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ABSTRACT To resolve issues such as excessive residual vibrations and unsatisfactory balance effects in
the balancing process, the particle swarm optimization (PSO)algorithm is combined with the least squares
influence coefficient method of rotor dynamic balance to perform dynamic balance calibration based on
the research of the least squares influence coefficient method of wheel dynamic balance. The influence
coefficient generally has a large error due to the influence of the vibration measured value, thereby lowering
the accuracy of the calibrated influence coefficient. Therefore, the maximum likelihood estimate (MLE)
method is employed to address the influence coefficient error, and the result is compared with the calibration
value of the influence coefficient (IC) method. The analysis results indicate that the residual value generated
by the calibration of the influence coefficient through themaximum likelihood estimate (MLE) is 1.036while
the residual value obtained through the influence coefficient (IC) method is 1.513, suggesting that the former
exhibits a smaller systematic error and is closer to the true value.

INDEX TERMS Rotor balancing, influence coefficient method, least squares method, particle swarm
optimization.

I. INTRODUCTION
The calibration of the dynamic balance of a hub is a reverse
mathematical mapping process that estimates the unbalance
of the rotor based on the measured vibration response of the
support structure. The calibrationmodel andmodel parameter
accuracy are the key factors affecting the accuracy of dynamic
balance measurements. In addition, unbalanced vibrations of
the rotors are the main excitation sources in rotary machines.
Currently, the main methods used to balance rotors are the
modal balance method and the influence coefficient method.

Currently, the industrial use of high-speed rotating
machines has increased. Therefore, the characteristics
and performance of these rotating systems need to be
improved [1]. Wheel hub dynamic balancing machines are
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often used to realize the online monitoring of the dynamic
balance quality of high-speed rotating wheel hubs. The mon-
itored items mainly include the upper and lower unbalance,
static and even unbalance, and phase angle. The calibration
of the dynamic balance of the wheel hub is an inverse
mathematical mapping process that estimates the imbalance
of the rotor based on the measured vibration response of
the support structure. Due to the high requirements for the
equipment’s detection accuracy, repeatability, stability, and
detection cycle, the calibration of the wheel hub, that is,
the accuracy of the calibration model and model parameters,
is a key factor affecting the accuracy of dynamic balance
measurements [2], [3]. The unbalanced vibrations of rotors
are the main sources of excitation in rotating machinery.
There are two methods for wheel calibration: the modal
balance method and the influence coefficient method. The
modal balance method takes the structural parameters of
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the rotor support system, the mass moment of inertia of
the rotor, the front position, and the measured speed as
model parameters, and the entire calculation process requires
a long period of time and the assembly tolerance of the
mechanical structure has high requirements. The accuracy of
the model also needs to be verified [4], [5]. The influence
coefficient method is widely used in the field of dynamic
balance because the principle is simple and does not need to
consider the complex information of the rotor system, and it
is also easily assisted by computers. In practical applications,
residual vibrations exist. The least squares influence coef-
ficient method is proposed to solve unbalanced equations.
However, the residual vibrations of some measuring points
obtained by the least squares that influence the coefficient
method are comparatively large. Thus, the method needs to
be further optimized [6]. LUND and TONNESON extended
this method by taking into account the measurement error
when optimizing the influence coefficient matrix. However,
in the current literature, field balancing and active balancing
are the primary focuses of influence coefficient research,
while few studies have focused on the influence coefficient
estimation of balancing machines utilized on motor assembly
lines [7], [8]. The two-plane influence coefficient method acts
as the mainstream calibration method for dynamic balancing
measurements and material-removing integrated machines
for rigid rotors [9]. SW DYER proposed the application of a
single-plane influence coefficient method to rotating machin-
ery without considering the two-plane influence on the
influence coefficient. Studies that considered unbalance did
not involve even unbalance, and the research was relatively
simple [10]. For influence coefficient estimation, GOOD-
MAN et al. adopted the least squares method to improve
the accuracy of the influence coefficient method [11], [12].
Considering different tire widths, YANG combined perma-
nent calibration and the complex coefficient least squares
influence coefficient method, which requires the mechanical
structure to have high accuracy and does not regard the
system as a black box. The system error has a great effect on
unbalance measurement solutions [13], [14]. XU designed a
computer program for the least squares iterative calculation of
the influence coefficient method [15]. H TAPLAK proposed
the application of a genetic algorithm to rotating machinery,
although this method has not been applied to actual equip-
ment [16], [17]. TIWARI proposed the application of the
least squares method of residual unbalances in flexible rotors,
which decay with time, and studied the residual imbalance
of the rigid rotor dynamic balancing machine of a wheel hub
dynamic balancing machine [19]. ZHANG proposed aMonte
Carlo-based evaluation method for the dynamic uncertainty
of a dynamic balance measurement system, which pushed
the accuracy of the static state to the dynamic evaluation.
However, although the determination of dynamic uncertainty
improves the influence coefficient algorithm, it is difficult to
realize in the running equipment [20].
Research Contributions of This Work: The main contribu-

tion of this work are summarized as follows.

The paper presents the influence of measurement errors
on the quality and accuracy of wheel dynamic balance and
discusses the methods of multiple linear regression to com-
pare the residual values obtained by the maximum likelihood
estimate (MLE) method and the influence coefficient (IC)
method.

The paper discuss the influence of residual vibration, and
describe residual vibration as the objective function, and use
the particle swarm optimization (PSO) algorithm to optimize
the residual vibration of each measurement point.

Finally, the paper will extend this method to calibrate
wheels of various sizes in the following work.

The rest of this article is arranged as follows. The the-
oretical background of the proposed method is introduced
in Section 2. The experimental verification of the proposed
method is presented in Sections 3 and 4. Finally, the conclu-
sions are drawn in Section 5.

II. CALIBRATION OF THE INFLUENCE COEFFICIENT
The measured value of the vibration response of the support
structure is applied in the calibration process to estimate the
influence coefficient instead of the true value. Therefore,
the measurement error of the measured value of the vibration
response is the main factor affecting the calibration accuracy.
If the vibration response data containing the measurement
errors are directly used according to the influence coefficient
model in the ideal environment, the correct result will not
be obtained when solving the unbalance U = f −1(V ),
thus making it necessary to address the measurement error
and eliminate its influence on the previous test model. The
measurement data obtained by repeated measurements are
a sample of the measured values of the vibration response,
and the main purpose of processing the measured data in the
calibration process is to infer the overall information from the
sample information of the measured values of the vibration
response.

In the IC calibration process, the numbers of correction
planes and vibration points are equal; the equations have a
unique solution that does not consider the effect of system
errors on the measured value. In the least squares method,
one set of correction masses (the solution to the equations)
that minimizes the quadratic sum of the residual vibration
values at each equilibrium rotation speed of each vibration
point is obtained. According to the principle of the ICmethod,
the ideal relationship between the IC and the unbalance and
original vibration is expressed by Eq. (1).

AU + V0 = 0 (1)

The IC method assumes that the rotor possesses linear
characteristics. The linear relationship between the rotor
unbalance and the vibration, which is caused by the mass
unbalance, is represented by an IC. For two balance planes A
and B, assuming that the rotor to be balanced hasm test points
in total and that the vibration value of the m measurement
point is vAMAA0 after the test weight is added to the A plane,
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the IC is expressed by Eq. (2).

aAMAA =
vAMAAm − v

AM
AA0

uAm
(2)

A. INFLUENCE COEFFICIENT MODEL BASED ON THE
MAXIMUM LIKELIHOOD ESTIMATION
The double-plane IC method for the dynamic balance of
the rigid rotor hub is applied to determine the unbalance
on the condition of two balance planes, two vibration sensors,
and a single-speed as well as the IC of a certain point. The
unbalance of the rotor is distributed on two balance planes,
the amplitude of the vibration response is obtained from the
sensors installed on two balance planes, and the phase of the
unbalance is estimated through a reference point.

Assuming that v1 and v2 are defined as the predicted values
of the periodic vibration signals of the balance planes A and
B, then the mathematical relationship between the sum of
the unbalance and the amount of unbalance scattered on the
balance planes A and B is expressed by Eq. (3):

V =
[
vA
vB

]
=

[
aAA aAB
aBA aBB

] [
uA
uB

]
= AU (3)

where A denotes the IC matrix and its elements are all com-
plex variables. In matrix A, aij represents the IC and refers to
the influence of the unbalance of the planej on the vibration
of the plane i; i = A,B; j = A,B.
Since the amplitude and phase of the vibration response

measured by independent sensors are not correlated, sepa-
rate estimations are allowed for the average and standard
deviation of the amplitude and phase. Assuming that with
the m (m = 1, 2 . . . l) test weight on the balance plane,
k measurements of the vibration response of the support
structure with sensor i(i = A,B) have been performed and
the measurement error is εAMA ∼ N (0, (σAMA )2) and εPHA ∼

N (0, (σPHA )2), it can be concluded from the IC format that
the amplitudes of the vibration response and unbalance have
a linear relationship. Therefore, the linear regression method
and the MLE method can be used to estimate the parameters.
Taking aAMAA as an example for analysis, the following param-
eters can be set in Eq. (4):

uAMA = [uAMA1 , u
AM
A2 , . . . , u

AM
Al ]T ,

vAMA = [vAMAA1, v
AM
AA2, . . . , v

AM
AAl]

T (4)

Then, in Eq. (5):

vAMAAm = aAMAA u
AM
Am + ε

AM
Am (5)

The maximum likelihood estimation is given by Eq. (6):

L =
l∏

m=1

1
√
2πσAMA

exp[−
(vAMAAm − a

AM
AA u

AM
Am )2

2(σAMA )2
] (6)

where L is the likelihood function.

Therefore, the maximum likelihood estimation of the IC
aAMAA can be obtained with Eq. (7):

âAMAA =

l∑
m=1

vAMAA u
AM
AA

l∑
uAMAA

(7)

The phase of the IC is the difference between the phase
of the vibration response and the phase of the unbalance.
Then, the value of IC is given by Eq. (8):

âPHAA =
l∑

m=1

v̂PHAAm − u
PH
AAm (8)

III. LEAST SQUARES METHOD BASED ON PARTICLE
SWARM OPTIMIZATION
The least squares method (LSM) is a mathematical opti-
mization technique that can find the best function match
for the data through the minimized quadratic sum of errors.
Goodman introduced the least squares method to the IC
method [21]. The principle is to minimize the quadratic sum
of the residual vibrations at each vibration point to determine
the counterweight U . However, the least squares method is
not the optimal solution in practical applications because
it focuses on solving large residual vibrations. In addition,
some large counterweight values cannot be easily achieved
in practical counterweight installation. Therefore, the PSO
algorithm has been applied to optimize the least squares IC
method, obtaining a counterweight solution more in line with
the actual requirements.

A. DESIGN OF THE LEAST SQUARES INFLUENCE
COEFFICIENT METHOD
According to the principle of the least squaresmethod, δ is the
equation system for the residual vibration of each vibration
point at this time; the matrix is used to represent Eq. (10)
after simplification. AT is the conjugate transposed matrix of
A, and the counterweight U can be obtained by solving the
equation.F represents the quadratic sum of the residual vibra-

tions of each vibration point: minF =
M∑

m=1
|δm|

2. In addition,

∂F
∂um
= 0 must be satisfied to reach the minimum value of F .

AU + V0 = δ (9)

ATAU + ATV0 = 0 (10)

In actual operation, the amount of counterweight born
by the high-speed rotor is limited. Since the least squares
method emphasizes the residual vibration while ignoring the
constraints of the counterweight range, a larger balance mass
is the result; therefore, constraints are required. Addition-
ally, the residual vibration cannot be too large in order to
obtain satisfactory results. The mass of the counterweight is
restricted to the required range [0, qlim], and the quadratic
sum of the residual vibrations in the least squares method is
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set as the fitness function, which is expressed in Eq. (11):

min U =
n∑

m=1

|δm|
2/m (11)

|um|max < ulim (12)

The weighting factor needs to be repeatedly modified until
the counterweight is less than ulim; then, the residual vibration
can be calculated. If the constraint conditions are met, then
the calculation is finished; otherwise, the above steps need to
be repeated.

B. PARTICLE SWARM OPTIMIZATION (PSO)
ZHU uses a genetic algorithm to determine the flexible rotor
balance, but the genetic algorithm requires encoding and
decoding and cross-mutation, and the solution parameters
are more complicated [11]. WAN uses the IC method based
on a genetic algorithm to address the unbalance of flexible
rotors. However, there are no experimental demonstrations,
and the application in actual engineering is more compli-
cated [18]. WANG applies the least squares IC method of
PSO to the theoretical analysis and experimental verification
of the dynamic balance of flexible rotors [25]. Compared
with the genetic algorithm, the PSO algorithm has a faster
search speed, higher efficiency, simple algorithm implemen-
tation, and fast optimization speed and can more easily jump
out of local extremes. PSO is an intelligent optimization
method that simulates the foraging process of a flock of birds.
This method has certain advantages because it only requires
limited mathematical analysis, is independent of gradient
information, and presents rapid convergence. Considering the
industrial production environment, timeliness, and economy,
PSO is widely used in industry [9], [10].

PSO algorithms are based on swarms and fitness. Each par-
ticle represents a potential solution, which is characterized by
three parameters: position, velocity, and fitness. The velocity
and position of the particles are updated according to their
own best position (pBest) and the whole group’s best position
(gBest). The merit of the particle is measured by the fitness
and represented by the objective function value (Fig. 1).

The dimension is D = 10, the number of iterations is
M = 150, and the initial population is N = 10. In addition,
the initial position and velocity of each particle are randomly
generated, and the particles continue at the given speed in the
environmental space to find the best update. The acceleration
coefficients C1 = 2,C2 = 4, and r1 and r2 are random num-
bers in the range of [0,1]. The formula is provided Eq. (13).

v(i, :) = ω ∗ v(i, :)+ c1 ∗ rand ∗ (y(i, :)− yp(i, :))

+ c2 ∗ rand ∗ (pg− yp(i, :));

y(i, :) = yp(i, :)+ v(i, :) (13)

The dynamic balance should achieve a satisfactory balance
effect with the smallest possible balance quality. The least
squares IC method may cause the balance quality to be too
large for an application because the least squares method

FIGURE 1. Particle swarm algorithm flow.

emphasizes that a smaller residual vibration does not impose
restrictions on the range of the counterweight. Therefore,
when the counterweight meets the requirements, the residual
vibration must not be too large in order to obtain satisfactory
results. To ensure that all particles are within the feasible
range, the particle speed and position need to be restricted
before each iteration. If the particle exceeds the defined range,
then the extreme value of the range is taken. Therefore,
the boundary range is set as follows:

v(i, j)>V max(j)|v(i, j) < V min(j)

v(i, j)= rand ∗ (V max(j)−V min(j))+V min(j) (14)

yp(i, j)>X max(j)|yp(i, j) < X min(j)

yp(i, j)= rand ∗ (X max(j)−X min(j))+X min(j) (15)

Although the standard PSO algorithm has simple principles
and is easy to program, this method has inherent shortcom-
ings. This article improves the standard PSO algorithm for
specific situations. As the number of iterations increases,
the particles move away from each other. The algorithm
approaches the optimal solution, and the inertia coefficient of
the particles should be gradually reduced; otherwise, the algo-
rithm readily oscillates near the optimal solution. For this
reason, this article applies an attenuation process to the inertia
coefficient,ω = ω0(1−0.9 i−1n−1 ), whereω0 is the initial inertia
coefficient and n is the total number of iterations. Due to
the limited length of computer bytes, the numerical precision
is limited. In the search process, there may be situations
where multiple different particle positions correspond to the
global optimal solution, and the unknown mean value of the
particles corresponds to the optimal fitness of each generation
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in the program, which is determined by absorbing the position
information of each corresponding particle.

The operation steps are described as follows:

(1) Set the PSO population size to S, which is the number
of balancing weights;

(2) Initialize the velocity and position of each particle;
(3) Calculate the fitness of each particle according to

Eq. (14);
(4) Compare the fitness of each particle, and record pBest;
(5) Update the velocity and position of the particles;
(6) Calculate each choice probability according to the fit-

ness;
(7) Apply the crossover and mutation operations, and gen-

erate new populations; and
(8) Check whether the result meets the end condition.

If not, go to step (4); otherwise, output the optimal
solution.

C. SOLUTION FOR THE SYSTEMATIC ERROR AND
CALIBRATION OF THE INFLUENCE COEFFICIENT
According to the characteristics of system error and random
error, multiple linear regression theory is used for the fitting
relationship between the measurement error and the exist-
ing IC model to establish a multiple linear regression-based
IC calibration model and simultaneously achieve accurate
calibration of the IC and acquire a solution for the system
errors. In addition, an updated ICmodel with error processing
capabilities is constructed to effectively deal with measure-
ment errors, thereby improving the accuracy of the dynamic
balance test system and the IC calibration. After the influence
of abnormal values is eliminated, the measured value of the
vibration response is composed of only the true vibration
value, systematic error, and random error. The establishment
of the IC model can be obtained as shown in Eq. (16):

V = V0 + aU + ε (16)

where V0 is a fixed value that represents the system error
in the collection of the current set of data and ε denotes the
random error following the normal distribution. According to
the measured values of V , the IC can be calculated through
parameter estimation, and a new set of values can be esti-
mated through the recalibration and the collection of the next
set of data. The system error can be corrected by the updated
IC model. Additionally, the values of a and σ can be used as
the basis for measurement performance evaluation and error
source analysis.

Assuming that the random error of the vibration response
of the support structure on balance planes A and B is the
variance in εA and εB, then V and a can be estimated through
the least squares method:

aAA =

n∑
i=1

(Ui − Ū )(Vi − V̄ )

n∑
i=1

(Ui − Ū )
(17)

V = V̄ − aAAŪ (18)

where V denotes the systematic errors. The measured value
can be corrected in the subsequent balancing process to bring
the measured value closer to the true value. The value of σ 2

estimated by the matrix method is as follows:

σ 2
=

1
n

n∑
i=1

(Vi − V − aAAUi) (19)

IV. DISCUSSION
The structure of the dynamic tester is presented in Fig. 2;
this tester is used for the inspection of wheels before they
leave the factory.Equipment designed and developed accord-
ing to China Academy of Machinery Science and Technol-
ogy Group. The equipment brand is the MASS, and the
model of the hub dynamic balancing equipment is AM32.
The hardware system of the tester includes the choice of the
dynamic balancing spindle end motor (Beckhoff AM8553-
1K20-0000), driver (Beckhoff AX5112-0000-0200), reducer
(AE090-008), hard support installation rotor device and two
force sensors that detect rotor vibration (installed at the fixed
end). In addition, the dynamic balance of the hub is automat-
ically measured. The rotor used in these experiments is in the
motor of a wheel hub (illustrated in Fig. 2). The permissible
unbalance of the rotor on one plane is 80 g, and the balancing
rotating speed is 1800 r/min.

FIGURE 2. Spindle of the wheel dynamic balancing machine.

An already balanced wheel hub is selected as the experi-
mental target, and multiples of the permissible unbalance on
one plane are chosen as the trial weights. Partially collected
data are presented in Fig. 3. The wheel hub diameter is
22 inches; the centre hole diameter is 550-130 mm; and the
efficiency is 18 seconds/piece, namely, 10 g, 20 g, 30 g, 40 g,
50 g, 60 g, 70 g, and 80 g. Each trial weight is positioned on
only one balancing plane at the angular positions of 0◦ and
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FIGURE 3. Partially collected data.

FIGURE 4. Paste weight.

180◦, and the vibration responses of the rotor are recorded.
One group of experimental data is presented in Fig. 3.

In actual production, multiple additions of counterweights
(i.e., multiple balances) are required to meet the standards
during the whole dynamic balance process. Therefore, the
effectiveness of the balancing method can be verified by
the performance of a single balance. The sum of the added
counterweights in the whole process of reaching the required
dynamic balance is set as the true value of the unbalance
of the main shaft. If the vibration response data containing
the measurement errors are directly used according to the IC
model in the ideal environment, then the correct result is not
obtained when determining the unbalance (u = f (v)). Thus,
it is necessary to address the measurement error and eliminate
its influence in the previous test model. Moreover, different
trial weights on the A plane and B plane were selected for
repetitions of the above experiment, and the results are in line
with the above analysis. One group of experimental data is
presented in Table 1.

The calibration steps are described as follows.

(1) Drive the hub without any trial weight on the plane and
measure the original vibration;

FIGURE 5. Structure of the dynamic balancing machine.

FIGURE 6. Residuals of the MLE method.

(2) Add a calibrationweight at 0 degrees on the upper plane
and measure the amount of vibration;

(3) Add a calibration weight at 180 degrees on the upper
plane and measure the amount of vibration;

(4) Add a calibrationweight at 0 degrees on the lower plane
and measure the amount of vibration;

(5) Add a calibration weight at 180 degrees on the lower
plane and measure the amount of vibration.

The residual vibration unbalance (calculated data exhibited
in Tables 2 and 3) is an essential criterion for evaluating the
rotor dynamic balance. The ICmethod and theMLE-based IC
method are separately used to acquire coefficient estimates,
and the effectiveness of the new method is verified through
comparisons of the IC values obtained by the two methods.
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TABLE 1. Initial vibration data and phase data.

TABLE 2. Comparison of the residuals of the IC method and suggested method (Plane A).

TABLE 3. Comparison of the residuals of the IC method and suggested method (Plane B).

First, Eqs. (1) and (2) can be used to determine the true value
of the IC at different phase angles after a counterweight has
been added. Second, the residual values obtained through
the MLE-based IC method (Eqs. (4) and (7)) and the PSO-
based least squares method are 1.513 and 1.036, respectively,
indicating that the MLE-based IC method exhibits a smaller
system residual. The closer the calibrated value of the IC is to
the true value, the closer the residual vibration of the balanced
main shaft system is to 0. If the dynamic characteristics of the
main shaft system change or the calibrated value of the IC is
inaccurate, the system quality and balance accuracy decrease
significantly and dynamic balance failure may even occur in
several cases. The mean square value of the residual vibration
with the rotor dynamic balance obtained by the MLE-based
IC method is smaller; additionally, the balance effect is better
and has practical value.

The calibration of the IC shows that the measured value
of the vibration response of the support structure is adopted
in the calibration process to estimate the IC rather than the

true value. Therefore, the measurement error of the measured
value of the vibration response is the main factor influ-
encing the calibration accuracy. Considering that measure-
ment errors are inevitable when the test system measures
the vibration response, the measured value of the vibra-
tion response of the support structure is applied in the cal-
ibration process to estimate the impact instead of the true
value, which causes a certain deviation in the measurement
results and cannot accurately reflect the true value of the
measured value. Therefore, the influence of the measure-
ment error must be considered in the process of system
calibration. Comparison of the calibration results obtained
by the two methods and multiple linear regression analysis
of the residual error indicates that the residual value cal-
ibrated through the MLE method is 0.011 and the value
of the IC method is 0.02. Although both values are less
than 0.05 and within the standard range, the residual error
of the MLE method is smaller and has less system error
(Figs. 6 and 7).
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FIGURE 7. Residuals of the influence coefficient (IC) method.

V. CONCLUSION
In PSO, in addition to considering the minimum residual
vibration, the weight must be constrained (because the least
squares method increases the weight of the distribution at cer-
tain moments and causes gross errors, the distribution weight
needs to be restricted). PSO has the characteristics of self-
organization, self-learning and self-adaptation and requires
less coding. After the objective function and fitness function
are determined, the information self-organizing search ability
is obtained.

The amount of residual vibration imbalance is an important
criterion for evaluating rotor dynamic balance. Experiments
have proven that the residual vibration mean square value
obtained after the rotor dynamic balance estimated based
on the MLE influence coefficient is smaller, an improved
balance effect can be achieved. In-depth analyses of the
impact of the main errors of the dynamic balancing machine
measurement system on calibration are still required.

With the error characteristics as the basis, maximum like-
lihood estimation theory is introduced based on the cor-
rectability of the system error and the normal distribution
of the random error, and the IC calibration model, which
can synchronously solve system errors, is proposed to realize
the IC in the calibration process. Finally, the use of multiple
linear regression analysis to compare the calibration results of
the two methods indicates that the proposed method yields a
much smaller residual mean square error than the traditional
method and that the unbalanced phase change is small.
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