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ABSTRACT The importance of an automated defect inspection system has been increasing in the manufac-
turing industries. Various products to be examined have periodic textures. Among image-based inspection
systems, it is common that supervised defect segmentation requires a great number of defect images with
their own region-level labels; however, it is difficult to prepare sufficient training data. Because most products
are of normal quality, it is difficult to obtain images of product defects. Pixel-wise annotation for semantic
segmentation tasks is an exhausting and time-consuming process. To solve these problems, we propose
a weakly-supervised defect segmentation framework for defect images with periodic textures and a data
augmentation process using generative adversarial networks. With only image-level labeling, the proposed
segmentation framework translates a defect image into its defect-free version, called a golden template, using
CycleGAN and then segments the defects by comparing the two images. The proposed augmentation process
creates whole new synthetic defect images from real defect images to obtain sufficient data. Furthermore,
synthetic non-defect images are generated even from real defect images through the augmentation process.
The experimental results demonstrate that the proposed framework with data augmentation outperforms
an existing weakly-supervised method and shows remarkable results comparable to those of supervised
segmentation methods.

INDEX TERMS Automated defect inspection, visual inspection system, weakly-supervised learning,

periodic textures, data augmentation, generative adversarial networks.

I. INTRODUCTION

Most manufacturing industries have aimed to provide their
clientele with defect-free products to enhance their corpo-
rate competitiveness. In order to achieve this goal, product
inspections are usually conducted at the final stage of the
manufacturing process, and a large number of manufactured
products have been examined by human inspectors. It is
rare for the accuracy of the inspector to be uniform during
long working hours because inspectors become tired as time
elapses. Furthermore, because it is difficult for novices to
adequately check the product quality initially, it is likely that
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the inspection results will be unsatisfactory, and time will be
required for training purposes. For these reasons, the demand
for automated defect inspection has been increasing in the
manufacturing industries. Especially, defect inspection is
quite important in the semiconductor manufacturing process.

To satisfy the need, several automated inspection systems
have been proposed. Image-based, thermography-based, and
ultrasonic-based inspection systems, which are utilized for
specific purposes, have been widely applied. Image-based
systems perform inspection applying image processing and
computer vision techniques on images. These systems focus
on the appearance of the area where a defect exists on visible
objects. Thermography-based systems examine defects by
analyzing the thermal distribution of objects [1]-[4]. It is
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FIGURE 1. Examples of periodic texture image for inspection:
(a) TFT-LCD [8], (b) wafer [25], and (c) fabric [26].

applied to objects whose defects are derived from certain ther-
mal characteristics. Ultrasound-based systems that transmit
ultrasonic waves into objects to detect flaws are mainly used
when an inspection for the internal structures of the objects
is needed [5]-[7].

An image-based inspection system is one of the most
utilized approaches and has been widely applied to the
inspection of products such as textiles, wafers, and thin
film transistor liquid crystal displays (TFT-LCDs). As shown
in Figure 1, such products have periodic patterns, respec-
tively. In order to detect defects in periodic patterns, var-
ious methods utilizing image processing techniques have
been introduced: template-based, filter-based, and statisti-
cal methods [8]. Template-based methods are simpler than
other approaches, and are used to compare an input image
with its defect-free shape, called a golden template [9]-[12].
This approach is only useful when a golden template for
the input image can be obtained. Filter-based methods per-
form convolution with filter banks and detect a defective
region by analyzing the response of the results [13]-[15].
In this approach, knowing the structure of both defective and
defect-free regions helps to design appropriate filters. Statis-
tical methods inspect defects based on the statistical differ-
ence between the defective and defect-free regions [16]-[18].
In order to discriminate between the two regions, an adequate
number of sample images are needed. In recent years, convo-
lutional neural networks (CNNs) have shown remarkable out-
comes in various computer vision applications. In particular,
several networks including FCN [19], SegNet [20], and Adap-
Net [21] demonstrated a notable performance for semantic
segmentation, and thus, deep learning-based approaches have
been widely applied to defect inspections [22]-[24].

Although the field of image-based defect inspection has
advanced, some challenging issues still remain: data insuffi-
ciency, data imbalance, and annotation cost, to name a few.
The first issue is data insufficiency. Several datasets for gen-
eral object detection and semantic segmentation have been
publicly released such as PASCAL VOC [27], COCO [28],
and Citiscapes [29]. Unlike general objects, it is difficult to
obtain images that contain defects because most products
are not faulty. It is common that only three or four occur-
rences per million units or events are allowed in the modern
manufacturing industries employing Six Sigma methodol-
ogy. Especially, it is more difficult to capture defects in
semiconductors than other products since defects in semi-
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conductors are several nanometers in size. Furthermore, gen-
erating defective products for the purpose of inspection is
even more difficult. In addition, in most cases, the inspec-
tion results are treated as strictly in-house and confidential.
The second issue is data imbalance, which indicates that
data of certain classes are lack or missed. In general cases
of defect segmentation, imbalanced data are concerned with
the kinds of defects; however, this is occasionally broadened
to the existence of defects. Because inspection tasks mainly
focus on defective products, it is possible that data of normal
products will not exist. The last but not the least one is anno-
tation cost. In the field of machine learning, model training
often requires labels of data called the ground truth (GT),
which are the correct answers to the data (e.g., class, bound-
ing box, and segmentation mask) on the object of interest.
In detail, the annotation required for a semantic segmentation
task is tedious and time-consuming owing to the pixel-wise
labeling.

In this paper, we propose an image-based defect segmenta-
tion framework for periodic texture images using GAN-based
golden template generation and data augmentation process.
The proposed framework generates the golden template of
the input image and then segments defects in a pixel-wise
manner using simple post-processing. The concept of this
framework is inspired by the dissimilarities between the
defective and normal regions. Moreover, synthetic defect and
non-defect images are generated from a small number of
real defect images through the proposed data augmentation
process, the volume of which is sufficient to train a model.
The process does not apply simple geometric transformations
to existing images, such as scaling, translation, and rotation,
but generates whole new images. The main contributions of
this paper are:

o We propose a framework using CycleGAN [30] for

defect segmentation on periodic textures. We achieve
a competitive performance of pixel-wise segmentation
compared to supervised learning-based methods while
using only class labels. The proposed framework lowers
the burden of the annotation cost.

« We propose two data augmentation processes for
generating synthetic defect and non-defect images,
respectively. The proposed data augmentation process
alleviates the data insufficiency and data imbalance
problems described earlier.

The rest of this paper is organized as follows. Section II
introduces existing image-based defect segmentation meth-
ods. Section III describes the proposed defect segmenta-
tion framework and data augmentation process. Section IV
presents our experimental settings and results. Finally,
Section V provides some concluding remarks.

Il. RELATED WORKS

A. TRADITIONAL APPROACHES

As mentioned in the introduction section, various meth-
ods based on traditional image processing and computer
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vision techniques have been reported. Template-based meth-
ods utilize defect-free template images for comparison.
Khalaj et al. [9] constructed the building block, the struc-
ture of repeated patterns, from direct patterned wafers.
The repetition periods of the patterns were estimated along
the horizontal and vertical directions in the input image.
Xie and Guan [10] generated defect-free images using a sim-
ulated building block whose size is equal to the horizon-
tal and vertical periods of repeating patterns for patterned
wafer inspection. A golden template was built in a man-
ner analogous to that of constructing a building block.
Shankar and Zhong [11] introduced a template-based vision
system to inspect semiconductor wafer surfaces. In this sys-
tem, the mean square error (MSE) analysis between the
reference circuit image and the test image was performed
using a two-dimensional discrete cosine transform (DCT).
A rule-based approach for semiconductor defect segmenta-
tion was reported in which the segmentation was performed
based on the diagnostic rule, similarity rule, and logical rule
using an error image [12]. The resulting error image is gen-
erated by matching the inspected die image and the golden
master (GM) image.

Filter-based methods are based on various types of fil-
ters that output different responses in each of the defective
and defect-free regions. Tsa and Wu [13] chose the best
parameters of a Gabor filter based on the output response
of convolution for each textured surface to deal with unseen
defects in the given surface. They demonstrated the effec-
tiveness of their method for both structural and statisti-
cal textures. Gabor filter-based supervised and unsupervised
approaches for defect detection in textured materials were
presented [15]. In the supervised scheme, the best representa-
tive Gabor filter was determined based on the filter-selection
methodology. For unsupervised defect detection, a multi-
channel filtering scheme was used and an imaginary Gabor
function (IGF) was employed to lower the computational
time. Chan and Pang [14] analyzed the frequency spectrum
to detect defects in the patterned fabric on the basis that
the frequency spectrum will vary when the fabric image has
defects. They utilized a fast Fourier transform (FFT) instead
of a discrete Fourier transform (DFT) for computational
efficiency.

In the statistical methods, defects can be discriminated
against flawless regions based on the characteristics of the
texture, such as the intensity distribution. Liu et al. [16] intro-
duced an inline defect-defection (IDD) system for TFT-LCD
inspection. After some pre-processing to obtain patches for
classification, they classified whether a patch is defective or
not using locally linear embedding (LLE) and support vector
data description (SVDD). In order to solve the problems
in SVDD, automatic target defect identification based on
fuzzy support vector data description (F-SVDD) ensemble
was reported [17]. A partitioning-entropy-based kernel fuzzy
c-means (KFCM) algorithm was utilized for constructing
F-SVDD ensemble. Yu and Lu [18] developed a wafer map
defect detection and recognition method using local and
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nonlocal preserving projection (LNPP) and joint local and
nonlocal linear discriminant analysis (JLNDA). They used
several features for representing wafer maps: geometrical fea-
tures, gray features, textual features, and projection features.

In particular, there were some studies where local binary
patterns (LBP) variants were used to detect defective regions.
Tajeripour and Fekri-Ershad [31] developed an approach for
porosity detection in stone textures using one-dimensional
local binary patterns (1DLBP). They divided a stone image
into sub-windows and compared a feature vector of each
window with that of the porosity-less image. A surface defect
detection approach using noise-resistant color local binary
patterns (NrCLBP) was presented [32]. They combined fea-
ture vectors that have different sizes of neighborhood radius
in NrCLBP for multi-resolution analysis. Cao et al. [33]
introduced a nickel foam surface defect detection method
using multi-scale block local binary patterns (MB-LBP).
They utilized a non-subsampled contourlet transform (NSCT)
to extract multi-scale texture characteristics.

B. METHODS IN THE ERA OF DEEP NEURAL NETWORKS
After the success of AlexNet [34], several defect inspec-
tion methods using deep neural networks (DNNs) have been
recently reported. According to the level of supervision for
the training data, DNN-based methods can be categorized
into three groups: supervised, weakly-supervised, and unsu-
pervised learning.

Ouyang et al. [22] constructed a network called PPAL-
CNN, which consists of seven layers for fabric defect
detection. In order to localize fine defects and deal with
data imbalance, they generated a defect probability map
from an input image and utilized it as a dynamic acti-
vation layer (PPAL) instead of an activation function.
Marino et al. [35] applied class activation mapping (CAM)
[36] to potato defect classification and localization. CAM
gives a network trained for classification tasks the abil-
ity to localize target objects in images by adding a con-
volutional layer and a global average pooling layer before
the last fully-connected layer [36]. They employed several
well-known networks such as AlexNet [34], VGGNet [37],
and GoogLeNet [38] as backbone networks and modified
these networks to extract the CAM results. A network called
LEDNet, which is based on CAM for classifying and localiz-
ing defects in LED chip images, was presented [39]. In addi-
tion, data augmentation was performed randomly for the
collected images using geometric transformation techniques
including rotation, flipping, translating, noising, and blur-
ring to improve the accuracy. Schlegl ef al. [40] introduced
AnoGAN to detect lesions in medical images with deep con-
volutional generative adversarial networks (DCGAN) [41].
They trained a model with only normal data, and thus,
the trained network can represent the distribution of normal
data. They then compared the input images and the images
generated from the latent variable computed by the inverse
operation of the generator. When an input image is normal,
it is analogous to its generated image. By contrast, a visual
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FIGURE 2. Flowchart of the proposed data augmentation process for periodic texture images.

difference exists between the input image and the generated
image when the input image is anomalous.

Niu et al. [42] presented DefectGAN using CycleGAN
[30] for weakly-supervised defect detection. This study is
similar to our proposed framework in terms of the non-defect
image generation using CycleGAN; however, the total loss
function used in the study was inadequate to make a golden
template well for periodic patterns. In order to deal with this
problem, we utilized another term, identity mapping loss [30],
to the total loss function and demonstrated the effectiveness
of the additional term. Moreover, we performed data aug-
mentation to solve the problems of data insufficiency, and
generalization performance of the golden template generation
is enhanced through our data augmentation scheme.

C. DATA AUGMENTATION FOR IMPROVING
PERFORMANCE

The volume and diversity of data are crucial to data-driven
approaches such as DNN-based methods. Various data aug-
mentation approaches for improving performance in different
tasks have been presented.
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Budvytis et al. [43] investigated the effect of video data
augmentation for semantic segmentation in driving envi-
ronments. They increased the segmentation performance
of different networks by performing label propagation
from coarsely labeled frames to adjacent unlabeled ones.
The effectiveness of data augmentation in image classifi-
cation tasks was demonstrated [44]. Three augmentation
approaches including traditional transformations, GANSs,
and the augmentation network were utilized in this study.
Bowles et al. [45] improved segmentation accuracy in med-
ical imaging with augmenting training data. They inves-
tigated the performance of segmentation networks trained
with different amounts of synthetic data. GAN-based medical
image augmentation was performed for liver lesion classifi-
cation [46]. In this study, two GAN variants were employed to
generate synthetic liver lesion images, and the classification
performance was improved by using the generated synthetic
images. Zhao et al. [47] synthesized labeled medical images
for the segmentation task in magnetic resonance imag-
ing (MRI) brain scans. They trained spatial and appearance
transform models for generating synthetic images and labels.
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FIGURE 3. Flowchart of the proposed framework for defect segmentation in periodic texture images.

Ill. PROPOSED FRAMEWORK

A. OVERVIEW

Before describing the details of the defect segmentation
in periodic texture images, we first describe the overall
scheme. Flowcharts of the proposed data augmentation pro-
cess and the defect segmentation framework are depicted
in Figures 2 and 3, respectively.

As shown in Figure 2, the proposed data augmentation
process includes the two subordinate procedures for syn-
thetic image generation: defect and non-defect. By using
DCGAN [41] and CycleGAN [30], we create synthetic defect
images whose volume is sufficient for training a network.
PatchMatch [48] and periodic spatial generative adversar-
ial network (PSGAN) [49] are utilized to create synthetic
non-defect images. The proposed data augmentation allows
the golden template generator to produce more plausible
results. This suggests that our data augmentation scheme
improves the generalization performance of the golden tem-
plate generation.

The proposed defect segmentation framework consists of
the golden template generation and post-processing, as illus-
trated in Figure 3. The golden template generation is per-
formed using CycleGAN, which makes a defect-free version
of the input image. After the golden template, straightfor-
ward image processing techniques are applied for detecting
defects. To make a golden template for periodic patterns,
we employ another loss term, identity mapping loss [30].
Although the loss is often auxiliary in other CycleGAN
applications, in this work at least, it is crucial to the golden
template generation from the perspective that the periodicity
of the pattern must remain.
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B. SYNTHETIC DEFECT IMAGE GENERATION

Synthetic defect images are generated out of real defect
images through DCGAN [41] and CycleGAN [30]. DCGAN
is utilized to make synthetic defect images; however, whose
resolution is too small to be used as training samples for
golden template generation. In addition, it is inadequate to
apply a naive scaling method to the images. To solve this
problem, image-to-image translation using CycleGAN is car-
ried out for super-resolution.

In the training phase, each of the two networks is trained for
their own purposes. In the generating phase, synthetic defect
images are created through the trained networks.

DCGAN consists of two adversarial modules, a generator
G and a discriminator D, which are trained by min-max game
with the loss function V (G, D):

V(G, D) = Erpp() [102 D@)]

+E~p.») [log (1 — D(G(2)))], (1)

where x is the input data for a discriminator D, and z is a
latent variable for a generator G. In this work, a generator that
creates fake defect images indistinguishable from real ones
is learned when given the actual defect images as training
samples. From now on this network will be called as NVgp.

CycleGAN for super-resolution learns the two mapping
functions Gy : X; — Xy, Gr : Xg — X where X,
is the low-resolution domain of the defect and Xy is the
high-resolution domain of the defect. The two adversarial
discriminators, Dy,, and Dy,, aim to distinguish the data
of the domain and the data mapped from the other domain,
respectively. Loss functions for the total loss are expressed
as:
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LGan (G, Dy, X, Y) = Eypiay) [log Dy (»)]
+ Expiuato) [l0g (1 = Dy (G)))],
()
Leye (G, F) = Bxpyue(o) [IF(G(x)) — x[1]
+ By piaa) IGE®)) = yll1], (3)
Lig: (G, F) = ]E)”"Pdmu(y) GQ») — yli1]
+ Exmpiarao) [IF ) = x[1]. (4)

Our total loss function used to train a model for super-
resolution is:

L (GH, G, Dy, , DXH)
= Lcan (GH. Dxy, X1, X1)
+Lean (G, Dx, . Xu. X¢)
+heyeLeye (Gu, GL)
+Xiar Liar (Gu, GL) (5)

where Lgan, Leye, and Lig; are the adversarial loss, cycle
consistency loss, and identity mapping loss, respectively. A¢ye
and A4 are used to control the impact of L.y and L4,
respectively. The network for super-resolution will be termed
Nsr hereafter.

After the two networks are trained, the images produced
from Npp trained to create fake defect images are fed into
Nsg trained for super-resolution. We use the resulting images
of Nsg as our synthetic defect images for training the golden
template generator.

C. SYNTHETIC NON-DEFECT IMAGE GENERATION

To train CycleGAN for golden template generation, the two
domains of the image are required. For this reason, Patch-
Match [48] and PSGAN [49] are employed to perform syn-
thetic non-defect image generation. In order to deal with a
situation in which real non-defect images can not be acquired,
factitious images such as defect-removed are generated using
PatchMatch. Periodic textures are then synthesized from the
defect-removed images using PSGAN.

In PatchMatch, a nearest-neighbor field (NNF) is initial-
ized as patches, which are at the uniformly random offset
f(x,y) across the whole image. Based on the patch distance
D(v) between the patch at (x, y) in an image and the patch
at (x,y) + v in the other image, the offset f(x,y) is prop-
agated. On odd iterations, f(x,y) is changed into a value
that minimizes {D(f(x,y)), D(f(x — 1,y)), D(f(x,y — 1))}.
Furthermore, this propagation is performed in the opposite
direction using f (x + 1, y) and f(x, y 4+ 1) on even iterations.

After the propagation, the offset vo = f(x, y) is checked
with different candidate offsets to avoid convergence to the
local minima. A series of candidate offsets exponentially
decrease as:

u; = vo + wa'R;, (6)

where w is the maximum search radius, which is initially
set to the maximum image dimension, « is the decaying
parameter for reducing the search window sizes, and R; is
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a random value in [—1, 1] x [—1, 1]. This random search
finishes when wa’ is less than 1 pixel.

PSGAN is based on the DCGAN architecture; however,
it is composed solely of convolutional layers. In addition,
the generator G is extended in a two-dimensional spatial
domain to map a latent variable Z € RE*M*4 to an image
X e RHXWXC A latent variable Z consists of three sections:
local independent part Z!, spatially global part Z¢, and peri-
odic part Z”. The channel dimension of Z, d, is the sum of the
channel dimensions of the three parts {d’, d¢, d”}. In accor-
dance with the extension of the generator G, the discriminator
D outputs a L x M field from an image X.

As the variation of the generator and discriminator in
PSGAN, the standard GAN loss function is also altered as:

L M
1
V(0.6 = 137 323 Bt 08 DX

1 L M
i ; j_ZI]Ez~pz<z> [log (1 — D(G@)))],

)

where D;;(X "} is the discriminator at (i,j), 1 < i < L and
1 <j < M, for alocal part X’ in an input image X.

After a network for texture synthesis is trained,
the enlarged synthesis results are randomly cropped. The
resulting images of the random cropping are used as our syn-
thetic non-defect images for the training of a golden template
generator. Henceforth, the network for texture synthesis will
be dubbed N7g.

D. GOLDEN TEMPLATE GENERATION

For golden template generation, CycleGAN learns the two
mapping functions Gy : X — Y and Gp : Y — X between
the defect domain X and the non-defect domain Y. In order
to train a network for golden template generation, we used
the same total loss function in Equation (5). The total loss
function for a golden template generator is expressed as:

L(Gn, Gp, Dx, Dy) = Lcan (G, Dy, X, Y)
+Lcan (Gp, Dx, Y, X)
+)\cyc£cyc (GNa GD)
+Aidt Liar (GN, Gp) 3

where Lcan, Leye, and Lig; are calculated using Equations (2)
to (4). After this section we will call the network for golden
template generation as Ngr.

We employ the identity mapping loss [30] which allows a
model to have the capability to preserve the color composition
after translation as the additional term in the total loss func-
tion. Although the loss term is not commonly used in other
applications, we found that it helps to preserve the periodicity
of patterns. When the coefficient of the identity mapping loss
is zero, flawless regions are slightly varied. This phenomenon
occurs when Nsp is trained without £;4, in Equation (5). Only
the defective region should be changed while the defect-free
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TABLE 1. Examples of defect images and categorization of the type of
defect in our semiconductor dataset.

Examples Descriptions

V
Some line patterns are broken.

.

Some line patterns are broken, and there is a
bulge in the broken patterns.

Some line patterns are bridged.

Some line patterns are broken and bridged with
their nearby patterns.

There is a bead-like foreign body on the line
patterns.

There is an amorphous foreign body on the line
patterns.

Some line patterns are bridged, and there is an
amorphous foreign body on the bridged surface.

=

region is unaltered, which is our goal and the reason for using
the identity mapping loss.

E. DEFECT SEGMENTATION

After the golden template of the input image is obtained,
simple image processing techniques are applied for detecting
defects. To measure the similarity between the input image
and its golden template, the patch-wise sum of the absolute
difference (pSAD) is calculated as:

PSADG,j)= )

(k.DeQ(.))

p(k, 1) —Ig(k, DI, ©))

where €2(Z,j) is a patch ranging from (i — W,j — H) to
i+ W,j+ H). Ip and I; denote the input defect image and
the golden template of the input image created by the golden
template generator, respectively.

In general, defective regions are quite different from their
golden templates. On the contrary, defect-free regions are
extremely similar to the templates. Therefore, the values in
the pSAD results are usually larger in the defective region
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FIGURE 4. Modification of non-defect images to construct real subset:
(a) real defect image, (b) real non-defect image captured at different
scales, and (c) the resulting non-defect patch.

TABLE 2. The three subsets of our semiconductor dataset for golden
template generation.

Domain Defect images Non-defect images
Subset real  synthetic real synthetic
real 200 0 200 0
real+syn 200 0 0 200
syn 0 10,000 0 10,000

than in the flawless region. Defects are then segmented by
applying hysteresis thresholding to the pSAD results.

IV. EXPERIMENTS

A. IMPLEMENTATION DETAILS

We utilized several networks to verify our framework. In our
experiments, all the network training and testing were per-
formed on an AMD Ryzen 7 2700X CPU and an NVIDIA
RTX 2080Ti GPU using CUDA 10.0.

Synthetic Defect Image Generation Firstly, we trained
NFp on defect images of 64 x 64 resolution and employed
the architecture introduced by Radford et al. [41]. The net-
work was trained for 2500 epochs and the dimension of the
latent variable was set to 100. Secondly, we trained Ngg
on low-resolution defect images and high-resolution defect
images of 256 x 256 resolution with the architecture presented
by Zhu et al. [30]. The 64 x 64 low-resolution images were
resized to 256 x 256 for training. We trained the network for
200 epochs keeping the learning rate for the first 100 epochs
and linearly decaying the initial rate to zero in the next
100 epochs. The coefficients Acye and A;q in Equation (5)
were 10 and 0.5, respectively.

Synthetic Non-defect Image Generation In order to
obtain defect-removed images from real defect images,
we performed PatchMatch. The defective region was
located manually and re-drawn through the approximate
nearest-neighbor algorithm. For texture synthesis, N7s was
trained on images of 160 x 160 resolution with the architec-
ture introduced by Bergmann et al. [49]. The network was
learned for 100 epochs to generate fake texture images from
the latent variables. For the channel dimension of the latent
variables, we set the dimension of the three parts as d =10,
d8 =0, and dP = 2. With the trained network, we produced
synthesized texture images of 640 x 640 resolution and then
randomly cropped the images to obtain small texture patches.
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FIGURE 5. Examples of original images of the EO, E1, E2, E3, and E4 in the
C3R1.

TABLE 3. The four subsets of TILDA dataset for golden template
generation.

Domain Defect images Non-defect images
Subset real  synthetic  real synthetic
C3RI_real 300 0 300 0
C3RI1_syn 0 10,000 0 10,000
C3R3_real 250 0 250 0
C3R3_syn 0 10,000 0 10,000

Golden Template Generation To perform golden tem-
plate generation, we trained NVgr on defect images of 256 x
256 resolution and non-defect images of 256 x 256 resolu-
tion with the aforementioned architecture in synthetic defect
image generation. In addition to random flip in training phase,
random rotation with a maximum of £5° was performed to
achieve a generalization performance of the representation.
The coefficients Ay and A;4; in Equation (8) were both 10.

Defect Segmentation We chose the parameters of the
patch size and thresholding values empirically. The pSAD
results were calculated with a patch whose size ranges from
5 x 5 to 21 x 21. Hysteresis thresholding was performed
using an upper bound 7, and a lower bound 7;. The upper
bound 7}, and the lower bound 7; were multiples of 0.02 with
a constraint that 7;, should be between 0.5 and 0.98, and that
T; should be lower than 7,.

B. DATASET

We experimented with three periodic textures. One is the
images of defects in semiconductor wafers, and the others
are those of defects in textiles. Each of them has distinctive
defects and periodic textures.
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FIGURE 6. Examples of original images of the EO, E1, E2, E3, and E4 in the
C3R3.

‘lll!l‘l‘
RN S S
NN S S

» R W

FIGURE 7. Acquisition of defect patches from original defect images in
the C3R1 and C3R3.

Our Dataset In order to demonstrate our proposed frame-
work, we experimented with our private dataset. This dataset
is about defects occurring in semiconductors, the images
of which were captured by scanning electron microscope
(SEM). There are seven types of defects in the dataset, and the
sample images and their descriptions of our dataset are shown
in Table 1. The dataset contains 264 grayscale defect images
of 480 x 480 resolution with periodic textures; however, there
are no non-defect images.

We resized the original images to images of 256 x 256
resolution and used the resized images for the experiments.
For the golden template generation and data augmentation
process, 200 images were randomly selected as the training
data. The performance on this dataset was evaluated with the
others.

Because our dataset does not include non-defect images,
we used some non-defect images acquired at different
scales to construct the real subset. By utilizing the scale
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N

FIGURE 8. Synthetic defect image generation using our dataset:
(a) low-resolution images, and (b) high-resolution images.

WA

FIGURE 9. Golden template generation for the test images: (a) input
images, and generation results of the networks trained with identity
mapping loss on (b) real subset, (c) real+syn subset, and (d) syn subset.

information in the defect and non-defect images, we resized
the non-defect images to make the textures in the non-defect
images similar to the patterns of the defect images. Then,
we randomly cropped the resized non-defect images as the
size of real defect images, as shown in Figure 4. Conse-
quently, we obtained 200 non-defect images with the modifi-
cation scheme. As shown in Table 2, the real subset includes
200 real defect and non-defect images. The real+syn subset
contains 200 real defect and synthetic non-defect images. The
syn subset consists of 10, 000 synthetic defect and non-defect
images.

TILDA In addition, we utilized a public dataset, TILDA
textile texture-database [50], to apply our framework to other
periodic textures. This is a dataset of defects in textiles, and
there are eight types of fabric. Among the textiles, we used
the subsets, { C3RI, C3R3}, which have periodic structures.
In the subcategories of the two subsets, we used {EI, E2,
E3, E4} as target defects and {EO} as defect-free textures.
Each subcategory contains 50 grayscale images of 768 x 512
resolution and the sample images of the subcategories in the
two subsets are shown in Figures 5 and 6.

In order to be adapted for the proposed framework,
the original non-defect images were divided into six patches
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FIGURE 10. Synthetic non-defect image generation using our dataset:
(a) defect-removed images, and (b) synthesized texture patches.
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FIGURE 11. Post-processing for defect segmentation: (a) input images,
(b) golden templates, (c) pSAD results, and (d) hysteresis thresholding
results.

of size 256 x 256 without overlap. For defect images, first,
we manually labeled defects in a pixel-wise manner. Based
on the annotation results, we set the smallest ROI which
covers all the defective regions in the image. The ROI has
a constraint that the center of the ROI is equal to that of
defects and the width and height of ROI are multiples of
256. With this constraint, we divided the ROI into patches
of size 256 x 256. Among the acquired patches, those which
contain defects less than 100 pixels were discarded. As shown
in Figure 7, the patches covered with the blue bounding boxes
were obtained as defect images, whereas the regions in the red
boxes were not used. Accordingly, we obtained 397 and 323
defect patches in the {C3RI, C3R3}, respectively. In order
to train networks for the golden template generation and data
augmentation process, 300 and 250 images were arbitrarily
chosen. The other images were used as test data.

C. QUALITATIVE RESULTS OF THE PROPOSED
FRAMEWORK

To verify the effectiveness of our data augmentation pro-
cess and the identity mapping loss, we trained the network
for golden template generation with the three subsets {real,
real+-syn, and syn} of our dataset.
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(©) Xjgr = 1, (d) Xjgr = 2, (&) Ajge =5, (F) Xjgr = 7, and (g) Xjqr = 10.

100
g 8F o ol syn '.ADelect
$ 70r = real s A Non.pefect
@ gg: el YN A o pofent
§ s A A A
5 fég: @ Qs Q1
i

20

}§: A, A R R A

0 I I I I I I
Agp=00 Agy=10 A, =20 X, =50 X\,=70 A,=100

Identity loss weight

FIGURE 13. Average values of absolute difference image in both defective
and defect-free regions for the real and syn subsets of our dataset.

Through our data augmentation process, we generated syn-
thetic defect images and synthetic non-defect images using
our dataset, as shown in Figures 8 and 10. The resulting
non-defect images seemed to be almost the same as the
golden templates of the real defect images; however, the gen-
erated defect images did not look like completely the real
ones. Nonetheless, we achieved remarkable results with them.
With many synthetic images, the network for golden template
generation could learn a robust mapping from various defec-
tive regions to defect-free textures.

We acquired the most reasonable results for the test images
when the network for golden template generation was trained
on the syn subset, as shown in Figure 9. The defective
regions in the input image changed as normal, and it was
difficult to distinguish where the original defective region had
been. When the network was trained on the real+syn subset,
the defect-free regions in the golden template were very
similar to those in the input image. By contrast, the regions in
the golden template where defects had existed were slightly
different from the defect-free regions.
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FIGURE 14. Average values of absolute difference image in both defective
and defect-free regions for the real+syn and syn subsets of our dataset.

As shown in Figure 11, our framework generated clean
defect-free images from the input defective images. The
post-processing for defect segmentation could be seemed to
be superfluous; however, we dealt with the noises that are due
to the great change of the intensity in a normal pixel. Despite
the different intensity changes of the pixels in the defective
region, we detected the region as one defect. With this step,
we achieved better performance.

As shown in Figure 12, the identity mapping loss has a
great effect on the golden template generation. The golden
template generator trained without the identity mapping loss
missed the periodicity of the textures, so that the difference
values in the defect-free regions were as large as those in the
defective regions. On the contrary, the generator trained with
the loss represented the periodicity while removing defects in
the images.

In order to analyze these results numerically, we obtained
the average values of both the defective and defect-free
regions in the absolute difference images with region-level
labeling, as shown in Figures 13 and 14. Because the
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FIGURE 15. Data augmentation using the C3R1 subset: (a) synthetic
defect image, and (b) synthetic non-defect image.

@

FIGURE 16. Post-processing on the C3R7 subset: (a) input images,
(b) golden templates, (c) pSAD results, and (d) hysteresis thresholding
results.

non-defect images in the real subset are quite different from
the defect-free regions in the real defect images, the average
value of the defect-free region was the largest among the three
subsets. The network trained on the syn subset reduced the
average value of the absolute difference in the defect-free
region. This suggests that our data augmentation process
made more realistic images. It was difficult to discriminate
between the defective regions and the defect-free regions in
the absolute difference images when the identity mapping loss
was not utilized; however, the use of the loss made the gap
between the average values of the two regions clear.

The very similar method, DefectGAN [42], does not
include the identity mapping loss in the total loss function.
The model trained without the loss created the textures shifted
from those in the input image. This could make defect-free
regions be segmented as defects. In addition, with our data
augmentation process, the regions where defects existed in
the input image could turn into the textures more similar to

176212

IS
=3
7 s 7
! o "—":'—":b/)"

FIGURE 17. Data augmentation using the C3R3 subset: (a) synthetic

o
©
e
©
=3
3
]

]
o
o
E]
o

_
G

£
wn

~<
F]
-
5
&
[}
F
°
3

:

=W |
2l

&

z

8
\ 3

AN
1

FIGURE 18. Post-processing on the C3R3 subset: (a) input images,
(b) golden templates, (c) pSAD results, and (d) hysteresis thresholding
results.

NanE

those of defect-free regions. For these reasons, our framework
could be differentiated from DefectGAN for segmenting
defects on periodic textures.

Additionally, we applied our framework to the TILDA
dataset and adjusted the training scheme and hyperparame-
ters of some networks for data augmentation of the TILDA
dataset. Because directions of the pattern in the subsets
are different, the two networks, Nrp and N7g, for syn-
thetic defect and non-defect image generation were trained
by direction of pattern. We generated synthetic defect and
non-defect images, the number of which was as same as the
number of those of our dataset.

As shown in Figures 15 and 17, we generated synthetic
defect and non-defect images using the C3RI and C3R3
subsets. Unlike the generated non-defect images, synthetic
defect images were of poor quality, relatively. As shown
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FIGURE 19. Results of defect segmentation on our dataset: (a) input images, (b) ground truth, (c) ours, (d) FCN [19], (e) AdapNet++ [51], (f) CAM [36]
(DenseNet [52]), (g) CAM [36] (ResNet [53]), and (h) CAM [36] (SqueezeNet [54]).

in Figures 16 and 18, our framework made decent golden
templates for input defect images; however, there was a lit-
tle vestige of the defective region in the generated golden
template.

D. QUANTITATIVE EVALUATION OF THE PROPOSED
FRAMEWORK
In order to demonstrate the competitiveness of our framework
on defect segmentation, we compared our framework with the
three methods: CAM [36], FCN [19], and AdapNet++ [51].
The two supervised semantic segmentation networks were
trained on the real subset of our dataset. With the real defect
images and their region-level labels, FCN and AdapNet++
learned the semantic context for 200 and 100 epochs,
respectively. Our framework and CAM were trained on the
real, real+syn, and syn subsets of our datasets with only
image-level labels. They were trained for 200 epochs, except
that our framework learned two mapping functions between
the defect and non-defect domains on the syn subset for
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50 epochs. In the training and testing phase of the CAM,
several backbone networks were employed: DenseNet [52],
ResNet [53], and SqueezeNet [54]. The segmentation masks
of the CAM were obtained by applying the same thresholding
scheme of our framework to the resulting heatmaps of the
CAM. We selected the thresholding parameters to achieve the
best performance of the CAM.

As shown in Figure 19, our framework produced remark-
able segmentation results for various defects. These out-
comes were comparable to those of the other two supervised
methods. While the CAMs of the three backbone networks
localized defects, our framework segmented the defective
region more accurately. Specifically, our framework showed
better segmentation results for the relatively smaller defects,
compared with the three CAMs. These results could be due
to the downsampling in the backbone networks of the CAM.
The spatial resolution of the feature map was reduced through
pooling layers or strided convolutions, and the resulting
heatmap was enlarged to the original input size.
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TABLE 4. The segmentation performance on our dataset.

Method Level of supervision  mloU (%)
FCN [19] Supervised 86.15
AdapNet++ [51] Supervised 9291
CAM [36] (DenseNet [52]) Weakly-supervised 60.84
CAM [36] (ResNet [53]) Weakly-supervised 34.34
CAM [36] (SqueezeNet [54]) Weakly-supervised 49.44
Ours (With real subset) Weakly-supervised 63.77

Ours (With real+syn subset)
Ours (With syn subset)

Weakly-supervised 80.98
Weakly-supervised 82.33

TABLE 5. Comparison of the inference time.

Method Image resolution  Time (ms)
FCN [19] 224 x 224 42.12
AdapNet++ [51] 768 x 384 34.31
Ours 256 x 256 17.84

We adopted the intersection over union (IoU) to evalu-
ate the segmentation performance [27]. The IoU of the two
regions, R, and Ry, is expressed as:

area (R, N Ryr)

IoU (R,, Ryt) = , 10
(Ry: Re) area (R, U Ry;) (10
and the mean IoU (mloU) is calculated as:
SV, area (R;‘, N R(’z,,)
mloU = (11)

SV, area (R;‘, U Rgl)

where area (R, U Ry ) denotes the union of the predicted
segmentation mask and the ground truth, area (Rp ﬂRg,)
indicates their intersection, and N is the number of test data.
In this work, the mIoU was measured with only the defective
region.

As shown in Table 4, the performance of our frame-
work was enhanced with the proposed data augmentation
process. Moreover, our framework outperformed the CAMs
by a huge margin. Unfortunately, the performances of the
two supervised segmentation methods were superior to those
of our framework. However, given the qualitative segmen-
tation results, it seemed that our framework achieved a
decent performance of defect segmentation. Above all, our
framework produced competitive segmentation results with-
out pixel-wise labeling. In addition, we compared the infer-
ence time of the proposed framework with those of the two
segmentation networks. As shown in Table 5, our frame-
work showed the fastest inference time. In our framework,
the inference time of the golden template generation and
defect segmentation was about 16 and 2 ms, respectively.

E. DISCUSSION
There were a few limitations and failure cases of our frame-
work, as shown in Figure 20.

Because pSAD was applied to deal with noises in the
absolute difference images between the input image and
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FIGURE 20. Failure cases on our semiconductor dataset: (a) input images,
(b) golden templates, (c) pSAD results, (d) hysteresis thresholding results,
and (e) ground truth.

its golden template, our framework produced less detailed
results than the supervised methods. Hysteresis threshold-
ing was employed to determine defective regions; how-
ever, there were the limitations that the number and the
area of defects were heavily dependent on the two param-
eters of the thresholding. When a small foreign body was
between line patterns, the segmentation result of our frame-
work was wider than its actual region. When some line pat-
terns were broken or bridged, a few defective regions were
not detected because the intensities of the regions hardly
changed.

TILDA dataset is more challenging than our semiconduc-
tor dataset because the textures of the two subsets are less
strict and more complex than those of our dataset. Partic-
ularly, the directions of the patterns in the original images
are different from those of one another. Furthermore, there
are some indistinct defects that are indistinguishable from
defect-free textures. The qualitative results of the golden
template generation seemed to be decent with the naked eye;
however, the segmentation results were not good. This was
because the intensities in defective regions were similar to
those in defect-free textures. The structures of the defects in
the two subsets are more complex than that of the defects in
our dataset. Detailed shapes of defects and surrounding tex-
tures could not be formed in the synthetic defect generation.

Particularly, the patterns in the C3RI subset have both
global and local periodicity. This means that the images in the
C3R1 subset have check patterns globally and line patterns
locally. Unfortunately, it was difficult to reproduce these
distinctive textures in the synthetic defect images. For these
reasons, the quantitative performance on the TILDA dataset
was not good, as shown in Tables 6 and 7.

V. CONCLUSION

In this paper, we propose a weakly-supervised defect
segmentation framework for periodic textures and a data
augmentation process applicable to our framework. We
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TABLE 6. The segmentation performance on the C3R7 subset.

Method Level of supervision =~ mloU (%)
FCN [19] Supervised 69.39
AdapNet++ [51] Supervised 78.26
Ours (With augmentation) ~ Weakly-supervised 12.27

TABLE 7. The segmentation performance on the C3R3 subset.

Method Level of supervision ~ mloU (%)
FCN [19] Supervised 42.01
AdapNet++ [51] Supervised 69.33
Ours (With augmentation) ~ Weakly-supervised 14.84

generated a golden template from an input defect image
and segmented the defective region by applying straight-
forward post-processing to the two images. Furthermore,
we found that the identity mapping loss is crucial to the
golden template generation of defect images with peri-
odic textures. As a result, we localized the defects in a
pixel-wise manner without region-level labeling. Through the
proposed augmentation process, we created synthetic defect
and non-defect images even from only real defect images.
With the augmented data, the golden template generator made
more plausible results, and the segmentation performance
of our framework was enhanced. The proposed framework
was qualitatively and quantitatively compared to other defect
segmentation methods on periodic texture images with var-
ious defects. The experimental results suggest that the pro-
posed framework outperformed the CAM-based method and
showed results comparable to those of the supervised seg-
mentation in strictly periodic textures.

In future work, we plan to simplify the whole proposed
framework and develop the data augmentation process to
make more realistic images. Since the difference of inten-
sities showed a limitation for segmenting defective regions,
we plan to develop more in-depth post-processing. Particu-
larly, we will try to improve the quality of the golden template
generation for loosely periodic textures and to segment the
detailed structure of defects.
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