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ABSTRACT In this article, a novel two-stream convolutional neural network based on gradient image is
performed to effectively classify and identify aluminum profiles defects for the first time. Recent feature
fusion methods based on two-stream network prove promising performance for defects classification and
recognition. In this article, we use data enhancement methods to obtain a large number of samples to
prevent the over fitting phenomenon in deep learning. The image gradient is calculated with the Sobel
operator, and normalized to transform the data between zero and one under the same dimension. We design
a two-stream convolutional neural network model adopting Wavelet transform fusion strategy to realize
feature fusion on the ReLU6 layer, which uses the original RGB image of aluminum profile and the gradient
image corresponding to the original RGB image as inputs to extract features through two sub-networks
and fuses features on a concatenate layer to be input into SVM classifier for classification and recognition.
Using Bayesian Optimization function and computing the cross-validation classification error to optimize
the hyperparameters to choose the best performance configuration is performed. A series of experimental
data, which include accuracy and estimated generalized classification errors of single-stream and two-stream
networks with different feature fusion strategies on different fusion layers, are conducted and show that the
current model has good convergence, accuracy, stability and generalization. On this basis, this article also
proposes a series of innovative methods for the future research of other defects.

INDEX TERMS Aluminum profile surface defects, two-stream network, gradient image, convolutional
neural network, SVM.

I. INTRODUCTION
Due to the growing demand for massive infrastructure invest-
ment in the world and rapid development of industrializa-
tion, the aluminum profiles with high strength, light weight,
corrosion resistance, long service life, rich color and other
advantages are mainly used in automobile manufacturing, rail
transit, equipment and machinery manufacturing, consumer
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durables, aerospace industry and other industries [1]. There-
fore, the surface quality of aluminum profile is very important
significance and can greatly affect the product performance.
However, on account of extrusion equipment and extrusion
technology in the extrusion process, compression deforma-
tion, spray grouts and other operating reasons, the aluminum
profile surface will produce abrasion mark, traffic mark, dirty
points, convex powder, orange peel and other defects, which
affects the quality of aluminum profile [2]. In many manu-
facturing industries, human inspection is still an important
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component in the production process, but cannot guarantee
the detection stability and accuracy. Therefore, automated
defects detection is naturally needed to solve the problem, and
thenmachine vision technology gradually replaces traditional
human inspection methods and can satisfy customer require-
ments because of its highly recognition rate and detection
stability [3]. Generally, the aluminum profiles surface defects
detection process based machine vision method consists of
the following four steps: image capture, image preprocess-
ing, feature extraction and defects recognition. Among them,
the feature extraction can directly affect the detection accu-
racy and even lead to detection failures [4]. The traditional
machine vision feature extraction generally includes His-
togram of Oriented Gradient(HOG), Scale-Invariant Feature
Transform(SIFT), Oriented FAST, Speeded-Up Robust Fea-
tures (SURF), Oriented FAST and Rotated BRIEF(ORB),
Local Binary Pattern(LBP) and Haar-like features(HAAR).
And SIFT and HOG are all feature extraction methods based
on the histogram of gradient direction in the image. SURF
operator is an improvement of SIFT. ORB adopts FAST
(Features fromAccelerated Segment Test) algorithm to detect
feature points, which can be used for real-time feature detec-
tion. LBP is a kind of feature operator to describe local texture
of image, which has rotation invariance and gray invariance.
Haar-like is combined with AdaBoost algorithm to be as the
most commonly used face detection algorithm. Haar-like fea-
tures only use feature template to calculate the depth mode of
image color, and the template slides on the image with differ-
ent sizes and positions to calculate the feature value [5], [6].
Relative to the above feature extraction methods, the features
extracted by Deep Learning has better applicability, gener-
alization and expression ability. And convolutional neural
network has outstanding advantages on feature extraction and
classification performance, which is widely used for image
processing, classifying and understanding [7].

Many scholars have studied the effective feature extraction
methods in defect detection system. The following is the
research on defect detection of aluminum profile by some
scholars. Wei and Bi [8] proposed a recognition technol-
ogy of aluminum profile surface defects with a multiscale
defect-detection network based on deep learning. Liu et al. [9]
proposed aluminum profile texture feature extraction method
by means of GLCM algorithm and Gabor wavelet transform
methods, and used SVM based on RBF to classify the fea-
ture. Neuhauser et al. [10] proposed a method of surface
defect classification and detection based on a neural network
structure adopting data enhancement and migration learning
which is the key for network training. Li and Liu [11] studied
aluminum plate surface defects recognition method through
BP neural network which used three layers neural network
structure.

Although there are a few articles on the detection of alu-
minum profile surface defects, there are many researches
on the detection of other materials, such as steel surface
defects. Fu et al. [12] proposed a deep-learning-basedmethod
via a compact yet effective convolutional neural network

model, which emphasized the training of low-level features
and incorporated multiple receptive fields. Wang et al. [13]
proposed a convolutional neural network (CNN) to auto-
matically extract features for distinguish between the defect
free and defective image to achieve product quality con-
trol. Weimer et al. [14] proposed Convolutional Neural
Networks (CNN) architecture for industrial inspection by
designing different configurations to study the influences of
different hyper-parameter on the detection results.

According to the above analysis, although the previous
methods have achieved good results, there are still some
problems to be solved. Firstly, many models adopt machine
learning algorithms for RGB image to detect defects but do
not effectively use useful information from other sources
or representations. Secondly, the single information source
cannot completely and effectively reflect the characteristics
of objects. Thirdly, due to surface defects that can occur in
any size, shape and orientation, the standard defect feature
description obtained by traditional common feature extrac-
tion methods in machine vision might lead to low accuracy
for classification and recognition.

Considering the above some problems, Convolutional
Neural Network can be adopted to overcome the difficul-
ties of different feature representations, and the two-stream
convolutional neural network can extract the structural infor-
mation characteristics and the intensity and color informa-
tion characteristics of the image respectively. And, in order
to appropriately and effectively improve the defect classi-
fication accuracy, these methods for combining the local
feature details and the global features of the whole picture
are adopted on different materials defect detection or other
aspects. Hao et al. [15] proposed a hyperspectral image clas-
sification method based on a two- stream network including
two subnetworks with the encoded spectral values of each
input pixel by the stacked denoising auto-encoder as one
stream and the corresponding image patch processed by deep
convolutional neural network as input to the other stream.
Yu and Liu [16] designed a two- stream framework which
takes convolution neural network as the feature extraction
network by the original RGB stream and its corresponding
saliency stream for aerial scene classification. Yan et al. [17]
predicted the image quality via a two-stream convolution
network including two subnetworks with images and gradi-
ent images as input respectively, which simultaneously paid
attention to the extraction of detailed structural features and
the information strength.

Although there are a lot of researches on multi-stream for
classification and identification of various materials defects,
there are few two-stream neural network methods that inte-
grate global and local features on the aspect of defect clas-
sification and detection for aluminum profiles. In order to
get better accuracy and recognize more types of defects,
the architecture of traditional convolutional neural network
will be improved. In addition, there are not many samples
in the open aluminum profile database, so it is difficult to
meet the requirements of training deep neural network which
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needs a large number of training samples. And, the stor-
age capacity and computing performance required by the
well-known convolutional neural network model are usu-
ally very important for real-time defect detection. There-
fore, a two-stream convolutional neural network with RGB
image and gradient image as input respectively by fusing
information from multiple sources is adopted for aluminum
profile surface defects classification and recognition, which
comprehensively considers combining local structure details
with global image features to effectively and easily identify
defects for aluminum profile image.

II. DATA PREPROCESSING
A. DATA ENHANCEMENT
In order to prevent the insufficient training samples of alu-
minum profiles from leading to low detection accuracy, low
fitting and low robustness of detection model, the amount of
input image samples are increased by properly transforming
the input image, which can effectively solve the lack of train-
ing samples problem and satisfy requirements for accuracy
and stability [18]. Firstly, the size of aluminum profile image
is adjusted to 227 × 227. And then, the following geometric
transformation methods are selected to amplify the data in
this article, such as flip, brightness adjustment, rotation. The
flip operation includes vertical flip, horizontal flip, and verti-
cal flip after horizontal flip. Brightness adjustment is to adjust
the gray level of the image through non-linear mapping, and
specifies the gray range before and after the transformation.
The rotation operation, adopting Bilinear Interpolation algo-
rithm, is to rotate a certain angle around the center point of the
image, and the image is subsequently cropped to keep the size
of the output image consistent with the input image after rota-
tion, because the previous rotation makes output image larger
enough to contain the entire rotated image to ensure that
the pixel value beyond the image size range is not lost after
the rotation of the source image [19], [20]. Figure 1 shows the
diagram of data enhancement for aluminum profile image.

FIGURE 1. The data enhancement diagram for aluminum profile image.

B. GRADIENT IMAGE OF THE ORIGINAL GRB IMAGE
Under normal circumstances, the gradient image can robustly
reflect the image structures in details under the variations of

the image intensities and colors, and the defect area gradient
information is more sensitive to defect classification and
recognition [21].We believe that using the two-stream feature
fusion based on the gradient image stream and the original
RGB image stream will promote the detection performance.

As an important content of data preprocessing, the image
gradient algorithm can enhance the outstanding change
between defect area and homogeneous background due to
that the gradient direction is reflected in themaximum change
rate of image gray level, and image gradient can strengthen
the edge information in the image. And the defect areas of
aluminum profile usually have the characteristics of large
change rate of gray level value, somost of the redundant back-
ground information can be eliminated by gradient algorithm,
and the edge information with higher significance can be
retained. When calculating the gradient image of aluminum
profile image, different operators are selected for comparison
to ensure that the calculated gradient image is the most repre-
sentative. Considering the characteristics of different defects,
it is better to consider Sobel operator comprehensively based
on the experimental comparison of gradient algorithm with
different edge detection operator and [22]. Image gradient
is generally obtained by derivative of image function, which
can express the change rate of image gray. In most cases,
we use difference to approximately express derivative for
image gradient. The difference form of Sobel operator is
shown in Formula 1 [23].

1x f (x, y)
= [f (x + 1, y+ 1)+ 2f (x, y+ 1)+ f (x − 1, y+ 1)]
−[f (x + 1, y− 1)+ 2f (x, y− 1)+ f (x − 1, y− 1)]
1yf (x, y)
= [f (x + 1, y− 1)+ 2f (x + 1, y)+ f (x + 1, y+ 1)]
−[f (x − 1, y− 1)+ 2f (x − 1, y)+ f (x − 1, y+ 1)]

(1)

Image gradient is calculated by Sobel operator with a ker-
nel of size 3× 3 which slides on the image in two directions,
and the template convolves with the image using a convolu-
tion kernel of size 3 ∗ 3 with 9 pixels. And then according to
the gray weighted difference of the upper, lower, left and right
neighboring pixels, the edge is detected by the phenomenon
of reaching the extreme value at the edge. There are two Sobel
operators, one is to detect the horizontal edge and the other
is to detect the vertical edge. The calculation formulas are
shown in Formula 2 and 3 [24].

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ f (x, y)
Gy =

 1 2 1
0 0 0
−1 −2 −1

 ∗ f (x, y) (2)

G =
√
G2
x + G2

y (3)

therein, f (x, y) is the image gray value in the position of
(x, y), Gx and Gy are the convolution results of Sobel
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FIGURE 2. The aluminum profiles GRB images with defect and the corresponding
gradient images.

operators on horizontal and vertical directions respectively,
and G is the final edge amplitude, which is sometimes
simplified as shown in formula 4 to reduce the amount of
calculation [25].

G = |Gx | +
∣∣Gy∣∣ (4)

According to the above calculation method, the original
aluminum profile RGB image with different types of defects
are calculated to get the gradient image combining X direc-
tion and Y direction. After that, the gradient image is normal-
ized to transform the data between zero and one under the
same dimension. Figure 2 shows the original RGB images
and the corresponding gradient images [26].

III. PROPOSED METHOD
A. TWO-STREAM CONVOLUTIONAL NEURAL
NETWORK ARCHITECTURE
The traditional convolutional neural network, generally oper-
ated on RGB image or Gray image, can extract various effec-
tive features map of image by nonlinear transformation from
a single image. And the RGB image by itself is important
information, including color feature, texture feature, shape
feature and spatial relation feature. Compared with the origi-
nal RGB image, the Gray image does not contain color infor-
mation, so that the information content is greatly reduced and
the image processing calculation is correspondingly reduced.
These traditional methods, using RGB or Gray image to train
based on a single-stream convolution neural network, do not
consider dealing with local structure characteristics. If we
want to consider the extraction of local structure detail infor-
mation, we tend to select gradient image as another network
input for feature extraction at the same time, because the
image gradient can significantly reflect the high-frequency
information of an image and includes the most significant
detail features for identifying the defects of aluminum profile
image effectively and easily. And the gradient image has
better robustness under different illumination conditions. The
gradient feature of the image can find the potential rela-
tionship between adjacent pixels in the aluminum profile
image, which is insensitive to illumination. However, the

experiments as described in Section 4 show that using the
gradient image alone is similar to use the original RGB image
alone for defect classification accuracy on a single-stream
network or worse. In addition, there are also over fitting
phenomena in the above two cases [17].

Although the deep learning with a single-stream network
based the above works have a certain good performance,
there is still a certain distance to achieve satisfactory results.
There is also a problem whether it is advantageous to use
multi-feature fusion or whether one image suffice. The image
gradients keenly reflect the structural components of images,
such as image edges. The gradient image can robustly reflect
the image structures in details under the variations of the
image intensities and colors. The gradient amplitude can
reflect the change of texture details, and the histogram of gra-
dient direction can describe the representation and shape of
local objects. Considering the above reasons, the two-stream
technology is usually used to improve performance by fusing
features extracted by two independent convolutional neural
networks. And then, some features can be extracted from
gradient image which can well reflecting the characteristics
of image edge and other details, and reduce the difficulty
of extracting some effective features from the RGB images
stream. The gradient image stream focuses on the extraction
of detail structure features, while the image stream pays
more attention to the extraction of intensity information and
content features. As far as we know, the multi feature fusion
method based on two independent convolutional neural net-
work streams (RGB image stream and gradient image stream)
has not yet been applied for aluminum profile defects classi-
fication and detection.

Due to the variety of aluminum profile defects, subtle
defects, complex shape and the more difficult discovery with
the lack of careful observation, the defects are still difficult
to distinguish even when the defects are manually marked.
In order to improve the accuracy of detection, we design a
two-stream convolutional neural network model(TSCNNM)
using the original RGB image of aluminum profile and the
gradient image corresponding to the original RGB image
as input to extract features through two network and fuse
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FIGURE 3. The two-stream network architecture.

features on a concatenate layer to be input into classification
layer for classification. In the two-stream network used in
this article, the gradient image of the original RGB image
is trained as the network input together to retain more edge
information. The two-stream network architecture as shown
in Figure 3 consists of two independent streams taking an
original RGB image and a gradient image of the correspond-
ing original GRB image as input respectively. In this article,
the domain knowledge of aluminum profile defects is fully
considered. The network structure proposed for defect classi-
fication consists of two convolutional neural networks, which
process the complete RGB defect image and the correspond-
ing gradient image respectively. Then, the output features of
the two streams are spliced and fused on a layer. Finally,
the classification probability is obtained through the classifier
by the output fused features [27], [28].

We should select the appropriate convolutional network for
defects classification and identification to ensure an accept-
able processing rate and accuracy of the system. The each
stream of the two-stream network architecture in this arti-
cle is based on ALEXNET [29]. In order to meet the net-
work input requirements, all the images are standardized to
size 227× 227. And then the network inputs the complete
original RGB defect image and the corresponding gradient
image to the feature extraction network respectively. Each
feature extraction network consists of five convolution layers,
one full connection layer for extracting more feature maps
effectively. The design of convolution layer is identical with
that of ALEXNET. The Rectified Linear Unit immediately
follows each convolution layer. The response-normalization
layers only follow the conv1 and conv2 layers, and the three
pooling layers follow the norm1 layer, norm2 layer and the
fifth convolution layer respectively. A full connection layer
connects the dropout layer to prevent over fitting effectively.
And then, the feature vectors of full connection layers with

the ReLU in the two-stream network are spliced on the con-
catenate layer which connects the output of the two feature
extraction network, and the fused feature is input to one full
connection layers of 1024 nodes coming after the concatenate
layer, and the output is fed into a SVM classifier used to
map features to a probability distribution of defect classes
for the final decision. The final defect type prediction gives
10 classes [30], [31].

B. FEATURE EXTRACTION
The purpose of convolution operation is to extract differ-
ent features of input. The early convolution layers can only
extract some low-level features such as edge, line and angle.
The late convolution layers of network can extract more
complex features from low-level features iteratively. In the
first convolution layer, ninety-six convolution kernels of size
11× 11×3 are used to slide on images of size 224×224× 3
with 4-pixel intervals to realize convolution operation. And
then the convolution feature of this layer is formed, and
we make an operation of ReLU and normalization to get
the corrective feature map, and the max-pooling operation
with a kernel of size 3 × 3 and a stride of 2 is performed
to complete the convolution pooling operation of this layer
and provide the output to the next layer. The operations of
another convolution layers are basically similar to that of
the first convolution layer, except that the convolution kernel
is different. The convolution kernel size is 5 × 5× 48 in
the second layer, 3 × 3 × 256 in the third layer, and 3 ×
3× 192 in other layers in turn. In addition, the first, second
and fifth convolutions are followed by a pool operation with
an overlapping size of 3 × 3 and a stride of 2 [29].
Taking the aluminum profile image with convex powder

defect as an example, the RGB image and the correspond-
ing gradient image are respectively input to the convo-
lution neural network to obtain the feature map of each
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FIGURE 4. Feature maps of the original RGB image with convex powder defect (top) and the
corresponding gradient image (bottom).

convolution layer. Figure 4 shows the feature maps of the
original GRB image with convex powder defect (top) and
that of the corresponding gradient image (bottom) extracted
from the five convolution layers. It can be seen that the image
features respectively extracted from two sub-network streams
are not in complete accord, some of which separate back-
ground features and extract contour features, color difference
features, and even solid color features.

After using the above method to extract the each layer
features of the original RGB image and gradient image
respectively, we normalize these two features using standard
deviation, and then merge the features by weighting in the
feature fusion stage. Themain purpose is to transform the data
of different levels into the same level, and use the calculated
value to measure, so as to ensure the comparability between
the data.

C. FEATURE FUSION
There are many feature fusion methods, such as Sum fusion,
Maximum fusion, Concatenation fusion, Wavelet transform
fusion and so on. Selecting different feature fusion meth-
ods or different feature fusion layers will affect the classi-
fication and recognition accuracy. Considering that a single
image feature cannot fully describe the image, two identical
sub-network streams are trained at the same time to extract
the different and effective image features with different image
inputs in this article. The output features of these two net-
work streams at a certain layer, given different weights, are
fused to be fed into the corresponding SVM classifier for
training and get the final classification results. In order to
improve the accuracy of defect detection for aluminum pro-
file, we compared the effect of different layer fusion selec-
tion under different fusion strategies on the accuracy. In the
fourth section of the paper, we listed the comparison results.
Through the comparison, we selected the appropriate fusion
strategy and fusion layer, which can help us achieve better
accuracy [32], [33].

We have evaluated different feature fusion strategies to
compare the accuracy for aluminum profile defect classifi-
cation. The calculation formula of the Sum fusion strategy

which is to compute the sum of the values of the same location
of two feature maps is shown in formula 5.

f sumi,j = f ai,j + f
b
i,j (5)

therein, 1<i<H, 1<j<W, and f ai,j is a feature value of feature
map of the original RGB image at point (i, j), and f bi,j is that
of the corresponding gradient image [34].

The calculation formula of the Concatenation fusion strat-
egy is shown in formula 6. The spliced feature matrix is a
longitudinal splicing matrix, where the matrix f bi,j is added to
the last row of the matrix f ai,j [34].

f concatenationi,j =

[
f ai,j; f

b
i,j

]
(6)

The calculation formula of the Maximum fusion strategy
which takes the maximum value at the same position of the
two feature maps is shown in formula 7 [34].

f maximumi,j = max
{
f ai,j, f

b
i,j

}
(7)

The Wavelet transform fusion strategy is that the 5-level
wavelet decomposition of two feature images are executed,
and the maximum value of approximate signals and the mini-
mum value of detail signals for fusion with ‘db2’ wavelet are
adopted for fusion [35].
The double scale classification formula of two-dimensional

image wavelet decomposition is shown in formula 8 [36].
ϕi−1,l(x) =

∑
k∈Z

h0(k − 2l)ϕik (x)

ψi−1,l(x) =
∑
k∈Z

h1(k − 2l)ϕik (x)
(8)

therein, ϕ is the scale function, ψ is the wavelet function.
The feature maps of the aluminum profile image and the
corresponding gradient image are respectively decomposed
into sub images which has high and low frequency sub
information by two-dimensional Mallat algorithm of wavelet
transform.
The low-frequency information contains the main out-

line of the image and reflect the approximate and average
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characteristics of the image. The high-frequency informa-
tion contains the details of the image output such as bright
lines,boundaries and area contours.

The N-level decomposition of aluminum profile feature
map can be realized by Mallat algorithm. Each decom-
position layer has four sub images, which represent the
low-frequency component, horizontal high-frequency com-
ponent, vertical high-frequency component and diagonal
high-frequency component of the decomposed image. Choos-
ing different decomposition levels has different effects. The
selection of decomposition level should be moderate, other-
wise the low-frequency contour can’t be decomposed well
or the low-frequency contour will be lost too much. In this
article, 5-level decomposition is used, then the fusion is
carried out by adopting the appropriate fusion rules under
the optimal number of decomposition layers. The selection
of fusion rules is an important part in the process of image
fusion, which directly determines the quality of the fused
image. Many experiments have been done for a variety of
fusion rules, and the fusion rules with the highest detection
rate are selected. In this article, the high frequency part is
fused by the minimum detail fusion rule. The low frequencies
are fused by the maximum approximation fusion rule, and the
weighted average method is generally used to fuse for low-
frequency coefficients [37], [38].

The effect of Wavelet transform fusion is that if the target
in the gradient image before fusion is more significant than
the same target in the original RGB image, the target in the
gradient image after fusion will be retained and the target
in the original RGB image will be ignored. In this way,
the wavelet transform coefficients of the target in these two
images will dominate at different resolution levels, so that the
salient objects in the gradient image and the original image
are preserved in the final fusion image. The flow chart of
decomposition and fusion of Wavelet transform is shown in
the figure 5.

FIGURE 5. Wavelet transform fusion.

At the same time, we’ve evaluated the fusion on different
layers. There are great differences on accuracy for feature
fusion on different layers. The features from the conv5 layer
or the previous layers also described as feature level fusion
are fused before being input into the classification model as
shown in figure 6 [39], [40].

The feature fusion for aluminum profile defect detection
before the fully connection layer cannot get higher accuracy,
even the results are worse than expected results. But the
output of feature fusion on the first fully connection layer
can get better results to satisfy the defect detection for the
aluminum profile data set in this article and is more flexible.
This fusion method can be said to be a combination of output
classifications from two streams, which structure is as shown
in Figure 7 [39], [40].

The two features from the fully connection layer 6 are
integrated by Wavelet transform fusion and fed to SVM to be
trained to generate the final detection result for the proposed
method. The different streams do not play the same part on
detecting defect events, so they should have different weights
in order to make perfect use of the advantages of each stream.
Therefore. The weighted average method is often used in the
fusion of wavelet transform.

D. OPTIMIZE CLASSIFIER
In the deep neural network, it is not easy to adjust the hyper-
parameter combination, because it is very time-consuming
to train the deep neural network and impossible to optimize
hyperparameters by gradient descent method like general
parameters. The time cost of evaluating a set of hyperparame-
ters configurations is very high. The choice of hyperparame-
ters has a great influence on the final effect of the model, and
different models will have different optimal hyperparameters
combinations. The influence of different hyperparameters on
the model performance is very different. Some hyperparam-
eters, such as regularization coefficient, have limited influ-
ence on themodel performance, while other hyperparameters,
such as learning rate, have great influence on the model
performance. Optimizing the hyperparameters by appropriate
optimization methods to choose the best performance config-
uration is very critical [41].

In this article, the classifier uses Support Vector Machine
(SVM) model. The optimizer uses Bayesian Optimization
which is an adaptive hyperparameter search method and can
predicts the next combination with the maximum benefit
according to the currently tested hyperparameter combination
to select the model and its hyperparameter values [42]. And
then we compute the cross-validation classification error for
each model and use standard categorical cross entropy loss
to optimize our two-stream network. After the optimization,
the whole training data set is trained to obtain the optimized
model. The optimized model can classify the test data opti-
mally so as to check model performance [43].

IV. EXPERIMENTS AND DISCUSSION
The reasonableness, validity, robustness and classification
performance of the two-stream convolution neural network
model proposed in this article are verified on the aluminum
profile defect data set representing 10 different classifica-
tion categories with visual defects occurring on the sur-
face. Firstly, ALEXNET is used as the basic network to
realize the two-stream convolution neural network model
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FIGURE 6. Convolutional layer early feature fusion strategy.

FIGURE 7. Fully connection layer late fusion strategy.

in the experiment. In this case, the two-stream network
should be pre-trained. Additionally, during the training stage,
the genuine training RGB image samples and the corre-
sponding gradient image samples are input to each stream
of the two-steam network respectively, and a concatenate
layer is used to fuse GRB image and gradient image features.
And then we perform experimental analysis for the proposed
method in this article. We compare our method with single
stream network structure which input is original RGB image
or gradient image respectively. We also study the feature
fusion influence on the performance of defect classification
for aluminum profile with different feature fusion strategies
on different layers of ALEXNET network. Finally, we com-
pare the optimized network with the un-optimized network.
In order to prove the robustness of our network, we take
random sorting samples for five times to get the value in the
process of network training and testing procedure.

A. EXPERIMENTAL DEVELOPMENT ENVIRONMENT
AND DATA
We conducted our experiments by a training system with
twelve cores of 2.5 GHz double CPU, 128 GB memory and
an NVIDIA Tesla M40 24GB GPU to accomplish the cal-
culations of our proposed two-stream network system using
Matlab. In our experiments, the data used in this article
are mainly from [44]. We selected nine sample types with
single defect and one defect-free sample type. The selected
samples include a total of 1745 aluminum profile images
and be manually divided into 10 different categories from
dataset. The ten categories are non-conducting (n-c), abra-
sion mark(AM), horizontal stripe shallow recessing (HSSR),

TABLE 1. Classification statistics of aluminum profile data set.

orange peel (OP), traffic mark (TM), crater formation (CF),
coating cracking (CC), dirty points(DP), convex powder(CP),
flawless sample(FS). All data with the original resolution
of 2560 × 1920, which are cropped to 227 × 227 pixels
to contain aluminum profile pixels and subtract unnecessary
background pixels, are randomly divided into training, vali-
dation, and testing samples, and the specific number of each
image type is shown in Table 1. The samples in the data set are
amplified by the way of data enhancement in this article, and
the data after amplification is shown in Table 1. The number
of the corresponding gradient images is consistent with the
number of original images.

The whole data used in the experiment is divided into
two parts. The first complete set of images now contains
1655 original samples and 8882 samples after data enhance-
ment which are randomly shuffled and split into 70% training
samples and 30% verifying samples for each category of the
dataset for each evaluation. And then the rest part of the data
which includes 90 original samples and 545 samples after
data enhancement was tested with the trained classifier.

In the training of the network, we proposed a learning
rate of 0.001, batch size of 10, validation frequency of 30,
momentum of 0.9 and epochs of 8 (epoch means the number
of the network is trained). Other parameters are established
as the default values.

B. COMPARISON OF THE PROPOSED TWO-STREAM
NETWORK AND THE SINGLE-STREAM NETWORK
In this section, we compare the two-stream network with the
single-stream network for proving the reasonableness of the
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TABLE 2. Test accuracy and estimated generalized classification error comparison on the two-stream and single-stream networks.

FIGURE 8. Comparison of the test accuracy and EGC-Error for single-stream and two-stream network on different layer.

network designed in this article by the experiment analysis.
And then we design experiments to fuse the features of dif-
ferent layers of the network to be input to SVM for classifi-
cation. As for the aluminum profile defect classification task,
a variety of evaluation metrics are used, including accuracy,
Receiver Operating Characteristic, Precision, F1-score and
so on [45].

Firstly, we compare the verification and test results of
aluminum profile defect classification and detection between
two-stream and single-stream networks. We use accuracy
and estimated generalized classification error (EGC-Error)
to measure the difference between the two networks. The
specific data is shown in Table 2. We conducted all defect
classification and detection experiments on the same data
set in this article, and then the data set followed the same
training and validation segmentation settings and unified
test data.

We compare the difference on accuracy of the single-
stream network and the two-stream network which features
from different layers are fed to SVM classifier for classifica-
tion. Table 2 lists test accuracy and the estimated generalized
classification error (EGC-Error) of the single-stream network
and two-stream network on the aluminum profile image data
set. It can be seen from table 2 that using two-stream network
can achieve better accuracy, no matter which layer is used
for feature fusion with wavelet transform. The comparison
trend chart of the test accuracy and the estimated generalized
classification error on three different networks on different
layers is shown in Figure 8.

Figure 8 shows that the test accuracy and the estimated
generalized classification error trend curves by three net-
works, one of which is two-stream network and the others are
single-stream networks for original RGB images and gradient
images respectively. The red curve denotes the two-stream
network on test set and the black and blue curve denote
single-stream networks on testing set. So the conclusion from
Table 2 and Figure 8 is that the proposed multi feature fusion
strategy achieves better detection accuracy than that using
single feature method in this case for aluminum profile defect
detection on data set in this article.

C. COMPARISON OF DIFFERENT FEATURE FUSION
STRATEGIES ON DIFFERENT LAYER
In order to evaluate the effects of different feature fusion
strategies on different layers, several groups of experiments
were designed. The specific data is shown in Table 3.
We compare the difference on the accuracy with four feature
fusion strategies, including Sum fusion, Maximum fusion,
Concatenation fusion and Wavelet transform fusion. And in
order to find the most suitable layer location for defect classi-
fication and detection in this data set, we study the influence
on the accuracy with selecting different fusion layers. The
location of the feature fusion layers includes conv5, releu5,
pool5, fc6, releu6, drop6, and fc7 layers.

The accuracy comparison figure with different feature
fusion strategies on different layers for test is shown
in Figure 9(left), and the estimated generalized classification
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TABLE 3. Comparison of different feature fusion strategies on different layer for the two-stream network.

FIGURE 9. Comparison of the test accuracy and EGC-Error with different feature fusion strategies on different layers.

error comparison with different feature fusion strategies on
different layers for test is shown in Figure 9(right).

As shown in Table 3 and figure 9, the results show that
Maximum fusion and Wavelet transform fusion have the
better performance, and the Concatenation fusion has the
worst performance in this article through experiments. And
the accuracy of the classification results by convolution layer
feature fusion is obviously lower than that of FC6 layer in
this case. And then the total training verification and test time
on the whole data set for Maximum fusion strategy, Sum
fusion, Concatenation fusion and Wavelet transform fusion
are is 674.872s, 1380.963s, 1756.028s, 690.016s respec-
tively, so the Maximum fusion and Wavelet transform fusion
strategy has less calculation than others. However, the esti-
mated generalized classification error withWavelet transform
fusion is the lowest. Therefore, from the analysis of experi-
mental data, the features fusion model on the ReLU6 layer
with Wavelet transform fusion is more suitable for defect
detection of aluminum profile based on the data set in this
article to achieve better results from a comprehensive point of
view. The accuracy of the adopted method for classification
verification is 96.37%, and for classification test is 94.44%.

The estimated generalized classification error is 0.010.
The curve of the accuracy and loss value of the adoptedmodel
on the training set and verification set with the number of
iterations increasing is shown in Figure 10.

The accuracy curve increases and the Loss curve decreases
smoothly with the increases of the training iteration numbers,
and the curves are relatively balanced and have little fluctua-
tion. As shown in Figure 9 and 10, the proposed method can
obtain a satisfactory result which has good convergence effect
in 8 epochs and 384 iterations.

With the optimal network architecture determined, we now
compare positive predictive values and true positive rates
for each class in the proposed method, and the specific
data is shown in Table 4. The comparisons on evalua-
tion metrics including precisions, recalls, specificity and
F1-Score for each aluminum profile defect class are shown
in Figure 11.

As can be seen in Table 4 and Figure 11, abrasion mark is
easily mistaken for convex powder, flawless sample, traffic
mark and dirty points. And the small defect of traffic mark
and abrasion mark or flawless sample with a defective back-
ground is easily mistaken for a dirty spot.

VOLUME 8, 2020 172161



C. Duan, T. Zhang: Two-Stream CNN Based on Gradient Image

FIGURE 10. The accuracy and loss curve during network training process with Wavelet transform fusion
strategy on relu6 layer.

TABLE 4. Comparison on evaluation metrics for each class.

Obviously, according to the above results, the two-stream
network has made good use of the structure and visual infor-
mation of multiple streams to obtain effective features. The
performance of a high-level feature fusion scheme for the
two-stream network is better than that of the low-level feature
fusion scheme or the single-stream network. Gradient image
plays an important role in improving the ability of image
representation and recognition. The proposed fusion scheme
of Wavelet transform fusion strategy achieves the better
fusion effect.

The above results show that the accuracy of most early fea-
ture fusion schemes is less than 83%. In contrast, the accuracy
of later feature fusion has been improved by about 10%. The
feature fusions on FC6, ReLU6 and Drop6 layers achieve
the better detection accuracy of 92%. The performance of
the adopted method is better than that of the single stream

network, which improves accuracy by about 3% and about
7% respectively. Experimental results show that the proposed
network structure can effectively achieve better detection
accuracy.

D. OPTIMIZATION INFLUENCE
We often need to optimize the system parameters to achieve
desired detection results. This section shows how to use
hyperparameters optimization to optimize a classification
model with training predictor and response data. Experi-
mentally, the optimum model and its hyperparameter values
are obtained by using Bayesian Optimization function and
computing the cross-validation classification error, which are
expected to classify new data optimally. Due to the over fit-
ting phenomenon caused by hyperparameters adjustment, we
often compare the trained optimizable model which does not
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FIGURE 11. Comparisons on evaluation metrics for ten aluminum profile defect types.

always have a higher accuracy to the previously trained
models and run the optimization for longer to try to get better
results.

In the optimization process, the accuracy and gen-
eralized classification errors are compared before and
after optimization. And the higher accuracy and the lower
error value indicate that the generalization of the classifier
is better. The comparison of the accuracy and the generalized
classification error is shown in Table 5. And then, the min
observed objective is compared to estimated min objective,
which is shown in Figure 12. And the total function evalua-
tions is set as 30.

TABLE 5. Comparison of accuracy and estimated generalized
classification error before and after optimization.

The curve trend of the minimum value of the estimated
objective is nearly consistent with that of the minimum value
of the observed objective. And the minimum estimated objec-
tive value is 0.001730 comparing with the minimum the
observed objective value which is 0.001725. And the total
optimization time is 2038.486 seconds.

FIGURE 12. Comparison of the observed min objective with estimated
min objective.

V. FUTURE WORK
As the proposed neural network system has not yet achieved
the best effect, it is still necessary to improve the performance
of defect detection. Firstly, due to insufficient samples of
training a deep neural network, more various aluminum pro-
file surface defects samples will be provided for training the
network in the future. Secondly, in order to improve detection
accuracy for some defect classes with poor performance,
we will improve the neural network structure by conducting
deeper analysis. We can consider adding a network stream
based on the method in this article to realize multi-stream
network. We can generate ROI around defects in aluminum
section area to be as the input of the third neural network
stream for multi feature fusion to obtain the better extracted
features by region segmentation method or RPN (Region
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FIGURE 13. Flawless sample with abrasion mark defect in background
area.

FIGURE 14. ROI of Flawless sample with the red rectangle.

Proposal Network). For example, the defect-free aluminum
profile image shown in Figure 13 has an abrasion mark defect
indicated with the yellow rectangle in its background area,
which is likely to be predicted as an abrasion mark sample
during the training. Therefore, by extracting the smallest ROI
which can cover the whole aluminum profile indicated with
the red rectangle as shown in Figure 14, the defect location
of the image can be analyzed intuitively, so the purpose of
this method is to reduce the influence of similar defects in
the background area on the detection accuracy.

Finally, the proposed network can also deal with the defect
detection of other materials, such as steel surface defects,
infrastructure surface cracks, rail surface defects and others.

VI. CONCLUSION
Firstly, we propose a novel two-stream convolutional neural
network to extract features from RGB image stream and
gradient image stream to effectively fuse multiple features
for defect classification and detection of aluminum profiles,
which is an important innovation of this article. And each net-
work stream has a feature learning process from low level to
high level. Secondly, wemainly introduce the image enhance-
ment method and the method of obtaining gradient image
for image preprocessing. Because deep learning mostly relies
on the support of a large number of training data, the data
enhancement methods are used to obtain a large number of
samples in order to prevent the phenomenon of over fitting
in deep learning. The image gradient is calculated by Sobel
operator and normalized to transform the data between zero
and one under the same dimension. Thirdly, a large number
of experiments are carried out between the single-stream
network and the two-stream network with different feature
fusion strategies on different fusion layers using the orig-
inal RGB image and the corresponding gradient image of

aluminum profiles to prove the effectiveness of the proposed
two-stream network.
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