient of xj,k in rewardingmem-
bership degree

βj,k penalty coefficient used to weaken αj,k
λ regularization parameter, and λ>0
γ trade-off factor, and γ ∈ (0,1)
µ̂ij overall membership

B. TRANSFERRED DATA SELECTION METHOD
Wi wind speed of the ith WT
W j wind speed of the jth LVRT experiment
Vdip,i voltage dip value of the ith WT
V dip,j voltage dip value of the jth LVRT experiment
w1,w2 weight coefficient, and w1 + w2 = 1
sij comprehensive similarity coefficient between

the ith WT in WF and the jth LVRT experiment
nsim a positive integer
Exi the nsim LVRT experiments that are most similar

to the ith WT
Extr overall LVRT experiments transferred to target

domain

C. KEY PARAMETERS OPTIMIZATION OF WF EQUIVALENT
MODEL
Si first-order sensitivity coefficient
STi total sensitivity coefficient
ε1 and εT threshold value
fP, fQ, fV , fI sub-objective functions, representing equiv-

alent precision of active power, reactive
power, voltage and current, respectively

1Pnt , 1Q
n
t , difference between equivalent WF

1V n
t , 1I

n
t and actual WF in active power, reactive

power, voltage and current, respectively
y1-y56 parameters to be optimized in the equivalent

unit
ykey vector of key parameters to be optimized
ykey,min optimized lower limits of the key

parameters
ykey,max optimized upper limits of the key parame-

ters
�typ typical LVRT circumstances
Ntyp number of LVRT circumstances in �typ
T points number of the time series
Q, 1Q knowledge matrix and knowledge

increment

A action space
s and a state and action
R(skjim, s

k+1,j, reward function of a transition from state
α
kj
im) sk to sk+1 under a selected action ak

QI number of key parameters, i=1,2,. . . ,QI
QMi binary bit string length of key parameter i,

m=1,2,. . . ,QMi
QJ number of individuals, j=1,2,. . . ,QJ
QK maximum iteration times, k=1,2,. . . ,QK
α knowledge learning factor
γ discount factor
r0 a random value with the range of [0,1]
ε exploitation rate
arand a random action
W a positive constant
SABEST

i state-action pairs set of the best individual
at the k-th iteration of i, i ∈ P, Q, V, I

f min
i , f max

i maximum and minimum values of the
sub-objective function i, i ∈ P, Q, V, I

D. ERROR METRIC
eRMSE root mean square error
eMAE mean absolute error
eMAPE mean absolute percentage error
X actual value of the time series
X̂ predicted value of the time series
L length of time series X and X̂

I. INTRODUCTION
Wind power is one of the most mature new energy power
generation techniques. Until 2020, the installed capacity of
wind turbines (WTs) would be 2.1 billion kW in China [1].
In power systems, the short-circuit faults occur frequently,
thereby resulting in voltage dip circumstances in the output
port of wind farms (WFs) systems. To ensure the safe opera-
tion of power systems, WFs are required to have low voltage
ride through (LVRT) ability and are capable of providing
the reactive power to help maintain system stability when
voltage drops. To study LVRT dynamic process, the dynamic
WFs model is necessary to establish [2]. Yet, there might be
hundreds of WTs in the large-scale WFs, and it is not feasible
to model each WT in detail because of the huge model size
and simulation time [3]. Thus, it is critical to develop the
WFs equivalent model for LVRT analysis on the basis of
reasonable reduction [4].

In general, there are two types of WFs equivalent meth-
ods: single-machine equivalence (SME) and multi-machines
equivalence (MME), where MME-based methods possess
higher accuracy and border applications [5]. Three steps are
generally taken in MME.

Firstly, the clustering indicator (CI) needs to be selected
to evaluate the differences of the operation characteris-
tics among different WTs. Until now, the researchers have
explored to use wind speed [3], pitch angle [4], rotor
speed [5], active power [6] as the CIs. Secondly, based on
the selected CI, WTs clustering would be implemented. This
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step aims to cluster the WTs with the same or similar oper-
ation characteristics into the same group, and pushes the
WTs operating quite different to different groups. Generally,
clustering algorithms are commonly used to achieve this
division, and fuzzy C-means (FCM) clustering [6], K-means
clustering [7], hierarchical clustering [8] have already been
fully investigated. Based on the above two steps, the WTs
have been divided into several groups. Each group is called
as one equivalent unit, which consists of equivalent WT,
transformer and collector network. Thus, thirdly, the equiv-
alent parameters of the equivalent units need to be calcu-
lated, including body parameters and control parameters. The
capacity weighted method is most commonly used [4], and
there are also researchers using equal power loss method [9]
for collector network parameters equivalence.

Although favorable equivalent results are achieved using
the above methods, some limitations are still existed. Firstly,
the CIs in most of the researches focus on single-view. For
example, the active power time series is used as CI in [10].
Yet, the active power in someWTs might be similar, but their
reactive power might perform quite different if they are set
different reactive power reference values. Apparently, using
active power as the CI, the final equivalent accuracy of active
power would be high, but the accuracy of reactive power can-
not be ensured. Thus, in [11], [12], we have firstly proposed
to use multi-view time series-based CI, so as to increase the
equivalent accuracy in comprehensive aspects. However, our
methods face challenges when processing large-scale WFs
consisting of hundreds or more WTs. This is because the
dimensionality of the time series-based CIs is quite high.
When theWTs number is large, the size of the clustering-used
data would be very huge, resulting in severe computer mem-
ory pressure and even computer freezing phenomenon when
processing these large-size data samples.

Another limitation lies in the equivalent parameters cal-
culation step. Although capacity weighted method has
the advantage of simple calculation and can acquire
well-performed results, it only focuses on the calculation of
body parameters, and generally omits the calculation of con-
trol parameters and sets them to default values [13]. Yet, with
LVRT, there are many dynamic response processes, which are
mainly influenced by control parameters. Thus, the default
values setting for control parameters would limit the further
improvement of equivalent accuracy to some extent.

To address the above two limitations in large-scale WFs
processing and the equivalent parameters calculation, this
article proposes an equivalent method for large-scale WFs
using incremental clustering and key parameters optimiza-
tion, main contributions of this article can be summarized as
follows.

(1) In order to conveniently process the clustering prob-
lems of large-scale WFs, incremental technique [14]
is introduced to the calculation process of multi-view
transfer FCM (MVT-FCM) [11] algorithm. We name
the new clustering algorithm as multi-view incre-
mental transfer FCM (MVIT-FCM). Incremental

technique divides clustering-used data into multiple
small data blocks, and different blocks are coupled
together in the clustering process. With the aid of
incremental technique, the calculation would not
be limited by the data size, increasing the feasibil-
ity of proposed equivalent method when processing
large-scale WFs.

(2) In the equivalent parameters calculation step, both
control and body parameters of the equivalent units
are optimized using Q-learning based non-dominated
sorting genetic algorithm II (NSGA-II). Considering
the number of the to-be-optimized parameters is very
large, which is difficult to solve for optimization
problems, Sobol’-based criterion [15] is designed
to find the key parameters to be optimized. Then,
these key parameters are optimized using the designed
Q-NSGA-II, which is an improved algorithm of
NSGA-II [16] by introducing Q-learning [17] in
it. This equivalent parameters calculation method
improves the accuracy of the equivalent WF further,
and has high calculation efficiency.

The paper is organized as follows. The multi-view CI con-
sideration and the discussion are presented in Section II.
In Section III, MVIT-FCM is proposed. In Section IV, the
Q-NSGA-II based equivalent parameter calculation method
after WTs clustering is given. Section V provides the over-
all WFs equivalent process. The case study is provided in
Section VI. Section VII concludes the paper.

II. MULTI-VIEW CI SELECTION
In the previous equivalent studies of WFs, the time series-
based CI often focuses on single-view, such as active power
time series. Yet, the reactive power (or other physical quanti-
ties) of twoWTs would be different if they are set to different
reactive power reference values or their product types are
different, even though they have the same active power. In this
article, a WT model is built in Matlab / Simulink, as shown
in Fig. 1 (a). Set different reactive power reference values
for the two WTs, and apply them the same wind speed
disturbance. Fig. 1 (b)-(c) shows the active and reactive power
curves of the twoWTs. From this figure, we can see the active
power curves of the two WTs are basically the same, but the
reactive power curves are quite different. Therefore, using
single-view active power time series as the evaluation of the
external characteristics of the WTs is somewhat limited, and
cannot comprehensively reflect the output characteristics of
the WTs in multi-view perspectives [11], [12]. Therefore,
the selected CI should have the ability in describing the
characteristics of the WTs completely. This article selects the
time series of the active power, reactive power, voltage and
current at the outlet of the WTs as the CI.

III. WTs CLUSTERING BASED ON MVIT-FCM
The fundamental algorithms of MVIT-FCM, including
multi-view FCM (MV-FCM) and MVT-FCM, are reviewed
firstly. Then, MVIT-FCM algorithm is proposed and its
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TABLE 1. Review of MV-FCM and MVT-FCM.

FIGURE 1. Model and output characteristics of the WT. (a) simulation
model, (b) active power and (b) reactive power.

calculation process is provided. Finally, the source domain
data selection method to help the WTs clustering is given.

A. FUNDAMENTAL ALGORITHM: MV-FCM AND MVT-FCM
MV-FCM [18] belongs to multi-view clustering algorithm,
which can reward or suppress the corresponding fuzzy mem-
bership degrees for the current view, and combines the clus-
tering results in each view into global clustering result.
In [11], we proposed a new clustering algorithm for WTs
clustering, namely MVT-FCM, which is an improved algo-
rithm based on MV-FCM. In MVT-FCM, there are two
domains of data samples, i.e., source domain data and target
domain data. The MVT-FCM algorithm transfers the ben-
eficial knowledge of source domain into the target domain
to guide the clustering process, and this auxiliary guidance

significantly enhances the stability and accuracy of WTs
clustering.

Before the presentation of MVIT-FCM, we firstly review
the MV-FCM and the proposed MVT-FCM. We declare,
if two variables use the same symbol, the variable with top
horizontal line is from source domain, and that without top
horizontal line is from target domain, the meanings of two
variables are totally the same. Due to the page limitation,
we just list the optimization objective, constraints, updating
equations and pseudocode, which can be found in TABLE 1.

With MVT-FCM algorithm,
∑K

k=1
∑C

i=1

∥∥vi,k − vi,k∥∥22 is
the first transfer rule which aims to transfer the cluster-
ing center of source domain to the target domain, and∑K

k=1
∑N

j=1
∑C

i=1 µ
m
ij,kd

2
ij,k is the second transfer rule which

aims to transfer the membership of source domain to the
target domain. Based on these two transfer rules, the algo-
rithm can effectively deal with the problem of low clustering
accuracy and instability because of the rare data amount in
target domain [19].

B. ADVANCED ALGORITHM: MVIT-FCM
Further, incremental technique is applied to MVT-FCM.
We name the new algorithm as MVIT-FCM. Incremental
technique firstly divides the samples into multiple small sets,
each of which is called as a block. Then, MVT-FCM is
applied to each block, and different blocks are coupled with
weight coefficient and updating clustering center. Because
of the blocks division, the computer can deal with the sep-
arated blocks sequentially. Generally, the blocks division is
arbitrary, and the data-size of one block can be much smaller
than the whole dataset. Thus, MVIT-FCM has the ability of
processing the large-size dataset.
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FIGURE 2. Clustering process of MVIT-FCM. (a) the flow chart, and (b) the pseudocode.

The clustering process of MVIT-FCM is shown in Fig. 2.
It should be noted that the expression of Eq. (1) is as follows.

w(l)
i,k =

Nl∑
j=1

µ
(l)
ij,k (i = 1, 2, . . . ,C; 1 ≤ k ≤ K ) (1)

In Fig. 2, the membership and clustering center matrices of
source and target domains are calculated, respectively. With
the calculation ofUk and V k in source domain, Xk is divided
into M blocks, namely X

(l)
k , where l = 2, . . . ,M . Then,

U
(1)
k and V

(1)
k can be acquired using the 2nd-3rd rows of the

pseudocode in Fig. 2. Based on this, the for loop begins to
calculate U

(l)
k and V

(l)
k in turns using the 5th-8th rows of the

pseudocode, where l = 2, . . . ,M . Finally, set Uk = U
(M )
k

and V k = V
(M )
k .

The Uk and V k terms are further transferred to target
domain to help the calculation of Uk and V k , whose calcula-
tion process is similar to that of Uk and V k . Specifically, Xk
is divided into M blocks, namely X (l)

k , where l = 2, . . . ,M .

Then,U (1)
k and V (1)

k can be acquired using the 12th-13th rows
of the pseudocode in Fig. 2. Based on this, the for loop begins
to calculate U (l)

k and V (l)
k in turns using the 15th-18th rows of

the pseudocode, where l = 2, . . . ,M . Finally, setUk = U (M )
k

and V k = V (M )
k .

After obtaining Uk , the overall membership can be
calculated using (2)

µ̂ij =
K

√√√√ K∏
k=1

µij,k (2)

C. TRANSFERRED DATA SELECTION METHOD
In this article, the time series of active power, reactive power,
voltage and current in each WT reflect the operation char-
acteristics of the WTs. We select these time series as target
domain data. With the transfer learning-based MVIT-FCM
algorithm, the source domain data selection is essentially
important. If the data distribution of the two domains are not
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similar enough, the introducing of the source domain data
would worsen the target domain calculation result [20].

To acquire the source domain data suitable and helpful for
clustering process, abundant LVRT simulation experiments
are performed under different wind speed and voltage dip
values, and we would select the source domain data from
these LVRT experiments according the similarity between
two domains. Fig. 3 and Fig. 4 show the active power and
reactive power curves of the WT at various wind speed and
voltage dip values.

FIGURE 3. Active power curves of WT at various LVRT conditions.

FIGURE 4. Current curves of WT at various LVRT conditions.

For simplicity, we consider the wind speed and voltage dip
values to judge the similarity of the data in source and target
domain, and only transfer the source domain samples that
are most similar to target domain. Define the comprehensive
similarity coefficient, which is as follows

sij = w1

∣∣∣∣∣Wi −W j

W j

∣∣∣∣∣+ w2

∣∣∣∣∣Vdip,i − V dip,j

V dip,j

∣∣∣∣∣ (3)

Apparently, the smaller value of sij, the more similar of
the operation characteristics between the ith WT and the jth
LVRT experiment. As for the ith WT, select the nsim LVRT

experiments that are most similar to it, namely Exi. Finally,
the time series of active power, reactive power, voltage and
current corresponding to the following LVRT experiments are
transferred to target domain.

Extr =
N⋃
i=1

Exi (4)

IV. KEY PARAMETERS OPTIMIZATION OF WF
EQUIVALENT MODEL
After WTs clustering using the MVIT-FCM algorithm,
the topology of the equivalent WF is shown in Fig. 5. The
body and control parameters of the equivalent unit, including
equivalent WT, equivalent transformer and equivalent collec-
tor network, need to be calculated. The Sobol’-based method
for selecting key parameters to be optimized is given firstly.
Then, the key parameters optimization model is provided.
Finally, we provide the optimization model solving method,
i.e., Q-NSGA-II, which is an improved algorithm of NSGA-II
by introducing Q-learning in it to increase the algorithm
solving efficiency.

FIGURE 5. The layout of the equivalent wind farms.

A. SOBOL’-BASED METHOD FOR SELECTING KEY
PARAMETERS
According to statistics, the number of body and control
parameters in one equivalent unit (including equivalent WT,
equivalent transformer and equivalent collector network) is
56. The meaning of the parameters are listed in Appendix A,
and we denote these parameters as y1−y56. In theWFs equiv-
alent model, there would be C equivalent WTs, so there are
C×56 parameters need to be optimized, which is quite hard
to solve for the optimization problems. Therefore, the key
parameters, which influence the LVRT process more, need
to be selected.

Sobol’ criterion based for selecting key parameters is pro-
vided. Sobol’ is a tool for analyzing the effect or sensitivity
of input parameters on system output. Two sensitivity coeffi-
cients are commonly-used: first-order sensitivity coefficient
(Si), which is used to estimate the influence of input param-
eter i to output; total sensitivity coefficient (STi), which is
used to estimate the influence of input parameter i and other
parameters together to output. Due to the page limitation,
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the calculation method of Si and STi can be found in [15].
According to the feature of Sobol’, the method for selecting
key parameters are as follows.

(1) As for the 56 parameters in each equivalent WT, set
the intervals, 20% up and down of the original values,
as the sampling intervals.

(2) Random sampling method is used to sample the points
from the intervals. Using the sampled values, LVRT
experiments are developed, and the time series of WT
active power, reactive power, voltage and current are
acquired.

(3) Based on the time series results of the LVRT exper-
iments, Si and STi are calculated for each parameter.
Set the threshold values ε1 and εT, and choose the
parameters with Si > ε1 and STi > εT as the key
parameters.

B. KEY PARAMETERS OPTIMIZATION MODEL
Based on the selected key parameters, the key parame-
ters optimization model is constructed, and they are opti-
mized using Q-NSGA-II. The objective function considers
the equivalent precision of active power, reactive power, volt-
age and current at PCC. Further, to ensure the optimization
results can possess high accuracy in various LVRT circum-
stances, several typical LVRT circumstances are considered
in the optimization process. The objective function of the key
parameters optimization model can be expressed as

minF(y) = min[fP(ykey), fQ(ykey), fV (ykey), fI (ykey)]

fP(ykey) =
1

T × Ntyp

√∑
n∈�typ

∑T

t=1
(1Pnt )2

fQ(ykey) =
1

T × Ntyp

√∑
n∈�typ

∑T

t=1
(1Qnt )2

fV (ykey) =
1

T × Ntyp

√∑
n∈�typ

∑T

t=1
(1V n

t )2

fI (ykey) =
1

T × Ntyp

√∑
n∈�typ

∑T

t=1
(1Int )2 (5)

where the �typ include the typical LVRT circumstances
shown in TABLE 2. According to TABLE 2, there are 9 LVRT
circumstances. Thus, Ntyp = 9.

TABLE 2. Typical LVRT circumstances.

The constraint condition of the key parameters optimiza-
tion model is

ykey,min ≤ ykey ≤ ykey,max (6)

C. THE SOLVING METHOD: Q-NSGA-II
Eq. (5) has several objective functions, and can be solved
using multi-objective optimization algorithms, such as
NSGA-II algorithm. With NSGA-II, the way that individu-
als generation in NSGA-II include crossover and mutation,
where mutation is a purely random behavior with no selec-
tivity. To increase the optimization efficiency, Q-learning
is introduced to NSGA-II for increasing algorithm perfor-
mance. We denote this method as Q-NSGA-II. The basic
principle of Q-NSGA-II is to replace the random mutation in
NSGA-II to the Q-learning based intelligent mutation. The
detail of NSGA-II can be found in [16], this article only
introduces the Q-learning based intelligent mutation.

The Q-learning based intelligent mutation would not be
random behaviors. This article design the mutation behavior
using the following ε-greedy rule based action selection,
which yields

akjim =

 arg max
aim∈Aim

Qkim(s
kj
im, aim) r0 ≤ ε

arand r0 > ε
(7)

FromEq. (7), themutation behavior would bemainly influ-
enced by the knowledge matrix Q, whose updating equation
is

Qk+1im (skjim, a
kj
im) = Qkim(s

kj
im, a

kj
im)+ α1Q

k
im

1Qkim = Rjim(s
kj
im, s

k+1,j
im , akjim)

+ γ max
aim∈Aim

Qkim(s
k+1,j
im , aim)−Qkim(s

kj
im, a

kj
im)

(8)

The updating process of Eq. (8) is shown in Fig. 6.
In Fig. 6, y1, y2, y6, . . . , y49 are the selected key param-
eters, i.e., ykey, and we would explain their selection pro-
cess and result in Section VI-B. Specially, it should be

FIGURE 6. Binary state-action chain based knowledge matrix.
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noted that the key parameters belong to continuous variables,
but Q-learning generally processes discrete variables. Thus,
the binary state-action chain [17] is adopted for the discretiza-
tion of the continuous variables, where each key parameter
corresponds to several knowledge matrices (For example,
there are QM1 knowledge matrices for y1).
In addition, the reward function R in Eq. (8) is designed as

follows

R(skjim, s
k+1,j
im , akjim)

=


W∑

i∈P,Q,V ,I

(
min

j=1,2,...,QJ
f kji

) (skjim, a
kj
im) ∈ SA

BEST
i

0 (skjim, a
kj
im) /∈ SA

BEST
i

(9)

After the optimization of Q-NSGA-II, we would acquire
some Pareto optimal solutions, and we should select one as
the final optimization result of the key parameters. In this
article, the fuzzy set theory [21] is adopted to determine the
optimal compromise solution, and the Pareto optimal solution
corresponding to the maximum h value is determined as the
final optimization result of the key parameters.

h =
∑

i∈P,Q,V ,I

(
f max
i − fi

f max
i − f min

i

)
(10)

V. WFs EQUIVALENT PROCESS
In this article, the time series of WT active power, reactive
power, voltage and current are selected as the multi-view
CI, which are input to MVIT-FCM to achieve the clustering
of WTs. Based on this, the key parameters are optimized
using Q-NSGA-II. The WFs equivalent process are listed as
follows.

(1) Given the wind speed and PCC voltage dip value,
the wind speed on each WT can be calculate using
wake effect model [22], and the voltage dip value
on each WT can be calculate using the power flow
calculation method in Appendix B.

(2) According to the wind speed and voltage dip values
of each WT, the active power, reactive power, voltage
and current time series of each WT can be acquired
through simulation. These time series are used as the
target domain data to be clustered.

(3) Select the appropriate nsim, and use Eq. (3) and Eq. (4)
to acquire the transferred data, which are used as the
source domain data to be clustered.

(4) For MVIT-FCM, input the source domain and the
target domain data. Using Fig. 2, the clustering result
based on the proposed MVIT-FCM algorithm can be
acquired.

(5) According to the calculation process of Sobol’, choose
the key parameters.

(6) Construct the key parameters optimization model
using Eq. (5). Then, optimize the key parameters using
Q-NSGA-II. With non-key parameters, we also use
the capacity weighted method to calculate them.

In the above WFs equivalent process, procedure (1), (2)
and (3) collect the clustered data samples. Procedure (4)
achieves WTs clustering using MVIT-FCM. Procedure (5)
and (6) calculate the equivalent parameters. It should be noted
that the static power flow calculation in procedure (1) is just
used to determine the voltage dip values (initial conditions)
on the WTs. Using these initial conditions, the dynamic
LVRT equivalent experiments can be further performed.With
the proposed MVIT-FCM, it can be encapsulated into a
software package and the users just need to acquire the
algorithm inputs using procedure (1), (2) and (3), which
are regular steps in WFs equivalence. With the equivalent
parameters calculation, it only needs to be carried out once
and the calculation results can be reused because we have
considered typical LVRT circumstances in the optimization
process. Thus, the proposed method does not require much
manual experiences and the usage is quite simple, proving it
a powerful tool in engineering applications.

VI. SIMULATION RESULTS
The test WFs system and WTs clustering results are given
firstly. Then, the Sobol’ criterion based key parameters selec-
tion process and their optimization results are provided.
Further, the accuracy of the proposedWFs equivalent method
is tested through comparingwith several othermethods. Next,
we test the performance of MVIT-FCM when processing dif-
ferent scale WFs. Finally, we test the optimization efficiency
of Q-NSGA-II and verify the superiority of the equivalent
parameters calculation method.

A. THE TEST WFs SYSTEM AND WTs CLUSTERING RESULTS
In this article, the simulation is carried out based on an actual
system in East Inner Mongolia of China and a certain degree
of expansion. The layout of the test case is shown in Fig. 7.
In this system, the wind power hub station consists of 5WFs,
totally 200WTs, and all of theWTs connect to collector lines
by 0.69/35kV box transformers and access to external system
by 35/220kV transformer. Specifically, the detailed layout of
the WTs in the 1st WF is shown in Fig. 7. With the 2nd-5th
WFs, their WTs layout are modified on the basis of the 1st
WF, and this article would not show them in detail.

Set three-phase short-circuit fault at PCC with voltage
dip value 0.2pu, and the voltage dip value on WTs can be
calculated through power flow calculation method shown in
Appendix B.When fault occurs, the wind speed is 20m/s, and
the wind speed of each WT is calculate using wake effect.
Using these wind speed and voltage dip values, the time series
of active power, reactive power, voltage and current in each
WT are simulated, and these time series are selected as the
of target domain samples. Further, select nsim = 10, and the
LVRT experiments that are most similar to WTs in WF are
obtained using equations (3) and (4), totally 10×200 = 2000
WT experiments. The time series corresponding to these 2000
experiments are selected as the source domain data.

Using the above target domain and source domain data,
the WTs in the WF can be clustered using MVIT-FCM.
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FIGURE 7. The layout of the modified wind farm consisting of 61 wind turbines.

FIGURE 8. The final clustering result.

The parameters setting of MVIT-FCM is: N = 200, C = 4,
m = 2, λ = 1, γ = 0.8, Nl = 50, M = 4, N l = 50 and
M = 40. In Fig. 2, we can see that not the source domain
samples are directly transferred to target domain, but the clus-
tering center V k and membership degree Uk are transferred.
Thus, the V k and Uk are calculated based on the source
domain samples using the 1st-10th columns of pseudocode
listed in Fig. 2. After acquiring V k and Uk , these two terms
are transferred and used to guide the clustering of the target
domain samples. This target domain data clustering process
can be achieved using the 11st-20th columns of pseudocode
listed in Fig. 2, and we can get V k and Uk . Finally, the Û is

calculated using (2), and the final clustering result is shown in
Fig. 8. In Fig. 8, the darker of the color, the larger of the value.
The largest value in each column is circled, and for each row,
all the circled WTs are clustered to a group.

B. KEY PARAMETERS SELECTION AND OPTIMIZATION
RESULTS
The sampling times is set to 20 for each parameter in WT.
Besides, the threshold value ε1 (εT) are set to 2.2 (0.1),
1.1 (0.05), 2.5 (0.5) and 0.6 (0.3) for active power, reactive
power, voltage and current. The Si and STi of y1-y56 are shown
in Fig. 9 and Fig. 10, and the parameters that are larger
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FIGURE 9. The first-order sensitivity coefficient of PCC active power,
reactive power, voltage and current to y1-y56. (a) the stereogram, (b) the
top view, and (c) the front view.

FIGURE 10. The total sensitivity coefficient of PCC active power, reactive
power, voltage and current to y1-y56. (a) the stereogram, (b) the top view,
and (c) the front view.

than the threshold values are selected as the key parameters.
Finally, the selected key parameters are y1, y2, y6, y8, y12, y17,
y19, y21, y22, y24, y32, y33, y37, y45, y46, y49.

Further, we optimize the key parameters of the equivalent
WF, and the parameters setting of Q-NSGA-II is shown in
TABLE 3. The convergences of fP, fQ, fV and fI are shown

TABLE 3. Parameters Setting of Q-NSGA-II.

FIGURE 11. The convergence of the fP , fQ, fV and fI sub-objective with
the iteration times increase. (a) the stereogram, (b) part of fV , and
(c) part of fQ.

in Fig. 11. FromFig. 11, all the sub-objectives have converged
when the iteration is around 80. Therefore, we select the final
optimization results of the key parameters from the Pareto
optimal solutions in 100th iteration. In this article, the fuzzy
set theory [21] is adopted to determine the final solution from
the Pareto optimal solutions. The final optimization results of
the first equivalent WT (corresponding to Cluster 1 in Fig. 8)
is shown in Fig. 12.

FIGURE 12. The final optimization results of key parameters in WTeq1.

C. ACCURACY OF THE WFs EQUIVALENT METHODS
In this article, the CI selects multi-view time series, which
provids more views to ensure the equivalent accuracies in
more aspects. Further, MVIT-FCM is proposed for increas-
ing the algorithm usability when processing large-scale WFs
and increasing the stability of the clustering results. Finally,
Q-NSGA-II is proposed to optimize the equivalent param-
eters. To illustrate the superiority of the proposed method,
the proposed model (M0) is compared with several multi-
machines equivalent models (M1 to M5). The descriptions
of these models are listed in TABLE 4.

To verify the accuracy of the WFs equivalent models, root
mean square error (eRMSE), mean absolute error (eMAE), and
mean absolute percentage error (eMAPE) are introduced in the
article, which are widely used to evaluate the error of time
series. The expressions of eRMSE, eMAE and eMAPE are shown
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TABLE 4. The used CI, clustering algorithm and equivalent parameters calculation method of the models.

in (11). 

eRMSE =

√√√√ L∑
l=1

(X (l)− X̂ (l))2/L

eMAE =

L∑
l=1

∣∣∣X (l)− X̂ (l)∣∣∣/L
eMAPE =

L∑
l=1

∣∣∣(X (l)− X̂ (l))/X (l)∣∣∣/L
(11)

The eRMSE, eMAE and eMAPE of M0-M5 are shown in
TABLE 5. In TABLE 5, by comparing the value of eRMSE,
eMAE and eMAPE in M0-M5, M0 performs the same well or
even better in the accuracy aspect when comparing with other
five models. The reasons are listed as follows.

Firstly, as for M0 and M1/M2, we can see that these
three models use multi-view CI and multi-view clustering
algorithms, and acquire accurate results in active power,
reactive power, voltage and current equivalences. Yet, the pro-
posed model performs even better. This is because the pro-
posed model acquires better equivalent parameters using
Q-NSGA-II, and this parameters optimization process is
significantly helpful in increasing the equivalent accuracy.
Although the Q-NSGA-II based optimization method is
slightly more complex and time-consuming than the tradi-
tional capacity weighted method in the equivalent parameters
calculation process, it only needs to be carried out once and
the calculation results can be reused. Thus, the slightly more
tedious process is worthy because better equivalent accuracy
is acquired.

Secondly, with M0 and M3/M4/M5, the compared mod-
els all use single-view CI for WTs clustering, thus, their
accuracies are higher in the aspect corresponding to their
CIs. Specifically, M3 uses active power as the CI, so its
active power accuracy is higher than other physical quan-
tities. Similarly, for the M4 model, the voltage accuracy is
higher, this is because the dynamic voltage is selected as the
CI in this model. M5 clusters the WTs using their rotating
speed, which is a physical quantity relevant to active power,
so this model performs better in the equivalence of active

TABLE 5. The simulation errors (ERMSE, EMAE and EMAPE) in different
models.

power. Conversely, the proposed model uses multi-view CI,
thus, its equivalent accuracies are ensured in more aspects.
In addition, the compared models use traditional capacity
weighted method for equivalent parameters calculation, and
the results are not the same well when comparing with
Q-NSGA-II based optimization method.

D. PERFORMANCE OF MVIT-FCM WHEN PROCESSING
DIFFERENT SCALE WFs
Through the analysis in Section VI-C, M0, M1and M2
acquire satisfactory performances, and it seems that the pro-
posed MVIT-FCM is not much helpful when comparing with
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MVT-FCM. This is because the scale of the test WFs system
is not large enough, and MVT-FCM is still valid. Yet, if the
scale of theWFs is quite huge, the data-size of the multi-view
time series-based CI would be extremely huge and might
exceed the memory of the computer. Thus, the effectiveness
of MVIT-FCM and MVT-FCM when processing different
scales WFs needs to be tested.

In order to verify the calculation ability when processing
different scale WFs, we test the performances of MVIT-FCM
and MVT-FCM under different number of clustering sam-
ples, i.e., different number of WTs. In Fig. 7, there are
totally 200WTs, and we randomly copy different number
of samples to constitute the new dataset to be clustered.
The computer configuration is Intel(R) Core(TM) i5-8250,
CPU@1.60 GHz, 8.00 GB of RAM, and Fig. 13 shows
the maximum CPU utilization (MCU) of MVIT-FCM and
MVT-FCM under different numbers of samples. It should
be noted that the MCU for each number of samples are
calculated after 100 repeated runs. Thus, Fig. 13 shows the
expectation and variance of the MCU.

FIGURE 13. Maximum CPU utilization of MVIT-FCM and MVT-FCM.

It can be seen that when the number of data samples is 200,
the MCU of MVT-FCM is close to 100%. In other words,
MVT-FCM can only deal with the WFs equivalent problem
with about 200 WTs. However, with MVIT-FCM, the MCU
increases slowly with the increasing of samples number. The
computer with the author’s personal computer can handle
the clustering problem with more than 1000 WTs. Thus,
MVIT-FCM has the ability of handling the super-large scale
of WFs equivalent problem with any number of WTs.

Further, in the proposedMVIT-FCM, the dataset is divided
into several blocks. Then, MVT-FCM is applied to each
block, and different blocks are coupled with weight coef-
ficient and updating clustering center. To test whether the
partition mechanismwould influence the clustering accuracy,
we test the performance of MVIT-FCM and MVT-FCM.
In addition, the traditional MV-FCM is also used for com-
parison. Three popular validity indices are adopted in this
article, i.e., DVI, SI, and DBI [25], for verifying clustering

performance of these algorithms. Larger values of DVI and
SI indicate better clustering performance. In contrast, smaller
values of DBI are preferred. We calculate the DVI, SI, and
DBI of the three clustering algorithms using different number
of data samples under 100 repeated runs, and these values are
listed in TABLE 6.

TABLE 6. Values of DVI, SI, and DBI in MVIT-FCM and MVT-FCM.

With MV-FCM, its mean values of DVI and SI in
MVT-FCM are apparently smaller than MVIT-FCM and
MVT-FCM, and the DBI values ofMV-FCM are larger. Thus,
the clustering accuracy of MV-FCM is not well-performed.
Besides, the standard deviation values in MV-FCM are larger
than 0, which means different clustering results are acquired
in the 100 repeated runs. This is because the MV-FCM with-
out the introducing of transfer learning is sensitive to the
initialization, resulting in different clustering results. Thus,
the applying of transfer learning mechanism is quite helpful
to increase the stability of clustering results.

With the comparison of MVIT-FCM and MVT-FCM, the
mean values and the standard deviation values of DVI,
SI and DBI in both algorithms are totally the same. This
indicates that the same clustering results are acquired in
both algorithms. In addition, the standard deviation values
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of DVI, SI, and DBI in both algorithms are 0. This indi-
cates that the same clustering results are acquired in the
100 repeated runs. Thus, MVIT-FCM is the same well-
performed when comparing with MVT-FCM, and the parti-
tion mechanism would not influence the clustering accuracy
or performance of MVIT-FCM, proving that MVIT-FCM is
an powerful tool in processing large-scale and huge-dataset
without losing any clustering accuracy.

E. SUPERIORITY OF THE EQUIVALENT PARAMETERS
CALCULATION METHOD
In order to illustrate the superiority of Q-NSGA-II in opti-
mizing the key parameters, we design several parameters
optimization manners, which are shown TABLE 7.

The sub-objective function fitness values of different
parameters optimization manners under different iterations
are calculated, as shown in Fig. 14. It should be noted that

TABLE 7. The designed parameters optimization manners.

FIGURE 14. Fitness value of subobjective function under different
iterations. (a) fitness value of fP and fQ when iteration = 10, (b) fitness
value of fP and fQ when iteration = 30, (c) fitness value of fP and fQ
when iteration = 70, (d) fitness value of fV and fI when iteration = 10,
(e) fitness value of fV and fI when iteration = 30, and (f) fitness value of
fV and fI when iteration = 70.

since Q-NSGA-II has converged when iteration is 100, so the
fitness values under 100-th iteration are taken as the Pareto
frontier. Besides, there are 4 sub-objective functions in key
parameters optimization, for better visualization, we put fP
and fQ in the samefigure, and put fV and fI in the same picture.
From the figure, we can find that the proposed manner
(Q-NSGA-II optimizing key parameters) always leads the
optimization direction. In other words, its optimization effi-
ciency and speed are better than other manners. The rea-
son can be summarized as two aspects. On the one hand,
the Sobol’-based criterion for selecting key parameters sig-
nificantly decreases the number of the parameters to be
optimized, reducing the heavy burdens for the optimization
algorithms. On the other hand, the Q-NSGA-II algorithm
introduces the Q-learning technique, increasing the intelli-
gent degree of the algorithm and making the optimization
process more efficient. Thus, the proposed manner is not only
helpful for increasing the equivalent accuracy, but also has the
advantage of efficient solving speed.

VII. CONCLUSION
This article proposes an equivalent method for large-scale
WFs using incremental clustering and key parameters opti-
mization. Based on the simulation study of the modifiedWFs
systems, several conclusions can be drawn:

(1) Through the multi-view consideration in CI selec-
tion and the key parameters optimization process,
the equivalent accuracy of the proposed model is
higher when comparing with other state-of-the-art
models.

(2) Through the introducing of incremental technique
into MVIT-FCM, the proposed method can deal with
the equivalent problems of large-scale WFs without
requiring to consider the computer configuration.

(3) With the help of key parameters selection and
Q-learning, Q-NSGA-II performs efficient and helps
increase the equivalent accuracy, proving the proposed
method a powerful tool in accurate WFs dynamic
simulation.

APPENDIX
A. PARAMETERS OF THE EQUIVALENT UNIT
See Table 8.

B. VOLTAGE DIP CALCULATION IN EACH WIND TURBINE
In the regulation, when there is three-phase symmetrical volt-
age swell, the reactive current injected into the WT from the
power system should meet the following conditions.

IT ≥ 1.5× (0.9− VN ) (A1)

where Vn denotes the voltage in the n-th WT port.
In order to relieve LVRT pressure of the WT, the greater

than or equal in (A7) is set to equal, and the voltage dip
calculation method in each WT is shown as follows.

The structure of the collector line connecting theWTs, and
the vector diagram between 2 nodes are shown as follows.
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TABLE 8. Parameters of the equivalent unit.

FIGURE 15. Structure of branch in the wind farm.

FIGURE 16. Vector diagram of the branch between node n and PCC.

According to Fig. 15 and Kirchhoff current law, the
expression of Iqn is

Iqn = 1.5n(0.9− VPCC) (A2)

Then, through the vector relationship between the voltage
and current of in Fig. 16, it is easy to obtain

Vqn = IdnXn − IqnRn (A3)

Vdn − VPCC = IqnXn + IdnRn (A4)

Besides, in the power system short circuit calculation,
the phase angle difference between different nodes is ignored,
generally. In other words, the phase angle of V̇n+1 and V̇n are
totally the same, and we add the additional condition

Vqn = 0 (A5)

Therefore, Vn = Vdn.
We rewrite the equation (A2) to (A5) considering

Vn = Vdn, which is as follows
Iqn = 1.5n(0.9− VPCC)
IdnXn − IqnRn = 0
Vn − VPCC = IqnXn + IdnRn

(A6)

Overall, we can write 3 equations for each node. If there
areN nodes in this branch, the number of the equations would
be 3N . In these 3N equations, the unknown quantities include
Vi, Idi, Iqi (i = 1, 2, . . . ,N ) and VN+1, totally 3N + 1, where
VN+1 is equal to VPCC, which is a known quantity. Therefore,
the 3N equations contain 3N unknown quantities, and can be
solved.
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