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ABSTRACT Deteriorated quality of power leads to problems, such as equipment failure, automatic device
resets, data errors, failure of circuit boards, loss of memory, power supply issues, uninterrupted power
supply (UPS) systems generate alarm, corruption of software, and heating of wires in distribution network.
These problems become more severe when complex (multiple) power quality (PQ) disturbances appear.
Hence, this manuscript introduces an algorithm for identification of the complex nature PQ events in which it
is supported by Stockwell’s transform (ST) and decision tree (DT) using rules. PQ events with complex nature
are generated in view of IEEE-1159 standard. Eighteen different types of complex PQ issues are considered
and studied which include second, third, and fourth order disturbances. These are obtained by combining
the single stage PQ events such as sag & swell in voltage, momentary interruption (MI), spike, flicker,
harmonics, notch, impulsive transient (IT), and oscillatory transient (OT). The ST supported frequency
contour and proposed plots such as amplitude, summing absolute values, phase and frequency-amplitude
obtained by multi-resolution analysis (MRA) of signals are used to identify the complex PQ events. The
statistical features such as sum factor, Skewness, amplitude factor, and Kurtosis extracted from these plots are
utilized to classify the complex PQ events using rule-based DT. This is established that proposed approach
effectively identifies a number of complex nature PQ events with accuracy above 98%. Performance of
the proposed method is tested successfully even with noise level of 20 dB signal to noise ratio (SNR).
Effectiveness of the proposed algorithm is established by comparing it with the methods reported in literature
such as fuzzy c-means clustering (FCM)& adaptive particle swarm optimization (APSO),Wavelet transform
(WT) & neural network (NN), spline WT & ST, ST & NN, and ST & fuzzy expert system (FES). Results of
simulations are validated by comparing themwith real time results computed by Real Time Digital Simulator
(RTDS). Different stages for design of complex PQ monitoring device using the proposed approach are also
described. It is verified that the proposed approach can effectively be employed for design of the online
complex PQ monitoring devices.

INDEX TERMS Complex nature PQ event, power quality, ruled decision tree, Stockwell’s transform,
statistical feature.

I. INTRODUCTION
Nowadays, power quality is becoming a serious issue to
service providers and consumers. This includes fluctuations
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in frequency, amplitude and phase of the signals of voltage
and current due to wide spread application of loads with
non-linear natures. These include solid-state devices, drives
with adjustable speed, energy efficient lamps, power elec-
tronic controller operated devices, computers, loads used for
processing of data, rectifiers and inverters used in industrial
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applications as well as power system faults [1]. Further, pene-
tration of the renewable energy (RE) into the electrical system
also deteriorates the quality of power [2]. Quality of electrical
power is degraded due to frequently observed events such
as sag associated to voltage, swell associated to voltage,
MI, harmonics, flicker, spike, notch, oscillatory, and impul-
sive transients [3]. Simultaneous occurrence of two or more
these events is considered as complex PQ event. Degraded
PQ causes heating in transmission and distribution lines,
malfunction of equipments and protective devices, motor
failures, loss of computer data, mis-function of electronic
based control systems, reduces life of equipments/appliances,
reduces accuracy of meters, and causes interference with
communication systems [4], [5]. In order to improve quality
of power, sources of PQ events are required to be investigated
so that appropriate mitigation action may be initiated. This
needs that PQ events are detected, localized, classified, and
monitored at fast rate and in reliable manner.

The signal processing and intelligent approaches have been
utilized to recognize the PQ events [6]. Recently, analysis of
PQ events in frequency domain is becoming popular. Infor-
mation of time and frequency pertaining to the waveform
of disturbance can effectively be extracted with the help of
short-time Fourier transform (STFT) using a shifting window.
Main limitation of STFT is the window with constant size
which is used to identify all the frequencies available with the
signal. This makes the STFT unsuitable for transient signal
analysis [7]. Wavelet transform (WT) as well as its variant
discrete wavelet transform (DWT) overcome drawbacks of
STFT and provide representation of signals of non-stationary
nature on the time-scale instead of time-frequency. How-
ever, its performance is significantly degraded when noise
is associated with the signal [8]. Stockwell transform
(S-transform) uses a moving Gaussian window which can
be localized on scalable basis. This window combines fea-
tures of WT as well as STFT. This can be converted from
time domain to the frequency domain on full transformation
basis. Subsequently, it can also be converted to Fourier fre-
quency domain. S-transform uses a window for analysis of
signal which is effective to decrease the width in accordance
with the frequency components associated with the signal.
It also provides frequency-dependent resolution of the signal.
ST is capable to obtain amplitude with reasonable accuracy.
This is also effective to obtain phase spectrum of the signal
being analysed even when noise of significant high level is
present [9].

Distinctive features obtained by filtering the PQ signal
using a suitable signal processing tool are considered as input
to a module of trained classifier which identifies and clas-
sifies the disturbances. Recently, large number of methods
such as probabilistic neural network [10], modular neural
network [11], binary feature matrix method [12], neural net-
work (NN) [13], feed-forward neural network (FFNN) [8],
Fuzzy c-means (FCM) clustering algorithm and adaptive par-
ticle swarm optimization (APSO) [1], fuzzy expert system
(FES) [14], image processing [15] and extreme learning

machine [16] have been proposed for classifying the
PQ disturbances. A decision support tool known as decision
tree (DT) functions using the graph of binary tree used to
extract the hidden relation among the input and output. This
is based on decisions taken following a DT starting from root
to leaf nodes. Final response is associated with terminal node
which is the leaf node. A DT using rules, takes the decision
using a set of rules which is supported by the data with low
computational burden [17].

In network of utility, more disturbances might occur at
same time which is designated as complex PQ disturbance.
Recently, complex PQ disturbances are observed in the util-
ity grid due to high penetration of uncertain and variable
nature renewable power generation. Most of the methods
proposed in literature are applied to identify single stage
PQ events. Hence, efficiency of these techniques might be
limited. Therefore, in recent years researchers are focussed
on recognition of complex PQ events. Hence, it is concluded
that efficient devices which are effective for monitoring of
the complex PQ disturbances are required. This has been
considered as key factor for the proposed study and following
are main contribution of the manuscript:
• Design a generalized technique using a combination of
ST and DT supported by rules, using minimum features,
to recognize the complex PQ issues. This is proposed to
be utilized in designing the online complex PQ monitor-
ing devices.

• A hybrid combination of ST based feature plots such
as frequency contour, amplitude plot, summing abso-
lute magnitude plot, phase plot and amplitude-frequency
plot is effectively utilized to identify the PQ events of
complex nature. The summing of absolute values plot
proposed for identification of the complex PQ events
is specific contribution of this work. This helped in
achieving high efficiency of devices used for monitoring
of the complex PQ events.

• Optimal set of features extracted from the ST based plots
are used to design the rules for rule based DT to classify
the complex nature PQ events. This has improved the
PQ classification accuracy.

• This technique hasmerits ofminimumburden of compu-
tation and good efficiency. Hence, proposed technique is
suggested to design fast and accurate device for online
monitoring of complex PQ events. This is also effective
even when renewable power generation is available.

• Performance of algorithm is also effective even in
the noisy environment with high level of noise up to
20 dB SNR (signal to noise ratio).

• Results of simulation are validated by a comparative
study between the real time results computed using
RTDS and simulation results. Performance of the pro-
posed algorithm is found to be effective compared to the
methods reported in literature.

• Important stages involved in design of the complex
PQ monitoring device based on proposed algorithm are
also formulated.
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FIGURE 1. Complex PQ disturbances recognition methodology.

This article is structured in ten sections. Introduction and
main contributions are described in Section I. Research work
related to the recognition of PQ disturbances is discussed
in Section II. Proposed approach used for recognition of
the complex PQ disturbances is described in Section III.
It also includes, the mathematical tools used for designing
the algorithm. Section IV, presents the results for analy-
sis of the second order, third order and fourth order com-
plex PQ disturbances. A brief description of the S-transform
supported features of complex PQ disturbances has been
given in Section V. Results for classification of complex PQ
events using the rule-based decision tree are presented in the
Section VI. Validation of the results in real time is discussed
in the Section VII. Section VIII, details the study for perfor-
mance comparison of the proposed approach with the algo-
rithms reported in literature. It also includes a comparative
study of PQ classifiers. A brief discussion on procedure for
implementation of the proposedmethod in the PQmonitoring
devices has been presented in Section IX. Finally, Section X
concludes the research work.

II. RELATED WORK
The researchers have proposed various techniques and algo-
rithms for identification and classification of the PQ events.
These methods reported in the literature are discussed in this
section. A method using S-transform and DT using rules
for identification and to classify the single stage (simple
nature) PQ events is presented by authors in [18]. A technique
using the ST and FCM for assessment of PQ issues associ-
ated with the utility grid network, in the presence of wind
energy, is reported in [19]. In this research work, PQ events
associated with the operational events such as outage and
grid integration of the wind plant are investigated. In [20],
authors introduced a technique to classify the single stage PQ
disturbances using FCM based on features computed using
ST from time-frequency representation of the disturbances.
Zhong et al. [21], proposed a method for recognition of the
PQ events using ST and DT. This study is limited for recogni-
tion of the single stage and second order complex PQ events.
This method is effective for identification of the PQ events in
the presence of noise level of 30-50dB SNR. This method
has not been tested for higher noise level of 20dB SNR.
A Stockwell transform based technique for identification of
PQ events associated with the distribution network in the
presence of wind energy, during different operational condi-
tions, is available in [22]. An image enhancement approach

for recognition of the PQ disturbances is reported in [23]. This
approach has efficiency higher compared to the empirical
mode decomposition (EMD)method. Mahela and Shaik [24],
introduced a technique which is making use of the Stockwell
transform and DT initialized FCM clustering for identifica-
tion and to classify the single stage PQ events. A hybridmodel
for identification of the complex PQ events by the use of
wavelet multi-class support vectormachine (SVM) is detailed
by the authors in [25]. Lima et al. [26], proposed a technique
based on independent component analysis (ICA) for analysis
of the complex PQ signals. Dalai et al. [27], introduced a
cross wavelet aided Fischer linear discriminate processing
technique to sense simultaneous incidence of the complex
PQ events.

III. METHODOLOGY OF COMPLEX PQ DISTURBANCES
RECOGNITION
The online PQ monitoring devices continuously monitor the
patterns and detect the patterns which are deviated from
the pure sinusoidal waveform patterns. Hence, based on the
nature and shape of the patterns types of the PQ disturbances
can be detected. Therefore, recognition of various patterns
of the complex PQ disturbances will help to design online
monitoring device for identification and to classify complex
PQ events. The methodology proposed to recognize the com-
plex PQ events is illustrated in Fig. 1. Complex PQ events
are generated in accordance with the IEEE-1159 standard
which realizes data in real time and used to establish gen-
eralization capacity of classifier [28]. Different combinations
of numerical models of PQ disturbances reported in [29] and
provided in Appendix are utilized for generating complex
PQ events using programming in MATLAB 2015b software.
Standard matlab codes for trigonometric and exponential
functions have been utilized for generating data set of PQ
events. A signal of length 10 cycles (with 50 Hz) is processed
at sampling frequency of 3.2 kHz. The class symbols C1 to
C18 assigned to the complex PQ disturbances and their order
of complexity are illustrated in Table 1. These signals with
complex PQ events are processed usingmulti-resolution anal-
ysis (MRA) supported by S-transform for computing a matrix
known as S-matrix (complex in nature). Rows of this matrix
correspond to frequency and columns to time. Every column
indicates frequencies associated with signal at a moment of
time. Every row indicates magnitude of frequency compo-
nents with respect to time. The information associated with
amplitude, frequency and phase is evaluated from ST matrix.
Locus of the maximum magnitude computed from S-matrix
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TABLE 1. Description of Complex PQ Disturbances.

at definite time is magnitude contour. For computing phase
from S-matrix, the phase associated with regions of highest
amplitude is evaluated. Frequency components associated
with signal are also computed from ST matrix and plotted
as contour of frequency [30].

Features F1 to F7 (detailed in Table 2) are computed from
S-transform supported plots and used for designing rules
for DT to classify complex PQ disturbances. Description of
these features has been included in the Section V. These
features have single valued data (refer Table 3) which are
considered as input data set for programming of the decision
tree supported rules to classify the disturbances. Impact of
noise on performance of the classification is investigated with
20 dB SNR noise. Further, at a higher noise level of 10dB
SNR the powers of signal and noise become equal. Generally,
this condition is not observed in the network of distribu-
tion system because the power handled by the network is
high. Hence, the noise observed in the distribution system
ranges from 20dB SNR to 100dB SNR where 20dB SNR
noise level is highest. Hence, 20dB SNR is selected for

TABLE 2. Description of Features Used for DT Rules.

testing the proposed algorithm. This algorithm is effective for
20-100dB SNR range of noise level. A set of 100 signals for
each PQ disturbance is prepared using the mathematical for-
mulation detailed in Appendix. This data set is computed by
the variation of different parameters of every PQ disturbance
such as frequency, amplitude, phase etc. The 70 data of each
PQ disturbance are used for training the DT and 30 data of
each PQ disturbance are used for testing the DT classification
approach. Performance of the proposed DT based classifier
is compared with the base line classifiers including OneR,
ZeroR and Decision stump.

Results of simulation are validated by comparison with
results in real time computed using the RTDS. Mathematical
relations of the Stockwell transform utilized for recognition
of complex PQ events and used for design of the PQ moni-
toring devices are provided in the following subsection.

A. STOCKWELL TRANSFORM
ST is a hybrid combination of the STFT and WT which
contains features of both and considered in a separate
group. This had been introduced in the year 1996 by the
R. G. Stockwell. ST computes MRA of a signal in time
domain and retains absolute phase of every frequency com-
ponent. This has used a window, the width of which changes
in inverse ratio of frequency. This effectively provides high
resolution of time for high frequencies and high resolution
for lower frequencies [31].Most of the complex PQ events are
non-stationary and ST effectively extracts features using scal-
able and localized Gaussian Window which is dilating and
translating [32]. The continuous WT (CWT) of the function
h(t) is computed using below detailed relation [32].

W (τ, d) =
∫
∞

−∞

h(t)w(t − τ, d)dt (1)

where W (τ, d): mother wavelet (it may be replica on a suit-
able scale), d : dilation which represents width of wavelet
used for controlling resolution. Dilation factor is considered
as reciprocal of frequency. Translation parameter (τ ) is used
to control position of the Gaussian window (GW) on time
axis.

ST used to process a signal h(t) is basically a CWT using
a suitable mother wavelet which is multiplied by a factor of
phase.

S(τ, d) = W (τ, d)e−i2π f τ (2)

Here, mother wavelet can be computed using the following
relation.

w(t, f ) =
|f |
√
2π

e−
t2f 2
2 (3)

Continuous ST can be computed using the following
relation.

S(τ, f ) =
∫
∞

−∞

h(t)
|f |
√
2π

e−
(τ−t)2f 2

2 e−i2π ftdt (4)
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TABLE 3. Magnitude of Features Used for DT Rules.

Width of GW depends on frequency and given as

σ (f ) = T =
k
|f |

(5)

Here T : time period. Considering constant k as unity makes
GW narrowest in time domain.

Discrete form of ST is computed by considering advan-
tages of fast Fourier transform (FFT) and convolution theo-
rem. PQ signal h(t) is sampled in to a discrete time series
h(kT ), considering the sampling time period equal to T and
k = 0, 1, . . . ,N − 1. Discrete form of the Fourier trans-
form (FT) is given by the following relation.

H
[ n
NT

]
=

1
N

N−1∑
k=0

h[kT ]e−
i2πnk
N (6)

Here, n = 0, 1, . . . ,N − 1. Discrete ST is considered as
projection of vector of time series h[kt] on the set of vec-
tors (spanning). Elements of ST are not independent and
vectors (spanning) are not orthogonal. Every base vector
of FT is composed of N localized vectors which can be
computed by product of N shifted Gaussian. Summation
of such N localized vectors is considered as original base
vector [33]. ST of a discrete time series h[kT ] for n 6= 0 is
computed by the following relation (considering f → n/NT
and τ → jT ) [10].

S
[
jT ,

n
NT

]
=

N−1∑
m=0

H
[
m+ n
NT

]
e−

2π2m2

n2 e
i2πmj
N (7)

If voice n = 0, it is computed and defined as below.

S[jT , 0] =
1
N

N−1∑
m=0

h
[ m
NT

]
(8)

here j,m, and n = 0, 1, . . . ,N−1. ST output is obtained in the
form of a complex matrix having size n×m and designated as

S-matrix. This matrix can be represented by belowmentioned
mathematical formulation.

S(τ, f ) = A(τ, f )e−iϕ(τ,f ) (9)

Here, A(τ, f ): magnitude of amplitude, ϕ(τ, f ): phase. Row
and column of ST matrix correspond to frequency and time
in respective order. Every column indicates frequency com-
ponents of the signal at a moment of time. Every row indi-
cates magnitude of a frequency component in respect to time
which is indicated by samples ranging from 0 to N − 1.
The S-matrix is used to compute the information related
to magnitude, frequency and phase of a signal. Contour of
magnitude represents a locus of maximum value computed
from ST matrix at a time moment. For computing phase,
regions of highest amplitude are examined from S-matrix,
and respective phase is computed at these points. Frequen-
cies of signal are computed from ST matrix and detailed by
a contour known as frequency contour [30]. ST-amplitude
(STA) matrix is utilized for analysis of complex PQ events
and computed using equation (7) as |S[jT , n/NT ]| whereas
the phase can be detailed below.

ϕ = tan−1


imag(S[jT ,

n
NT

])

real(S[jT ,
n
NT

])

 (10)

IV. S-TRANSFORM SUPPORTED ANALYSIS
OF COMPLEX PQ EVENTS
The PQ events with complex nature are analyzed with the
help of various ST curves computed from S-matrix of Stock-
well transform. ST plots used for the analysis include con-
tour of time and frequency (S-contour), amplitude-time plot,
phase contour and amplitude-frequency plot. A summing
absolute magnitude plot is proposed in addition of above
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detailed contours/plots which helps in improving the clas-
sification efficiency. The plot is computed by summation of
absolute magnitude of every column of ST-matrix. The plots
are further utilized to extract various features of the signals.
The plots associated with sinusoidal waveform without any
disturbance will be considered as reference plots and help in
detecting the PQ events. The complex PQ events are grouped
as per their order of complexity and their analysis is presented
in the following subsections.

A. SECOND ORDER COMPLEX PQ DISTURBANCE
In this subsection, two single stage PQ disturbances are
combined in order to generate second order complex
PQ disturbances. These disturbances are analysed using
multi-resolution analysis supported by S-transform. Vari-
ous second order complex PQ disturbances considered for
analysis are sag in voltage with harmonics, swell in voltage
with harmonics, MI with harmonics, flicker with harmonics,
sag in voltage combined with OT, swell in voltage with IT,
flicker with OT, harmonics with OT, sag in voltage
with IT, swell in voltage with IT, flicker with IT, harmonics
with IT, sag in voltage with spike and sag in voltage with
notch.

1) VOLTAGE SAG WITH HARMONICS
Fig. 2 shows the ST supported plots for sag in volt-
age with harmonics. Sag in voltage (0.06 s to 0.14 s)
has easily been identified by decreased value of ampli-
tude plot and summing absolute magnitude plot detailed
in respective order in Fig. 2(c) and (d). Discontinuity in
upper contour of Fig. 2(b) is also an indication of voltage
sag. Harmonics can be identified by ripples of continuous
nature associated with S-contour and summing absolute
magnitude plot detailed in Fig. 2,(b) and (d) in respec-
tive order. Frequency contents, in addition to fundamental,
detected with finite magnitude between normalized frequen-
cies of 0.05 to 0.15 in amplitude-frequency plot illustrated
in Fig. 2 (f) also indicate availability of harmonics with the
signal.

To investigate the effect of noise on performance of the
algorithm during PQ identification stage, a noise of 20dB
SNR is superimposed on the voltage signal with sag and
harmonics. Fig. 3 shows the ST supported plots for sag
in voltage with harmonics in the presence of 20dB SNR
noise level. Sag in voltage (0.06 s to 0.14 s) has easily
been identified by decreased value of amplitude plot and
summing absolute magnitude plot detailed in respective order
in Fig. 3(c) and (d). Discontinuity in upper contour of
Fig. 3(b) is also an indication of voltage sag. Harmonics can
be identified by ripples of continuous nature associated with
S-contour and summing absolute magnitude plot detailed
in Fig. 3(b) and (d) in respective order. Further, presence of
noise is also detected by the increased magnitude of ripples
on surface of the summing absolute values plot of Fig. 3(d).
Frequency contents, in addition to fundamental, identified by
finite magnitude between normalized frequencies of 0.05 to

FIGURE 2. (a) Voltage sag with harmonics (b) contour of frequency
(c) amplitude plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

FIGURE 3. Effect of 20dB SNR noise level (a) voltage sag with harmonics
and superimposed noise of 20dB SNR (b) contour of frequency
(c) amplitude plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

0.15 in amplitude-frequency plot of Fig. 3 (f) also indicate
availability of harmonics with the signal. Further, the finite
values of the amplitude-frequency plot beyond the normal-
ized frequency of 0.15 indicate the presence of noise. Hence,
the proposed algorithm is effective to identify the voltage sag
with harmonics even in the presence of noise. Further, noise
is also recognized by the summing absolute values plot and
amplitude-frequency plot.
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2) SWELL IN VOLTAGE WITH HARMONICS
Swell in voltage with harmonics and respective ST supported
plots are detailed in Fig. 4. The swell in voltage is iden-
tified by increased magnitude of lower S-contour, ampli-
tude curve and summing absolute magnitude plot as detailed
in Fig. 4 (b), (c) and (d) in respective order. Harmonics
can be recognized by the continuous ripples incident on
upper S-contour and summing absolute magnitude plot of
Fig. 4 (b) and (d) in respective order. Frequency con-
tents observed in addition to the fundamental and having
definite finite magnitude between frequencies (normalized)
0.05 to 0.15 in amplitude-frequency plot detailed in Fig. 4 (f)
also indicate availability of harmonics contents with the
signal.

FIGURE 4. (a) Voltage swell with harmonics (b) contour of frequency
(c) amplitude plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

3) FLICKER WITH HARMONICS
Flicker with harmonics and associated ST supported plots are
detailed in Fig. 5. Flicker is recognized by the circles in a
series (at the top) in contour of ST as described in Fig. 5 (b)
whereas availability of harmonics is recognized by ripples of
continuous nature in middle ST-contour. Flicker and harmon-
ics are also observed in summing absolute magnitude plot in
the form of continuous ripples as described in Fig. 5 (d). Com-
ponents of frequency present, in addition to fundamental,
and having finite magnitudes between frequencies (normal-
ized) 0.05 to 0.15 in amplitude-frequency plot as described
in Fig. 5 (f) show the availability of harmonics associatedwith
signal whereas the finite magnitude in between frequencies
(normalized) 0.2 to 0.3 represents the flicker in signal. How-
ever, amplitude and phase curves give no information about
the flicker and harmonics.

FIGURE 5. (a) Flicker with harmonics (b) contour of frequency
(c) amplitude plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

4) SAG IN VOLTAGE WITH OT
Simultaneous occurrence of voltage sag with oscillatory tran-
sient (OT) and associated ST supported plots are detailed
in Fig. 6. Sag in voltage (0.06 s to 0.14 s) is identified
easily by decreased magnitude in amplitude and summing
absolute magnitude plot of Fig. 6 (c) and (d) in respective
order. Decrease in magnitude (0.06 s to 0.14 s) in contour
of ST detailed in Fig. 6 (b) also indicates availability of sag
in voltage. Presence of the OT is identified by an isolated
single contour (0.09 s to 0.11 s) as described in Fig. 6 (b).
Availability of OT is also identified by changes which are
significant between 0.09 s to 0.11 s, in all plots of Fig. 6.
Frequency contents identified, in addition to fundamental,
having finite values between frequencies (normalized) 0.05 to
0.25 in amplitude-frequency plot as detailed in Fig. 6(f) also
indicate availability of OT in the signal.

5) FLICKER WITH OSCILLATORY TRANSIENT
Flicker with OT and associated ST supported plots are
detailed in Fig. 7. Presence of OT is identified by isolated
single contour (0.08 s to 0.10 s) as detailed in Fig. 7 (b).
Availability of OT is also recognized by significant changes,
in between 0.08 s to 0.10 s, in all ST supported curves detailed
in Fig. 7. Frequency contents other than the fundamental seen
with finite magnitude, in between frequencies (normalized)
0.05 to 0.25, as detailed in Fig. 7 (f) also indicate the avail-
ability of OT in the signal. Flicker is detected by sustained
ripples in summing absolute magnitude plot of Fig. 7 (d). This
is also recognized by upper surface of isolated ST contour of
Fig. 7 (b) in the form of ripples.
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FIGURE 6. (a) Voltage sag with OT (b) contour of frequency (c) amplitude
plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency curves.

FIGURE 7. (a) Flicker with oscillatory transient (b) contour of frequency
(c) amplitude plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

6) SAG IN VOLTAGE WITH IT
Sag in voltage with IT and associated ST supported plots
are described in Fig. 8. Sag in voltage (0.06 s to 0.14 s)
can be recognized by decreased magnitude of amplitude and
summing absolute magnitude plots of Fig. 8 (c) and (d) in
respective order. Voltage sag is also detected in ST contour of
Fig. 8 (b) by decrease in magnitude. Availability of the impul-
sive magnitude in both the ST contour and summing absolute
magnitude plots as detailed in Fig. 8 (b) and (d) indicate
the IT associated with the signal. As IT has all frequencies,
hence frequency-amplitude plot has finite values throughout
the range of frequency as detailed in Fig. 8 (f).

FIGURE 8. (a) Voltage sag with IT (b) contour of frequency (c) amplitude
plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

7) FLICKER WITH IT
The flicker with IT having high magnitude compared to the
signalmagnitude and associated S-transform based curves are
described in Fig. 9. Availability of flicker is recognized by
circles incident in the form of a series in contour of ST as
illustrated in Fig. 9 (b). Flicker is also detected by sustained
ripples in summing absolute magnitude plot as described
in Fig. 9 (d). Impulsive magnitude observed in both the con-
tour of ST and summing absolute magnitude plot as detailed
in Fig. 9 (b) and (d) in respective order indicates IT asso-
ciated with the signal. Continuous finite values as described
in Fig. 9 (f) also indicate availability of the IT associated with
the signal. The flicker with IT having magnitude comparable
to the signal magnitude and associated S-transform based
curves are described in Fig. 10. It is observed that these
plots are effective to recognize the flicker with IT having
magnitude comparable to signal magnitude in the similar way
as discussed above. Hence, method is effective to identify the
flicker with IT of all magnitude.

Effect of 20 dB SNR noise on performance of the algorithm
is investigated to identify the flicker with IT. The flicker with
IT and associated S-transform based curves in the presence
of 20 dB SNR noise are described in Fig. 11. Availability
of flicker is recognized by circles incident in the form of a
series in contour of ST as illustrated in Fig. 11 (b). Flicker
is also detected by sustained ripples in summing absolute
magnitude plot as described in Fig. 11 (d). Further, pres-
ence of the noise is also detected by the increased magni-
tude of ripples on surface of the summing absolute values
plot of Fig. 11 (d). Impulsive magnitude observed in both
the contour of ST and summing absolute magnitude plot
as detailed in Fig. 11 (b) and (d) in respective order indi-
cates IT associated with the signal. Continuous finite values
as described in Fig. 11 (f) also indicate availability of the
IT associated with the signal. Further, the finite values of the
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FIGURE 9. (a) Flicker with IT having high magnitude compared to the
signal magnitude (b) contour of frequency (c) amplitude plot (d) summing
absolute magnitude plot (e) phase plot (f) amplitude-frequency plot.

FIGURE 10. (a) Flicker with IT having magnitude comparable to the signal
magnitude (b) contour of frequency (c) amplitude plot (d) summing
absolute magnitude plot (e) phase plot (f) amplitude-frequency plot.

amplitude-frequency plot beyond the normalized frequency
of 0.25 indicate the presence of noise. Hence, the proposed
algorithm is effective to identify the flicker with IT even in
the presence of noise. Further, noise is also recognized by the
summing absolute values plot and amplitude-frequency plot.

8) SAG IN VOLTAGE WITH MULTIPLE SPIKES
Simultaneous incidence of sag in voltage with multiple spikes
and associated ST supported plots are detailed in Fig. 12. Sag
in voltage (0.06 s to 0.14 s) can be identified by reduced

FIGURE 11. Effect of 20dB SNR noise level (a) Flicker with IT and
superimposed 20dB SNR noise (b) contour of frequency (c) amplitude
plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

FIGURE 12. (a) Voltage sag with multiple spikes (b) contour of frequency
(c) amplitude plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

magnitude of amplitude plot of Fig. 12 (c). Multiple spikes
can easily be identified by contours in a series associated
with ST-contour and ripples of continuous nature in summing
absolute magnitude plot as described in Fig. 12(b) and (d) in
respective order.

B. THIRD ORDER COMPLEX PQ DISTURBANCES
Three single stage PQ disturbances are combined in order
to obtain third order complex PQ disturbances and analysed
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using multi-resolution analysis supported by S-transform.
Various third order complex PQ disturbances considered for
the analysis include sag in voltage with OT and harmonics,
swell in voltage with OT and harmonics, flicker with IT and
harmonics. Results related to detection of the flicker with
harmonics and IT is discussed in this section.

ST supported plots of flicker with harmonics and IT are
described in Fig. 13. Harmonics are identified by ripples
of sustained nature associated with middle S-contour as
detailed in Fig. 13 (b). Availability of flicker is recognized
by circles present in the form of a series associated with
upper ST-contour as detailed in Fig. 13 (b). Sustained ripples
available in summing absolute magnitude plot as illustrated
in Fig. 13 (d) are because of combined impact of flicker
and harmonics in the signal. Impulsive magnitude seen in
both the ST-contour and summing absolute magnitude plot
as detailed in Fig. 13 (b) and (d) in respective order indicates
IT associated with the signal. Continuous finite values as
described in Fig. 13 (f) also indicate availability of the IT.
Phase magnitude also increases at the time of IT associated
with the signal.

FIGURE 13. (a) Flicker with harmonics and IT (b) contour of frequency
(c) amplitude plot (d) summing absolute magnitude plot (e) phase plot
(f) amplitude-frequency plot.

C. FOURTH ORDER COMPLEX PQ DISTURBANCE
In this subsection, ST supported analysis of fourth order
complex PQ disturbance is presented. Disturbance is obtained
by the combination of four single stage PQ disturbances.
Results related to detection of the sag in voltage with OT,
Harmonics and IT is discussed in this section.

Signal of voltage with OT, sag in voltage, harmonics and
IT is illustrated in Fig. 14. Sag in voltage (0.06 s to 0.14 s)
can be recognized by reduced magnitude of amplitude plot
of Fig. 14 (c). Harmonics can be recognized by ripples of
sustained nature in summing absolute magnitude plot as

FIGURE 14. (a) Voltage sag with OT, IT and harmonics (b) contour of
frequency (c) amplitude plot (d) summing absolute magnitude plot
(e) phase plot (f) amplitude-frequency plot.

detailed in Fig. 14 (d). Significant changes between 0.09 s
to 0.11 s in all plots of Fig. 14 are due to combination
of IT with the OT. The sharp peak available in curves of
Fig. 14 (b), (c) and (d) for the duration 0.098 s to 0.101 s indi-
cate availability of IT while high magnitude of these curves in
between 0.09 s to 0.11 s identify availability of the OT. Peak,
in addition to fundamental frequency, recognized with finite
magnitude in between the frequencies (normalized) 0.01 to
0.18 as detailed in Fig. 14 (f) also gives an indication of OT in
the signal. Increased magnitude of frequency plot described
in Fig. 14 (f) also recognizes the IT associated with the signal.

Therefore, it is concluded that their is various similarities
as well as dissimilarities in ST supported plots of different
multiple PQ events. Thus, there is a requirement for intro-
ducing additional features which can be computed using the
statistical approaches for classification of the PQ events of
complex nature.

V. S-TRANSFORM SUPPORTED FEATURES OF COMPLEX
PQ EVENTS
Different features of statistical nature computed from ST
supported plots of PQ events of complex nature are labelled
as F1 to F7. Description of these features is provided below.

F1: Summing factor Sf = max(S) + min(S) − max(R) −
min(R), here S is an array of data for summing absolute
magnitudes of a signal of complex PQ event and R is an
array of data for summing of absolute magnitudes of pure sine
wave (reference). Zero magnitude of this factor recognizes
that there is no disturbance associated with the signal whereas
finite magnitude indicates the presence of PQ disturbance.

F2: Skewness computed from phase plot. Skewness can be
computed using the following relation.

s =
E(x − µ)3

σ 3 (11)
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Here, x: signal data array, µ: mean of signal x, σ : standard
deviation of signal x, and E : expected magnitude of quantity.

F3: Amplitude factor Af = (1+ (C − A)+ (D− B)), here
C : maximummagnitude of amplitude plot of arbitrary signal,
D: minimum magnitude of amplitude plot of arbitrary signal,
A: maximum magnitude of amplitude plot of pure sine wave
(considered as reference signal) and B: minimum magnitude
of amplitude curve of pure sine wave.

F4: Kurtosis computed from amplitude plot. Kurtosis (k)
of a signal can be computed by the following relation.

k =
E(x − µ)4

σ 4 (12)

Here, x: signal data array, µ: mean of signal x, σ : standard
deviation of signal x, and E : expected magnitude of quantity.

F5: Kurtosis computed from phase plot. Equation (12) is
used to calculate the feature F5 where x indicates data array
of phase curve obtained by S-transform based decomposition
of signal with PQ disturbance. Here, µ represents the mean
of x, σ represents standard deviation of x, and E is expected
magnitude of quantity.

F6: Kurtosis computed from the summing absolute mag-
nitude plot. Equation (12) is used to calculate the feature
F6 where x indicates data array of summing absolute mag-
nitude plot obtained by S-transform based decomposition of
signal with PQ disturbance. Here, µ represents the mean of
x, σ represents standard deviation of x, and E is expected
magnitude of quantity.

F7: Kurtosis of amplitude-frequency curve. Equation (12)
is used to calculate the feature F7 where x indicates data
array of amplitude-frequency curve obtained by S-transform
based decomposition of signal with PQ disturbance. Here,
µ represents the mean of x, σ represents standard deviation
of x, and E is expected magnitude of quantity.

Accuracy of the algorithm depends on selection of the
features. Large number of features may give better accu-
racy of the algorithm but implementation time increases
due to handling of large number of data of the various
features. The system becomes more complex and slow in
detection of the PQ disturbances due to the handling of
large data. Further, large storage capacity will be required
to handle large data. This will also increase the cost of
device. The proposed algorithm uses only 7 features against
the method proposed in [24] which uses 14 features. The
additional 7 features used in [24] include peaks associ-
ated with ST supported frequency-amplitude curve, stan-
dard deviation of S-matrix, variance of S-matrix (amplitude),
energy content of S-contour, maximum deviation computed
from S-matrix (amplitude), and second order derivative of
summing absolute magnitude plot. Proposed study has elim-
inated the requirement of S-contour and second order deriva-
tive of summing absolute magnitude plot. Hence, proposed
algorithm needs minimum number of features in compari-
son to technique reported in [24]. Study presented in this
article and paper [24] has been performed using same
mathematical formulation of PQ events in accordance with

IEEE-1159 standard. Studies in both of these papers have
been performed using MATLAB 2015b software.

VI. CLASSIFICATION OF COMPLEX PQ EVENTS USING
RULE-BASED DT
The introduced algorithm makes use of features F1 to F7 to
design the rules for classifying the complex PQ disturbances.
Numerical values of features computed using the relations
discussed in the Section V and used to design rules is pre-
sented in Table 3. Variance in these values increases the
computational time which is 17.1509ms for this set of values.
These features take care of the different characteristics of
the complex PQ disturbances and deviation of the waveform
from the pure sinusoidal nature. Hence, these features can
be effectively used to identify the type of complex PQ dis-
turbance. Threshold values of the features (F2-F7) used for
classification of the complex PQ disturbances using RBDT
have been decided by testing the proposed algorithm on
100 data sets of each complex PQ disturbance obtained by
changing the parameters including amplitude of signal from
standard value of 1 per unit, time of incidence of complex
PQ disturbance, harmonic frequencies, time of initiation and
end of PQ disturbance, amplitude and frequency of transients,
frequency of voltage signal (50 Hz and 60 Hz) and different
levels of noise [refer Appendix]. Further, that particular value
of threshold is selected for a feature which helps to effectively
identify all the complex PQ disturbances.

Presence of PQ disturbance is identified by the non-zero
values of feature F1. This feature has zero value for pure sine
wave of voltage signal without PQ disturbance. The other
features (F2 to F7) are fed to rule based DT for further clas-
sification. The signals are initially classified in the categories
G1 and G2 based on kurtosis of phase curve (F5). Data of cat-
egory G1 contains signals with F5>6 whereas data category
G2 pertains to signals with F5<6. The group G1 includes the
signals with PQ disturbances which contains the OT whereas
the group G2 includes the disturbances without OT.

Signals categorized under category G1 are categorized
in subcategories G11 and G12 supported by magnitude of
kurtosis of amplitude curves (F4). Category G11 includes the
signals with F4<14 and signals with F4>14 are categorized
under category G12. Two signals in the category G12 are sub-
sequently categorized using magnitude of kurtosis of phase
curve (F5). The OT with harmonics (C8) will have F5>
18whereas theOTwith flicker (C7)will have F5< 18. Voltage
sag with harmonics, OT and IT (C18) will have kurtosis of
summing absolute magnitude plot (F6)> 18. All other signals
of group G11 will have F6<18 and classified under group
G111. Signals in the group G111 are further categorized into
groups G112 and G113 supported by magnitude of kurtosis
of phase curve (F5). Signals under group G113 will have
F5>18 whereas the signals related to group G112 will have
F5<18. Two signals in the category G113 are subsequently
categorized based on magnitude of sum factor (F1). Voltage
swell with OT (C6) will have F1<60 whereas voltage swell
with OT and harmonics (C16) will have F1>60. Two signals
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FIGURE 15. Rule-based DT methodology to classify multiple PQ events.

included in the group G112 are further discriminated from
each other based on the values of kurtosis of phase curve
(F5) and skewness of phase curve (F2). Voltage sag with
OT (C5) will have F2> -4 and F5<13 whereas the voltage
sag with OT and harmonics (C15) will have F2<-4 and
F5>13.

Signals included in group G2 are categorized into sub-
categories G21 and G22 using magnitude of kurtosis
of amplitude-frequency curve (F7). Signals under group
G21 will have F7> 30 whereas the signals related to group
G22 will have F7< 30. The PQ disturbances classified under
group G22 contains the IT whereas the group G21 contains
the signal without IT. PQ disturbances included in the group
G21 are discriminated from each other based on the different
features. Flicker with harmonics (C4) will have F4>2. All
other signals of group G21 will have F4<2 and are included
in the group G211. Voltage swell with harmonics (C2) is
discriminated based on the value of amplitude factor (F3).
This will have F3> 1 whereas all other signals included in
the group G211 will have F3<1 and are classified under the
group G212. Voltage interruption with harmonics (C3) will
have F3< 0.2. All other signal related to group G212 will
have 0.2< F3<1 and are classified under the group G213.
Voltage sag with harmonics (C1) has been discriminated from
the signals of group G213 based on the values of sum factor
(F1). The signal C1 will have F1< 0 and all other signals are
categorized in groupG214. Two signals in the groupG214 are
subsequently categorized usingmagnitude of kurtosis of sum-
ming absolute magnitude plot (F6). Voltage sag with spike
(C13) will have F6> 4 whereas the voltage sag with notch
(C14) will have F6< 4.

Signals considered in the category G22 are subsequently
categorized in the subcategories G221 and voltage sag

with IT (C9) based on the value of amplitude factor (F3).
The signals under group G221 have F3>1 and signal C9 have
F3<1. Signals included in category G221 are differenti-
ated one by one using various features. Voltage swell with
IT (C10) will have F4<2 whereas all other signals of
group G221 will have F4> 2 and are classified under the
group G222. Harmonics with IT (C12) will have F6<10
whereas other signals included in the group G222 will have
F6> 10 and are categorized in category G223. Two signals
included in category G223 are categorized using magnitude
of F6. Flicker with IT (C11) will have F6<55 whereas the
flicker with IT and harmonics (C17) will have F6>55. The
rule-based DT algorithm for categorization of the complex
PQ events is illustrated in Fig. 15.

Efficiency of proposed algorithm is established in terms of
effectively classified and misclassified signals supported by
testing for 30 sets of data for each event. Gaussian noise of
level 20 dB SNR is superimposed on signals to evaluate per-
formance in noisy environment using MATLAB command
awgn. This noise level is selected because noise level higher
than 20 dB SNR is not observed in the practical power system
applications [24]. The noise level of 10dB SNR is normally
associated with the communication systems and not with the
power system. Hence, this algorithm has not been tested for
10 dB SNR noise level. Table 4, represents the performance
of proposed method to classify the different signals in the
absence of noise and presence of 20 dB SNR. It is observed
that the classification efficiency of the algorithm is 98.70%
in the absence of noise and 97.41% in the presence of noise
level of 20 dB SNR. It is also established that in the presence
of noise levels of 40 dB SNR, 60 dB SNR, and 80 dB SNR,
the classification accuracy is found to be 97.67%, 97.99%,
98.28%, and 98.57% respectively.
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TABLE 4. Classification Results of Complex PQ Disturbances.

The proposed ST supported DT method identified and
classified the investigated PQ disturbances in time duration
of 17.1509 ms. This is achieved due to the use of mini-
mum (seven) effective features which decreased the imple-
mentation time due to reduced data handling requirement.
This makes the algorithm less complex, fast, and reduced
requirement of storage.

VII. RESULT VALIDATION IN REAL TIME
Results are validated in real time using a RTDS of OPAL-RT.
Results computed in real time using the experimental set-ups
of RTDS illustrated in Fig. 16 are comparable to the results
computed using simulation. A laptop used as human interface
device (HID) has configuration of 64-bit operating system,
4 GB RAM, Intel(I) Core(TM)i5-3230M CPU@2.60 GHz
processor. This HID interacts with RTDS using ether-net
based communication between the laptop computer and
RTDS.Mathematical models are used for modelling the com-
plex PQ events in MATLAB/Simulink 2011b scenario on
the HID. The signals are then loaded on ML605 target of
RTDS for real time simulation in hardware synchronization
mode. Data are recorded using OpWrite block of RT-Lab and
analysed using ST. Results are validated on 30 sets of data
for every PQ event. Performance of proposed technique is
evaluated in terms of correct and incorrect classified signals.
Gaussian noise of 20 dB SNR is superimposed for computing
performance of algorithm in the noisy condition. Real time
performance and its comparison with simulated results are
presented in Table 5.

VIII. PERFORMANCE COMPARISON
This section details a study to compare the performance of PQ
detection and classification approaches. A brief study is also
presented to compare the performance of various types of the
classifiers for classification of the investigated 18 complex
PQ disturbances.

FIGURE 16. Experimental set up for real time results.

A. PERFORMANCE COMPARISON OF THE ALGORITHMS
Accuracy of algorithm is compared with techniques intro-
duced in papers [1], [4], [5], [8], [13] and [14]. These arti-
cles are selected due to the fact that multiple PQ events
are also considered in these articles. Further, in all these
articles the PQ events have been generated in accordance with
IEEE-1159 standard with the help of mathematical formu-
lation in MATLAB software. However, hardware validation
of results has been performed in [8]. Data related to mul-
tiple PQ disturbances reported in these papers are consid-
ered for comparison of results for validating effectiveness of
method. Further, noise level of 20 dB SNR is considered in
all articles used for comparative study. Table 6, details the
performance results for different techniques in the presence
and absence of noise. It is evident from Table 6 that this
algorithm has superior efficiency in comparison to algorithms
reported in [1], [4], [5], [8], [13] and [14]. Thus, the algorithm
making use of S-transform and DT classifier shows good
efficiency of categorization compared to different techniques
reported in literature. This article has considered 18 complex
PQ disturbances in contrast to the other articles which have
considered few complex PQ disturbances along with single
stage PQ disturbances. Hence, this manuscript introduced a
generalized approach for identification of the complex PQ
events. The proposed algorithm used less number of features
compared to the [4], [5], [8], and [13] which ensure that
data handling requirement is decreased resulting in reduced
computational burden. Performance of algorithm for testing
the PQ disturbances reported in [24] is greater than 99%.
Further, performance of algorithm cannot be compared with
that reported in [24] as the algorithm proposed in [24] inves-
tigates only single stage PQ disturbances and algorithm pro-
posed in this article investigates the complex PQ events.
Complex power quality disturbances have high complexity
compared to single stage PQ events. Hence, the techniques
used for identification of single stage PQ events have high
efficiency compared to that utilized for identification of the
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TABLE 5. Comparison of Simulation and Real Time Classification Results.

TABLE 6. Performance Comparison.

complex PQ events. However, if same algorithm is applied for
recognition of complex PQ events then its accuracy decreases
drastically and most of the complex PQ disturbances are not
detected by these algorithms.

B. PERFORMANCE COMPARISON OF THE CLASSIFIERS
Performance of the proposed DT based classifier is compared
with the performance of OneR, ZeroR and Decision stump
classifiers to classify all the investigated 18 types of complex
nature PQ events. This is achieved in terms of the percentage
of correctly classified PQ disturbances for the 30 data used for
testing the algorithm and results are detailed in Table 7. OneR
classifier produces one level DT based on set rules and test
one attribute. ZeroR is a primitive learning classifier which
uses category class and average class values. Description of
the OneR and ZeroR is available in [34]. Decision stump
is a single split DT which is a weak learner and described
in [35]. Performance of the OneR, ZeroR and Decision stump
is evaluated using all the features discussed in Section V and
averaged value is used for comparative study. It is observed
from the table 7 that accuracy of the proposed DT is high
compared to the OneR, ZeroR andDecision stump classifiers.
Further, the proposed DT is fast compared to the above
mentioned classifiers.

TABLE 7. Performance of Classifiers to Classify the Complex
PQ Disturbances.

IX. IMPLEMENTATION OF PROPOSED ALGORITHM
IN PQ MONITORING DEVICES
The basic working principle of online complex power quality
monitoring device based on the proposed algorithm is illus-
trated in Fig. 17. Following are main steps/stages which will
be involved in the design of the device.
• The network parametermonitoring system capture seven
inputs at the measurement point using signal cards.
Three inputs are used for continuous tracking of the
phase voltages, three inputs are used for current in all
the phases and one input is used for the neutral volt-
age. On the modern grid substations, the multi-function
meters (MFM) directly receive the voltage and current
signals from the current transformer (CT) and potential
transformer (PT).

• The signals from the signal cards are given as input
to the remote terminal unit (RTU) installed on the
feeder panels. The RTU has inbuilt Analog to Digital
Converter (ADC) unit. The analog voltage as well as cur-
rent signals given as input to the RTU unit is converted
to corresponding digital signals using ADC.

• Digital form of input signals will be transmitted to
digital signal processing (DSP) unit. Proposed algo-
rithm is used to process the input current or voltage
signals in this unit to recognize complex PQ events
available with signals. The proposed algorithm may
be performed as embedded functions in field pro-
grammable gate array (FPGA) used as DSP unit. FPGA
contains an array of configurable logic blocks (CLBs),
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FIGURE 17. Basic working principle of online complex power quality monitoring device based on the
proposed algorithm.

memory, DSP slices and additional components. These
can be programmed with the help of high-level lan-
guages such as VHDL and Verilog. DSP and FPGA are
different and cannot replace each other. However, DSP
based PQ recognition technique can be implemented
with the help of FPGA by the use of DSP slices as one
of the component of FPGA.

• The real time complex PQ data obtained by process-
ing the input signals on FPGA units are transmitted to
the monitoring centre using transmission control pro-
tocol (TCP) or internet protocol (IP). The under data-
gram protocol (UDP)/IP communication protocol may
also be used. The latter is fast compared to former and
also allows continuous packet streams for transmission.
Hence, the UDP/IP protocol is preferred for monitoring
of the complex PQ events.

• In monitoring unit, complex PQ events are monitored
continuously using the software on server/client com-
puters. The data of complex PQ disturbances may also
be recorded for off-line data analysis or future refer-
ence. The complex PQ data may also be communicated
to the other devices for initiation of an action for PQ
improvement. The improvement of power quality is
achieved using distribution static compensator (DSTAT-
COM) [36], unified PQ conditioner (UPQC) [37], active
power filter (APF) [38] etc.

• Design of the PQ monitoring devices will not depend
on the order of complexity of the complex PQ events
because PQ events are identified based on the patterns
and feature values. Procedure for pattern recognition and
estimation of features will be same irrespective of the
type of PQ disturbance.

X. CONCLUSION
A technique supported by ST and ruled DT has been proposed
for recognition of the complex PQ events. Signals are pro-
cessed using ST based MRA to obtain the ST plots. Features
computed from these plots have been used for designing
rules for the DT. A new S-transform based plot designated
as summing absolute magnitude plot and its features are
introduced for achieving high efficiency of identification.
Performance of algorithm has been validated using a large set
of complex PQ events with and without noise. An efficiency
of 98.70% has been achieved without noise. The efficiency of
proposed algorithm has been found to be 97.41% with noise
level of 20 dB SNR. This algorithm is also tested for noise
level ranging from 20 dB SNR to 100 dB SNR and found sat-
isfactory. It is concluded that performance of the proposed ST
and DT based approach is superior compared to the FCM &
APSO,WT&NN, splineWT&ST, ST&NN, and ST&FES
based PQ recognition methods. The simulation results are
validated by comparisonwith results in real time computed by
RTDS. Real time results are found to be very close to results
of simulation having an error less than 4% which indicates
that proposed algorithm is highly effective. The competency
of algorithm is established by comparing with the methods
reported in literature. The proposed approach is effective for
recognizing the wide range of complex PQ events by the use
of minimum features. The proposed method proved to have
low computational burden and high accuracy of classifica-
tion even in noisy environment. The important stages in the
design of complex PQ monitoring device based on the pro-
posed algorithm are also presented. Thus, the algorithm can
effectively be implemented for the design of online complex
PQ monitoring devices.
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TABLE 8. Mathematical Modeling of Simulated Complex PQ Disturbances [29].

APPENDIX
The mathematical modelling of the generated complex
PQ disturbances, their standard and simulated parameters are
provided in Table 8.
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