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ABSTRACT Event detection is a particularly challenging problem in information extraction. The current
neural networkmodels have proved that dependency tree can better capture the correlation between candidate
trigger words and related context in the sentence. However, syntactic information conveyed by the original
dependency tree is insufficient for detecting trigger since the dependency tree obtained from natural language
processing toolkits ignores semantic context information. Existing approaches employ a static graph struc-
ture based on original dependency tree which is incompetent in terms of distinguishing interrelations among
trigger words and contextual words. So how to effectively make use of relevant information while ignoring
irrelevant information from the dependency trees remains a challenging research question. To address this
problem, we investigate a graph convolutional network over multiple latent context-aware graph structures
to perform event detection. We exploit a multi-head attention mechanism on BERT representation and
original adjacency matrix to generate multiple latent context-aware graph structures (a ‘‘dynamic cutting’’
strategy), which can automatically learn how to select the useful dependency information. Furthermore,
we investigate graph convolutional networks with residual connections to combine the local and non-local
contextual information. Experimental results on ACE2005 dataset show that our model achieves competitive
performances compared with the methods based on dependency tree for event detection.

INDEX TERMS Event detection, graph convolutional network, multi-head attention.

I. INTRODUCTION
Event detection is an important and challenging task in infor-
mation extraction, which aims to discover specific types of
event triggers in texts. This task is one of the most significant
research topics in social media analysis [1], which has been
beneficial to a wide range of downstream tasks, including
question answering [2], automatic text summarization [3] and
others. Event triggers are generally verbs or nominalizations
that evoke the events of interest, which serve as the main
word(s) to the corresponding event. The event detection task,
more precisely stated, involves how to identify event triggers
and classify them into specific types. An example is shown
in Figure 1, in the sentence ‘‘In Baghdad, a cameraman died
when an American tank fired on the PalestineHotel’’, an event
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detection system is expected to detect ‘‘died’’ as a trigger of
type Die and ‘‘fired’’ as a trigger of type Attack.

In early years, researchers had designed various
hand-crafted feature sets such as lexical features and con-
textual features to extract events [4]–[6]. Although these
methods can achieve high performance in specific fields,
they rely heavily on manual annotations and features specific
for each event type. Recently, most existing event extraction
models can be categorized into two classes: sequence-based
models and dependency-based models. Sequence-based
models only use the given sentences [7]–[9] whereas
dependency-based models incorporate dependency trees into
the models [10]–[14]. Compared to sequence-based models,
dependency-based models can more effectively obtain the
connection between the event trigger word and its corre-
sponding entity or other trigger words through the non-local
syntactic structure in the sentence.
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FIGURE 1. An example of syntactic dependency parsing result produced by Stanford CoreNLP. The sentence contains two events: a
Die event triggered by the word died and an Attack event triggered by the word fired.

Among dependency-based models, Graph Convolution
Networks (GCNs) [15] is often performed to model syntactic
dependency information for event detection. For example,
reference [11] constructs a graph structure using the adja-
cency matrix obtained from the dependency tree. Multi-order
syntactic representations in sentences are utilized via graph
convolution network with aggregative attention [13]. How-
ever, the above dependency-based models explicitly use a
invariant graph structure generated by the adjacency matrix
and they can’t distinguish which syntactic information is
useful or useless from the dependency tree. Figure 1 depicts
the dependency parse tree of the aforementioned sentence.
Words along the ‘‘fired’’ form a trimmed phrase ‘‘American
tank fired on Hotel’’ of the original sentence, which con-
veys much information about the candidate trigger ‘‘fired’’.
In other words, such as the rest ‘‘In Baghdad, a camera-
man died when’’ is less informative and may bring noise
if not dealt with properly. Intuitively, a model, capable of
learning to maintain a balance between including and exclud-
ing information in the full tree, will benefit event trigger
detection.

To alleviate the problems above, we propose a graph con-
volutional network over multiple latent context-aware graph
structures for event detection. Firstly, a sentence is fed into
BERT [16] to generate BERT representation. Secondly, based
on the BERT representation, multi-head attention [17] is
employed to substitute the original dependency graph into
multiple fully connected edge-weighted graphs. Then, GCNs
take BERT representations and adjacency matrixs based on
fully connected graphs as input to learn syntactic contex-
tual representation of each node. Residual connection [18]
is employed to integrate BERT representation with syntac-
tic contextual representations. Finally, a linear classifier is
adopted to extract event triggers. The multi-head attention
mechanism exploits BERT representations to transform the
original syntactic graph into multiple latent context-aware
graphs, which can be understood as a ‘‘dynamic cutting’’
strategy on dependency matrix. Multi-head attention jointly
attending to information from different representation sub-
spaces at different positions allows the model to learn how to
select relevant sub-structures for candidate triggers. Through
such ‘‘dynamic cutting’’ strategy, GCNs can draw efficiently
syntactic structure information. What’s more, the residual
connection mechanism combines BERT representation and
GCNs information to better leverage the structural informa-
tion of the full dependency tree in event detection task.

We extensively evaluated the effectiveness of our model
on the ACE2005 dataset. Experimental results show that our
model outperforms previous dependency-based approaches
in terms of both Recall and F1-measure. In summary, the con-
tributions of this article are as follows:

• We propose a new method for event detection with a
‘‘dynamic cutting’’ strategy. It utilizes BERT semantic
representation to generate multiple latent context-aware
graph structures via multi-head attention mechanism.
Such a ‘‘dynamic cutting’’ strategy on adjacency matrix
learns how to select and discard information in the
dependency trees at different positions.

• We employ Graph Convolutional Network to exploit
more non-local and non-sequential dependency infor-
mation. Furthermore, a residual connection mechanism
is investigated to incorporate the local contextual rep-
resentations learned by BERT with the non-local con-
textual information generated by Graph Convolutional
Networks.

• Experiment results show that our proposed method can
substantially improve the performance of event detec-
tion, where the F1-measure and Recall score achieve
76.34%, 75.21% on ACE2005 dataset, respectively.

II. RELATED WORK
Graph Convolutional Network has been employed in event
detection to explore the syntactic representation, which pro-
vides an effective mechanism for linking words directly to
their informative contexts in the sentence. In this work,
we divide the relevant studies into following two categories,
namely event detection and graph convolutional networks.

A. EVENT DETECTION
Event detection is a fundamental problem in information
extraction and natural language processing [7], [19]. The
early approach for event detection involved the feature-based
methods which employed hand-design feature sets in dif-
ferent statistical models [5], [20]. The feature-based meth-
ods required extensive human engineering which essen-
tially affects model performance. The last couple of years
witnessed the success of neural network models for event
detection. The typical models employed convolutional neu-
ral networks (CNNs) [7], [21], recurrent neural networks
(RNNs) [8], [22]. While such models effectively captured
relations in the local context, they had limited capability
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of exploiting non-local and non-sequential dependencies.
In many applications, however, such dependencies could
significantly reduce tagging ambiguity and improve overall
performance.

In order to capture non-local dependencies in the input
space, dependency-based approaches were exploited to incor-
porate structural information into neural models. Syntactic
relation representation based on dependency trees could bet-
ter capture the interrelation between candidate trigger words
and related contexts than sentence representation. A novel
dependency bridge recurrent neural network (dbRNN) was
proposed to carry syntactically related information when
modeling each word for event extraction [10]. Refer-
ence [11] used CNN based on dependency tree and an
entity mention-guided pooling scheme to perform event
detection. Syntactic shortcut arc was introduced to enhance
information flow and attention-based GCN to perform
event detection [12]. Reference [13] proposed a depen-
dency tree based GCN model with aggregative attention
to combine multi-order word representations from differ-
ent GCN layers. However, these GCN-based models are
powerless in distinguishing messy syntactic information due
to the invariant dependency graph structure. In this article,
we propose a model to select useful information dynamically
from dependency tree by which the performance can be
improved.

B. GRAPH CONVOLUTIONAL NETWORKS
Graph convolutional networks generalize CNNs over
graphs [23], [24], which is one of the typical variants of
graph neural networks (GNN). It has been successfully
applied to many natural language processing tasks, such as
text classification [25], semantic role labeling [26], rela-
tion extraction [27], [28], machine translation [29] and
knowledge base completion [30]. Early efforts [23], [31]
attempted to extend neural networks to deal with arbitrary
structured graphs, where the states of nodes are updated
based on the states of their neighbors. Given a graph, a graph
convolutional network can embed the node by recursively
aggregating the node representation of its neighbors. Sub-
sequent efforts improved its computational efficiency with
local spectral convolution techniques [32]. Our method is
closely related to the GCNs [11], which used a convolutional
neural network based on dependency trees and a novel pool-
ing method to improve the performance of event detection
task.

More recently, graph attention networks (GATs) [33]
was proposed to summarize neighborhood states by using
masked self-attentional layers [17]. Compared with their
work, the motivation and method when applying an attention
mechanism in graph convolutional networks are different.
Particularly, each node only focuses on its neighbors in GATs,
while our model involves the correlation among all nodes.
The network topology in GATs remained unchanged, while
our model will construct fully connected graphs to capture
long-range semantic interactions.

TABLE 1. Automatic content extraction terminologies.

TABLE 2. Example of tag assigning scheme in the sentence.

III. TASK DEFINITION
In this article, we focus on event detection task defined in
Automatic Content Extraction (ACE) evaluation, where an
event is defined as a specific occurrence involving one or
more participants. We firstly introduce some ACE terminolo-
gies to facilitate the understanding of this task in Table 1.

The goal of event detection is to identify event triggers
and categorize their event types. For example, in the sen-
tence ‘‘Obama beats McCain.’’, an event detection system is
expected to detect an Elect event along with the trigger word
‘‘beats’’. The ACE 2005 evaluation defines 8 super types of
events, with 33 subtypes and a ‘‘Not Applicable(NA)’’ type,
such as Attack or Elect. Following previous works [7], [8],
[19], [34], we treat these simply as 34 separate event types
and ignore the hierarchical structure among them.

There are triggers that consist of multiple tokens. The
previous work [35] applies a BIO annotation schema to assign
trigger label to each token wi. In this work, we treat consec-
utive tokens which share the same predicted label as a whole
trigger.

IV. METHODOLOGY
Event detection can be formalized as a sequence labeling
problem. We treat every word in a sentence as a trigger
candidate, and classify each candidate to a certain event type.
As shown in Table 2, the event detection model collectively
assigns a tag for each word in the sentence to indicate whether
it triggers a specific type of event (Omeans it does not belong
to any event type).

In this section, we illustrate the details of the proposed
method for event detection. Figure 2 shows the overall archi-
tecture of our proposed model, which primarily involves the
following four components:

(I) Sentence Encoding Layer which encodes input sen-
tence to a sequence of hidden embeddings.

(II) Graph Construction Layer which exploits a
multi-head attention mechanism to construct multiple latent
context-aware graph structures.
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FIGURE 2. Model architecture shown with an example sentence ‘‘In Baghdad, a cameraman died when an American tank fired on
the Palestine Hotel’’, where some words are omitted. The dotted line represents information flow of the adjacency matrix and
N = 3 (N is num of multi-head).

(III) Graph Convolution Layer which performs graph
convolution over multiple connected graphs with the help of
residual connections.

(IV) Trigger Classification Layer which assigns an event
type (including the NA type) to each candidate in a sentence.

In the following section, we will introduce them respec-
tively.

A. SENTENCE ENCODING LAYER
Formally, an event detection instance is an n-word sequence
W = {w1, . . . ,wn}, where wi refers to the i-th token. Sen-
tence encoder is adopted to encode the word sequenceW into
hidden embeddings,

{h1, h2, . . . , hn} = E{w1,w2, . . . ,wn} (1)

where E(·) is a neural network to encode the sentence. In this
article, we select BERT [16] as sentence encoder.

The input of the BERT is the concatenate of three types of
embedding, including WordPiece embedding [36], position
embedding and segment embedding. The input sequence for
BERT is constructed as follows:

S = [< CLS >, sentence, < SEP >] (2)

where < CLS > and < SEP > are special tokens of BERT.
Since the input contains only one sentence, all its segment ids
are set to zeros.

After feeding the input representation described above into
12 successive Transformer encoder blocks, we can obtain the
BERT contextual representation H = {h0, h1, . . . , hn, hn+1}.
The final remaining H = {h1, h2, . . . , hn} is the sequence
of hidden embeddings while removing the representation of
< CLS > and < SEP >, which will be used as an input of
the subsequent graph construction layer.

B. GRAPH CONSTRUCTION LAYER
Each dependency tree can be represented as a syntactic
graph in terms of an adjacency matrix. Let A be the adja-
cency matrix of original syntactic graph, which is generated

from dependency tree of the sentence. As mentioned before,
pre-existed methods maintain the invariance of the original
syntactic graph structure. However, in graph construction
layer, BERT representation and adjacency matrix based on
original dependency tree are used to generate multiple latent
context-aware graph structures. The original dependency tree
is substituted into a fully connected edge-weighted graph by
constructing an attention guided adjacency matrix Ã. In this
work, we compute Ã by using multi-head attention [17].
The model employs BERT semantic vectors to calculate the
correlation between words from different perspectives (N
head). An attention function can be described as mapping a
query and a set of key-value pairs to the output, where the
query, keys, values, and output are all vectors. The output
is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility
function of the query with the corresponding key:

Ã(t) = softmax(
QWQ

t ×(KW
K
t )T

√
d

)V (3)

where t is the t-th head (t = 1, · · · ,N ), Q and K are both
equal to the output of sentence encoding module H , WQ

t ∈

Rd∗(d/N ) and WK
t ∈ Rd∗(d/N ) are the parameter matrices,

d is the dimension of hidden layer. After using multi-head
attention mechanism, the system can getN different attention
guided adjacency matrices, where N is the head. Ã(t) is the t-
th attention oriented adjacency matrix generated by the t-th
head.

Figure 3 shows an example of transforming the original
adjacency matrix into multiple attention guided adjacency
matrices. BERT representation and the adjacency matrix are
fed into multi-head attention mechanism to produce multi-
ple fully connected edge-weighted graphs. Compared with
the original sparse dependency graph, the fully connected
edge-weighted graphs can better express the correlation
between nodes. In practice, we treat the original adjacency
matrix as an initialization so that the dependency informa-
tion can be captured in the node representations for later
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FIGURE 3. Graph Construction Layer. N attention guided adjacency
matrices (Ã) are constructed by using multi-head attention. H indicates
BERT representation and MHAtt is the multi-head attention mechanism.
These weights in matrices are viewed as the strength of relatedness
between nodes.

attention calculation. The attention guided adjacency matri-
ces and BERT embeddings are jointly into GCNs for learning
syntactic contextual representation of each word.

C. GRAPH CONVOLUTION LAYER
This part uses graph convolutional network with residual con-
nection over multiple latent context-aware graph structures to
model text sentences.

1) GCNs
We firstly introduce the general framework of graph con-
volutional network. Given a graph with n nodes, an (n×n)
adjacency matrix A can represent the graph. Let G =

{V , E} be the dependency parse tree for a sentence W =

{w1, . . . ,wn}, where V contains n nodes corresponding to the
n tokens inW and E are the sets of edges. Each edge (wi,wj)
in E is directed from the head word wi to the dependent
word wj and has the dependency label K (wi,wj). Follow-
ing the previous work [15], we also add all the self-loops
(wi,wi).

For instance, in the dependency tree of Figure 1, there is a
directed edge from the node for word wi = ‘‘died’’ (the head
word) to the node for word wj = ‘‘cameraman’’ (the depen-
dent word) with the edge labelK (wi,wj) = K(‘‘died’’, ‘‘cam-
eraman’’) = nsubj, the reversed dependency arc with the
additional type labelK(‘‘cameraman’’, ‘‘died’’)= nsubj’, and
two self-loops of ‘‘died’’ and ‘‘cameraman’’ with type label
K(‘‘died’’, ‘‘died’’) = K(‘‘cameraman’’, ‘‘cameraman’’) =
loop.

Each graph structure G based on dependency tree corre-
sponds to an adjacency matrix A. Intuitively, aij = 1 and
aji = 1 if an edge exists between node i and node j, otherwise
aij = 0 and aji = 0, where aij is an element in A.

Graph convolution operation aims to gather information
from neighbor nodes in the graph. In particular, the graph

convolution vector h(l)i at the l-th layer for node i can be
computed as follows:

h(l)i = ρ(
n∑
j=1

AijW (l)h(l−1)j + b(l)) (4)

where A is the adjacency matrix of a graph with n nodes,
W (l) and b(l) are the model parameters, and ρ is an activation
function (e.g. RELU [37]). Moreover, we use the output of
the sentence encoding module H to initialize node repre-
sentation h(0) of the first layer of GCNs. N separate graph
convolutional operations are required as we have N different
fully-connected adjacency matrices.

2) GCNs WITH RESIDUAL CONNECTIONS
GCNs can get information about the k hops by stacking
k-layers, but sometimes the length of shortcut path between
two triggers is less than k . To avoid information over-
propagating, we adapt residual connections [18] into GCNs.
A residual connection mechanism can incorporate the local
contextual representation learned byBERTwith the non-local
contextual information generated by Graph Convolutional
Networks. Note that the application of this mechanism can
allow contextual information flowing across GCN layers.
Specifically, the initial representation of GCN can be inte-
grated into node’s representation on the last iteration. Based
on Equation (4), the computation of L-th layer (L is the total
layers of GCNs) is modified as follows:

h(L)i = ρ(
n∑
j=1

AijW (L)h(L−1)j + b(L))+ h(0)i (5)

where h(0) is the initial input vector (the BERT representation
H ) and the other parameters are defined as above. The BERT
representation is only integrated into the last iteration while
graph representation updates depending on Equcation (4) in
other layers. Based on the t-th attention guided adjacency
matrix Ã(t) (t = 1, · · · ,N ), we can get the final output for
the t-th head (Hti is the final representation of i-th token):

Ht = [Ht1 ,Ht2 , · · · ,Htn ] (6)

3) GCNs WITH LINEAR COMBINATION
In addition to residually connected layers, we include a lin-
ear combination layer after multi-layer GCNs to merge the
representations from different GCN blocks, reaching a more
expressive representation. In which the final representation of
each node is computed by fusing the node’s representations
from all graph convolution networks. Formally, the outputs
of multiple GCNs are concatenated and feed into the linear
combination layer as follows:

Dcom = WcomHcon + bcom (7)

whereHcon is the concatenation of N separate GCNs outputs,
Hcon = [H1, · · · ,HN ] ∈ Rd∗N , N is num of multi-head.
Wcom ∈ R(d∗N )∗d is a learnable transformation matrix and
bcom is the bias vector.
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TABLE 3. Statistics of the ACE2005 dataset.

D. TRIGGER CLASSIFICATION LAYER
After applying the proposed method over the GCNs, the syn-
tactic contextual representations of all tokens are obtained.
The goal of event detection is to predict the type of tokens
based on these representations. The context vector Dcom are
fed into a fully connected network to predict the trigger label.

vi = f (wddi + bd ) (8)

yi = softmax(Wvvi + bv) (9)

where f is a non-linear activation, di ∈ Dcom and yi is the final
output of the i-th trigger label.

We minimize the negative log-likelihood loss function
to train our model. Due to the data sparsity in the ACE
2005 dataset, we adapt a bias loss function [35] to balance
event label weights during training.

J (θ ) = −
D∑
i=1

Di,w∑
j=1

I (yti ) · log(p(yti |θ ))

+β(1− I (yti )) · log(p(yti |θ )) (10)

where D is the number of sentences in training corpus. Di,w
is the number of tokens in Di, I (yti ) is an indicating function,
if yti is O, it outputs 1, otherwise 0; β is a hyper-parameter
larger than 1.

V. EXPERIMENTS
A. DATASET, EVALUATION METRIC AND RESOURCES
We evaluate method on the ACE2005 dataset. To comply with
previous work, we use a pre-defined split of the documents
as the previous work [8], [10], [38], Table 3 shows the data
statistics.

Similar to previous work [39]–[42], we use the same crite-
ria to judge the correctness of each predicted event mention.
• Event Trigger Identification: A trigger is correctly iden-
tified if its offset matches a reference trigger.

• Event Type Classification: A trigger is correctly classi-
fied if both its offset and event type match a reference
trigger.

We use Stanford CoreNLP toolkit to parse every sentence
in the corpus, including tokenizing, sentence splitting and
generating dependency parsing trees.

B. EXPERIMENT SETTING
We use BERTbase in our experiments, which adopts
multi-layer bidirectional transformers to encode the input
sequence into hidden embeddings. For fine-tuning on the
development sets, the batch size (BS) is selected from (16,32)

and the learning rate (lr) is selected from (1e-5, 2e-5,
3e-5, 5e-5). We select the head (N ) from (2,3,6), the GCN
layer (L) from (2,3,4) simultaneously. Through preliminary
experiments, we discover that the combination (BS = 16,
lr = 2e-5, N = 3, L = 3) gives the best results on task of
event detection.

In the graph convolution layer, we use a three-layer GCN
with 768 hidden units, linear combination with 768*N hidden
units, where N is the head and 300 hidden units for linear
classification layer. Stochastic gradient descent over shuffled
mini-batches with the Adadelta update rule [43] is used for
training processes. We use ReLU [37] as our nonlinear acti-
vate function. We also set dropout rate to 0.2 and the bias loss
parameter β to 5.

C. OVERALL PERFORMANCE
To demonstrate the effectiveness of our model (called
MH-GCN), we take several previous classic works for com-
parison, and divide them into three categories: feature-based
models, sequence-based neural network models, external
resource-based models and GCN-based neural network
models.

1) FEATURE-BASED MODELS
• Cross-Event [44], using document-level information to
improve the performance of ACE event extraction.

• MaxEnt [19], only using lexical features, basic features
and syntactic features designed by human.

2) SEQUENCE-BASED NEURAL NETWORK MODELS
• DMCNN [7], which exploits a dynamic multi-pooling
convolutional neural network for event trigger detection.

• dbRNN [10], which adds dependency bridges with
weight to BiLSTM for event extraction.

• LearnToSelectED [45], which features the automatic
identification of important context words in the sen-
tence.

3) EXTERNAL RESOURCE-BASED MODELS
• ATT+FrameNet [34], the attention-based model aug-
mented with annotated data in FrameNet.

• GMLATT [46], which exploits the multi-lingual infor-
mation for more accurate context modeling.

• BERT+Boot [38], which applys an adversarial training
mechanism to enhance distantly supervised event detec-
tion models.

• EKD [47], which leverages external open-domain trig-
ger knowledge to provide extra semantic support.

4) GCN-BASED MODELS
• GCN-ED [11], which investigates GCN on syntactic
dependency tree and an argument pooling mechanism
to improve performance.

• JMEE [12], which exploits GCN with a self-attention
aggregation mechanism and highway network to
improve performance of GCN for event extraction.
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TABLE 4. Overall Performance on the blind test data. † using dependency arcs only, ‡ using dependency arcs and dependency relations simultaneously
and ‘‘-’’ means not reported.

• MOGANED [13], which uses GCN with aggregated
attention to combine multi-order word representation
from different GCN layers.

• RA-GCN [48], which investigates a relation-aware
GCN on the tree with syntactic dependency relation
labels.

MH-GCN is a GCN-based model which is compared with
the state-of-the-art methods in Table 4 on the blind test set.
From the table, we can make the following observations.

Among all these methods, sequence-based neural net-
work models beat feature-based models on F1-measure.
Moreover, compared with sequence-based models, exter-
nal resource-based models and GCN-based models achieve
better performance (except LearnToSelectED). This phe-
nomenon is not surprising. Sequence-based neural network
models can automatically learn salient features in the data to
achieve better performance. External resource-based models
utilize more data from external resource, and GCN-based
models incorporate structural information to achieve further
improvement.

We conduct a t-test to compare the proposed method to
the other methods on F1-measure. Compared with the best
feature-based models, MH-GCN gains 7.5 F1-score improve-
ment. What’s more, our model is superior to all of the
sequence-based baselines. The MH-GCN model achieves
the best performance among the GCN-based models which
employ dependency arcs only. MH-GCN can improve the
best recall and F1 in the best reported method with depen-
dency arcs only MOGANED by+2.9 and+0.5, respectively.
This demonstrates the effectiveness of our method to exploit
BERT representation to enhance graph convolution via the
multi-head attention mechanism.

Compared with RA-GCN, our model tends to achieve
higher precise score but lower F1-measure. We notice the

RA-GCN model exploits dependency arcs and relations
simultaneously based a relation-aware GCN while MH-GCN
uses dependency arcs only. The dependency relation obtained
from syntactic parsing toolkit is indeed noisy, which is
responsible for the lower precision. Our model outperforms
these external resource-basedmodels except EKD, as it inves-
tigates a teacher-student model to distill open-domain trig-
ger knowledge from WordNet. It demonstrates that external
resources are useful to improve event extraction.

D. MODEL STABILITY ANALYSIS
To further explore the performance stability of our
model, we performe a 5-fold cross-validation on the
ACE2005 dataset in Table 5. The ACE2005 corpus includes
6 different domains: broadcast conversation (bc), broadcast
news (bn), telephone conversation (cts), newswire (nw),
usenet (un) and webblogs (wl). In order to maintain data
consistency of different domain in each fold. We divide
the data of each domain into five parts and splice together.
Finally, we choose a different fold each time as the testing
set and used the remaining four folds as the training set.
In Table 5, the average of trigger identification is 75.16%
(variance is 0.21) and the average of trigger classification is
70.9% (variance is 0.18). We can see that our model obtains a
close performance in each fold when the data for each domain
is consistent.

In general, multiple experiments can improve robustness
of the model since a single experiment may not reflect the
true performance. We choose different random seeds and
conduct a 10-test experiments based on a pre-defined data
split [38]. Figure 4 show the 10-test experiments on ACE
2005 dataset. The average of trigger identification is 79.23%
(variance is 0.18) and the average of trigger classification is
76.34% (variance is 0.05), which demonstrates our model has

VOLUME 8, 2020 171441



L. Li et al.: Graph Convolution Over Multiple Latent Context-Aware Graph Structures

TABLE 5. 5-fold cross-validation results on the ACE-2005 dataset. TI:
Trigger Identification, TC: Trigger Classification, Ave: Average.

FIGURE 4. 10-test experiments on ACE 2005 dataset. TI: Trigger
Identification, TC: Trigger Classification, Ave: Average.

strong robustness on event detection. Through two groups of
experiments from different perspectives (i.e., cross-validation
and t-test), it is obvious that the performance of our model is
relatively stable.

E. EFFECT OF DEPENDENCY RELATION
To further reveal whether dependency relation can improve
our modul, we design a model (MH-GCN-RW) based on
MH-GCN. MH-GCN-RW: It applys gate on the edges to
weight the importances of relation in GCN. Graph convolu-
tion operation is modified based on Equation (4) as follows:

h(l)i = ρ(
n∑
j=1

g(l−1)ij (AijW (l)h(l−1)j + b(l))) (11)

g(l)ij = σ (rijW
(l)
rel +W

(l)
rel ) (12)

where g(l)ij is the relation-weighted coefficient between nodes
i and j at l-th layer, rij represents the relation embedding
between nodes i and j,W (l)

rel and b
(l)
rel are the model parameters

according to relation, and other parameters are defined as
above.

Table 6 shows the effectiveness of relation in our model.
This modified model gets higher performance thanMH-GCN
while lower performance than RA-GCN. This demon-
strates syntactic dependency relation can provide informa-
tion to improve the performance. Note that MH-GCN-RW
uses a simple fusion module while RA-GCN explores the
relation-aware aggregation module and context-aware rela-
tion update module simultaneously. So designing an efficient

TABLE 6. The effectiveness of dependency relation in MH-GCN.

TABLE 7. Performance of modified architectures based on MH-GCN.

relation fusion module will significantly improve the model.
In the future, we are going to explore how to integrate syn-
tactic dependency relation into our model.

F. ABLATION STUDY
To study the contribution of attention mechanism and resid-
ual connections, we design ablation experiments. For this
purpose, we design three architectures based on MH-GCN:
1) BERT-GCN: it integrates BERT encoder with origi-
nal syntactic graph structure instead of fully connected
edge-weighted graphs; 2) MH-GCN/RC: it casts the residual
connections away; 3) MH-GCN-Mean:it adopts mean pool-
ing as the combination mechanism of multiple GCN blocks
representations while MH-GCN adopts linear combination
layer.

The experimental results are shown in Table 7. These
three modified models all get lower performance than
MH-GCN.MH-GCN/RC performs the worst, which suggests
that residual connections mechanism plays an important role
in context-aware graph structures. It implies that the context
feature representation produced by BERT can bring essential
information. Without residual connections, the GCNs con-
verges slowly and most likely to ignore the relevant informa-
tion. BERT-GCN drops more on precision than recall, which
illustrates that multi-head attention learned from matrices
helps MH-GCN to predict trigger words more precisely. The
performance drop of MH-GCN-Mean is the smallest among
the three modified models. Although the average of multiple
GCNs representations achieves competitive performance for
event detection, the proposed linear layer aggregation module
still distinguishes the importance of syntactic representations
of different head, which achieves 0.8% improvement on
F1-measure.

G. EFFECT OF MULTI-HEAD GCNs ON EXTRACTING
MULTIPLE EVENTS
In order to further prove the effectiveness of MH-GCN,
especially for those sentences with multiple events, the test
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TABLE 8. System performance on single event sentences(1/1) and
multiple event sentences (1/N).

TABLE 9. Top two event types for three types of trigger errors.

set is divided into two parts (single event and multiple
events) following the previous work [8], [12] and perform
evaluations separately. Single event means that one sentence
only has one trigger; otherwise, multiple events in one sen-
tences. Table 8 shows the performance (F1-measure scores)
of DMCNN [7], JRNN [8], JMEE [12] and two other baseline
systems, named Embeddings+T and CNN. Embeddings+T
uses word embeddings and the traditional sentence-level fea-
tures in [19] while CNN is similar to DMCNN, except that
it applies the standard pooling mechanism instead of the
dynamic multi-pooling method.

From the table, we see that MH-GCN significantly outper-
forms all the other methods when the input sentences contain
more than one event (i.e. the row labeled with 1/N in the
table). In the 1/N data split of triggers, our framework is 1.5%
better than the JMEE, which demonstrates that our method
uses multi-head attention to help alleviate multiple events
issue. The multi-head attention mechanism allows the model
to jointly attend to information from different representation
subspaces at different positions, in order to maintain the
correlation between multiple events.

H. ERROR ANALYSIS
We further examine output of MH-GCN on the test set to
determine the contribution of each event type to trigger clas-
sification errors. Three types of errors have been arisen in
this case: (i) missing an event trigger in the test set (called
Missing), (ii) proposing a fakean event trigger (called Spuri-
ous), and (iii) misclassified event types (called Wrong Type).
Table 9 shows the top two event types appearing in these
errors and their corresponding percents. These three types
account for 45.56% of the missing errors, 48.65% of the
spurious errors and 5.79% of the wrong type errors. Attack

and Transport are the types that are present frequently in
misssing and spurious errors.

A careful analysis of the missing cases reveals that the
errors mainly correspond to the trigger words not appearing
in the training data, such as the word ‘‘admits’’ (of type
Transport) in the sentence ‘‘Turkey would lose a aid-package
unless it admits troops into the country for the Iraq conflict.’’.
The spurious errors occur due to the confusable context of
trigger words. For instance, the word ‘‘war’’ in the following
sentence can be easily misproposed as an Attack event (due
to its context with the word ‘‘victims’’) ‘‘. . . provided the
money went for goods to victims of the first Gulf War.’’. Highly
ambiguous trigger (word triggers toomany events) is themain
reasons of the wrong type errors. In the sentence ‘‘A rocket
landed in farmlands and the other hit a house inside the
refugee camp.’’, the ‘‘landed’’ is misclassified as a Transport
event instead of an Attack event.
For the problems mentioned above, our model may

increase the scale of training data to solve rare or unseen
trigger words by introducing external resources. Moreover,
designing a model that can better capture modeling of the
context will mitigate the confusable context problem.

VI. DISCUSSION
To better understand what the model has learned via the
‘‘dynamic cutting’’ strategy on adjacency matrix, we visu-
alize the new edge-weighted adjacency matrix generated by
attentionmechanism based onBERT representation.We use a
sentence ‘‘In Baghdad, a cameraman died when an American
tank fired on the Palestine Hotel’’ as an example in Figure 5.
These weights in adjacency matrix are viewed as the strength
of relatedness between words.

Figure 5a shows the change of applying attention mech-
anism on dependency matrix. Since the original adjacency
matrix generated by dependency tree is binary values (0 or
1) and symmetric matrices, edges on the top are the same
color while are different color intensity on the bottom. Com-
pared with the original dependency matrix, the pruned matrix
of the attention mechanism can hierarchically express the
correlation between words in the sentence. All words are
equally important in the original dependency matrix although
some words are directly connected by short arcs. However,
the new adjacency matrices focus more on the words associ-
ated with the trigger words. For example, the edges in died-
cameraman, fired-tank are darker than in-cameraman, fired-
Palestine respectively. This shows attention mechanism has
the ability to distill useful information for trigger word from
the dependency tree.

Figure 5b demonstrates different dependency matrix gen-
erated by two attention heads. The first head gives more atten-
tion to the trigger word firedwhile the second exploits another
trigger word died in the sentence. As the different attention
head attends to information at different positions, the method
of leveraging multi-head attention mechanism is helpful
in alleviating the multiple events phenomenon. Multi-head
attention can aggregate information from multi-dimensional
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FIGURE 5. An example of the attention mechanism applying on dependency matrix in the graph construction
layer. Dark colors represent closer syntactic connection between words. (a) The effects of attention mechanism.
Top: the original dependency matrix. Bottom: new adjacency matrix generated by attention mechanism; (b) Two
attention heads based on the original dependency matrix in multiple event. The top and bottom represent
different heads.

space of multiple events to keep the associations between
multiple events.

VII. CONCLUSION
We present a new method based on graph convolution net-
work for event detection. An attention mechanism is applied
on BERT representation and adjacency matrix to generate
multiple latent context-aware graph structures, which can
dynamically retain relevant information and ignore irrelevant
information from the dependency trees at different positions.
Using BERT semantic information for dynamically pruning
on dependency matrices can distill more beneficial syntactic
structure for trigger words. We introduce the graph convo-
lutional networks with residual connections to combine the
local and the non-local contextual information, which can
effectively enhance the information flow of graph structure.
The proposed model is empirically shown to be effective
on the sentences with multiple events as well as yields the
competitive performance on the ACE2005 dataset. For future

work, we expect to investigate the joint models for event
extraction (i.e. both event detection and argument prediction)
based on the proposedmodel.We also plan to apply the GCNs
models to the other datasets and extend it to other information
extraction tasks such as relation extraction.
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