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ABSTRACT Indoor photovoltaic (PV) application gains in attraction for low-power electronic systems,
which requires accurate methods for performance predictions in indoor environments. Despite this,
the knowledge on the performance of commonly used photovoltaic device models and their parameter
estimation techniques in these scenarios is very limited. Accurate models are an essential tool for conducting
feasibility analyses and component dimensioning for indoor photovoltaic systems. In this paper, we therefore
conduct a comparison of the one- and two-diode models with parameters estimated based on twowell-known
methods. We evaluate the models’ performance on datasets of photovoltaic panels intended for indoor use,
and illumination conditions to be expected in indoor environments lit by artificial light sources. The results
demonstrate that the one-diode model outperforms the two-diode model with respect to the estimation of
the overall I-V characteristics. The two-diode model results instead in lower maximum power point errors.
Both models show a sensitivity to initial conditions, such as the selection of the diode ideality factor, as well
as the curve form of the photovoltaic panel to be modeled, which has not been acknowledged in previous
research.

INDEX TERMS Indoor photovoltaics, energy harvesting, photovoltaic cell models, one-diode model, two-
diode model, parameter estimation.

I. INTRODUCTION
Models of photovoltaic (PV) devices are an essential tool
for the estimation of the devices’ I-V and P-V character-
istics. These, in turn, are essential to estimate the output
power of PV devices under different application conditions.
In the majority of cases, such models are based on equivalent
circuits, amongst which the one-diode and two-diode mod-
els have gained highest popularity [1]–[4]. In these models,
the pn-junction behavior of the PV cells is modeled with
one or two lumped diodes, and losses are considered through
the inclusion of series and parallel resistances.

In order to implement the model for a specific PV device,
a number of circuit parameters need to be estimated. Due to
the nonlinear and implicit nature of the models’ governing
equations, the parameter estimation problem is recognized to
be challenging, and innumerous parameter estimation meth-
ods have been proposed in the scientific literature [2], [4].
The parameter estimation methods use data supplied by the
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manufacturer, or measured data, to estimate themodel param-
eters. Their approaches can be categorized into being analyt-
ical, numerical/iterative, or metaheuristic [3], [4].

Traditionally, the parameter estimation methods were
developed and investigated under outdoor conditions with
irradiance levels of about 200Wm−2 to 1000Wm−2.
However, the usage of PV devices in indoor scenarios
increases with the growing availability of low-power elec-
tronic systems [5]–[7]. At the same time, there is a limited
number of studies on the performance of parameter estima-
tion methods under indoor illumination conditions [8]–[12].
These conditions are commonly defined by much lower light
intensities (i.e. <10Wm−2), and have different light spec-
tra [13]–[16]. While the two-diode model has been shown
to have superior performance in outdoor conditions, con-
flicting results on its performance have been presented in
some of previous studies. For instance, results presented by
Masoudinejad et al. [9] demonstrated lower performance
of the two-diode model when compared to the one-diode
model. Moreover, differences in the effects on PV cell per-
formances and losses in indoor lighting conditions have been

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 172057

https://orcid.org/0000-0002-8382-0359
https://orcid.org/0000-0001-6645-2120
https://orcid.org/0000-0001-9572-3639
https://orcid.org/0000-0002-2507-5776


S. Bader et al.: Comparison of One- and Two-Diode Model Parameters at Indoor Illumination Levels

shown [17], [18]. The limitation in studies on parameter
estimationmethods under low light conditions poses a knowl-
edge gap on the performance of common PV models and
their parameter estimation methods in such situations. This
knowledge gap limits the ability to estimate PV device oper-
ation and estimate output power under indoor illumination
conditions.

The goal of this paper is to systematically compare two
popular parameter estimation methods at indoor illumination
levels. The two selected methods of Villalva et al. [19] and
Ishaque et al. [20] apply the same iterative approach on the
one- and two-diode models, and are therefore a good basis for
the intended comparison. The methods are frequently used
in the community for parameter estimations under outdoor
conditions, but have not previously been compared under
low illumination levels. Both methods are applied to two
typical PV panel choices for indoor applications, based on
amorphous and crystalline silicon, respectively.

We evaluate each method in regard to its parameter esti-
mation performance at different illumination levels, as well
as the effects of scaling the estimated parameters to other
illumination conditions. The comparison demonstrates that
the implemented models behave considerably different, and
that an expected performance benefit of the two-diode model
is not observed when using the chosen parameter estimation
techniques. Instead the physical advantage of the two-diode
model appears to be limited by restrictions of the parameter
estimation method applied. The study, moreover, highlights
that the selection of the diode ideality factor, which is often
neglected, has significant performance effects and can be
utilized to fine tune the model performance.

The remainder of this paper is organized as follows.
In Section II, we summarize the one-diode and two-diode
models, followed by a presentation of the used parame-
ter estimation methods in Section III. Section IV provides
information on the data acquisition and evaluation metrics.
In Section V, we present and discuss the obtained results, and
finally we conclude the article in Section VI.

II. EQUIVALENT CIRCUIT MODELS
Equivalent circuit models are commonly used to describe the
I-V characteristics of PV devices. Fig. 1 depicts the equivalent
circuit diagrams of the one- and two-diode models.

A. ONE-DIODE MODEL
The one-diodemodel (or single-diodemodel) is themost pop-
ular model for PV devices. It models the PV device as a cur-
rent source, a diode, and two resistors, as depicted in Fig. 1a.
Based on circuit analysis, the relationship between the current
I and voltage V can be mathematically described as

I = Ipv − I0

[
exp

(
V + RsI
nNsVt

)
− 1

]
−
V + RsI
Rsh

. (1)

Herein, Ipv denotes the photocurrent, I0 the diode reverse
saturation current, n the diode ideality factor, Ns the number
of PV cells connected in series, Rs the series resistance, and

FIGURE 1. Equivalent circuit diagrams of the (a) one-diode model and
(b) two-diode model.

Rsh the shunt (or parallel) resistance. Moreover, Vt is the
thermal voltage with

Vt =
kT
q
, (2)

where k is the Boltzmann constant, T the absolute tempera-
ture of the pn-junction, and q is the electron charge.

The model has five unknown parameters, namely Ipv, I0, n,
Rs and Rsh. These parameters are commonly not provided by
PV device manufacturers, and it is the aim of the parameter
estimation method to determine accurate values based on
available data.

B. TWO-DIODE MODEL
The two-diode model is very similar to the one-diode model,
but includes a second diode in parallel to the current source.
The equivalent circuit of the model is depicted in Fig. 1b.
The second diode is particularly envisaged to represent the
recombination losses in the depletion region [21]. Its I-V
relationship can be described accordingly as

I = Ipv − I01

[
exp

(
V + RsI
n1NsVt

)
− 1

]
− I02

[
exp

(
V + RsI
n2NsVt

)
− 1

]
−
V + RsI
Rsh

. (3)

Equation (3) contains two diode-related terms, with I01 and
I02 denoting the reverse saturation currents and n1 and n2
denoting the diode ideality factors, respectively.

Due to the second diode, the two-diode model allows to
achieve greater accuracy, and is commonly related to better
performance at lower irradiance levels [1], [3], [22]. On the
other hand, the model has seven unknown parameters (Ipv,
I01, I02, n1, n2, Rs, Rsh), which increases the complexity of
the parameter estimation problem. In order to simplify the
parameter estimation, it is therefore common to assume some
of the model parameters to be constant.

III. PARAMETER ESTIMATION METHODS
For the comparison in this study, the parameter estimation
methods of Villalva et al. [19] and Ishaque et al. [20] have
been selected. The two methods use the same approach for
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the parameter estimation, but are adjusted for the one- and
two-diode model, respectively.

A. METHOD OF VILLALVA et al.
Villalva et al. [19] proposed an iterative method for the
estimation of the one-diode model parameters. The method
iterates through a range of Rs values and calculates the
remaining dependent parameters analytically. For each set of
model parameters, the maximum power Pmax is estimated
and compared to the power at the true maximum power
point (MPP).

The method is initiated by determining values for n and I0.
The diode ideality factor n can according to the authors be
arbitrarily chosen, but it is mentioned that typical choices
lie in the value range 1 ≤ n ≤ 1.5. I0 is then determined
according to

I0 =
Isc + KI1T

exp((Voc + KV1T )/nVt )− 1
, (4)

where Voc is the open-circuit voltage, Isc is the short-circuit
current, and KI , KV are the current and voltage coefficients
of the PV device, describing its temperature dependency.

Afterwards, the series resistance is initiated as Rs = 0 and
then incremented iteratively. For each value of Rs, the shunt
resistance Rsh is estimated as

Rsh =
(Vmp + ImpRs)

Ipv − I0 exp
[
(Vmp+ImpRs)

nNsVt

]
+ I0 − Imp

, (5)

where Vmp and Imp are the voltage and current at the point
of maximum power extraction. Furthermore, Ipv is estimated
according to

Ipv =
Rsh + Rs
Rsh

Isc. (6)

With this, the estimation method results in a set of param-
eters that minimizes the MPP error for a given Rs-range and
value of n. These parameters can therefore be tuned to further
improve the model parameters. The parameter estimation
process is summarized in the flowchart depicted in Fig. 2a.

B. METHOD OF ISHAQUE et al.
Ishaque et al. [20] adapted the previously described method
to the two-diode model. The overall approach of the proposed
method is identical and thus bases on the iteration of Rs and
evaluation of the MPP error. In order for this method to be
applicable, Ishaque et al. reduce the parameter set of the two-
diode model based on a number of simplifying assumptions.
The overall process is visualized in Fig. 2b.

Similarly to [19], the diode ideality factors n1 and n2 are
initiated with constant values. The method prescribes n1 = 1,
which is motivated based on Shockley’s diffusion theory [21],
but allows n2 to be freely selected. The authors recommend a
value of n2 ≥ 1.2, and a value of n2 = 2 is a common value
in the research community.

The method, moreover, initiates the reverse saturation cur-
rents of the two diodes to be of the same magnitude, and their

FIGURE 2. Flowcharts of the the parameter estimation methods of
(a) Villalva et al. for the one-diode model and (b) Ishaque et al. for the
two-diode model.

value can be estimated according to

I0x =
Isc + Ki1T

exp[(Voc + Kv1T )/Vt ]− 1
. (7)

Based on these initial values, Rs is incremented iteratively,
and Rsh and Ipv are estimated for each value of Rs. For this,
Rsh is based on

Rsh =
Vmp + ImpRs

Ipv − Id1 − Id2 − Imp
, (8)

where

Idx = I0x

[
exp

(
Vmp + ImpRs

nxVt

)
− 1

]
. (9)

The estimation of Ipv is based on (6).
As a result, a set of model parameters optimized for

a low MPP error is obtained. Similarly to the method of
Villalva et al., n2 and the Rs value range can be used to further
optimize the results.

IV. DATASET AND EVALUATION APPROACH
The comparison in this study is based on model evaluation
with estimated parameters under identical conditions. The
overall approach for this evaluation is as follows. Based
on experimentally obtained I-V characteristics, the model
parameters of the one- and two-diode models were esti-
mated following the methods of Villalva et al. [19] and
Ishaque et al. [20], respectively.

Both parameter estimation methods have been imple-
mented as MATLAB R© functions, returning the set of model
parameters for the respective model based on the specific
input parameters. The required input parameters are the Rs
value range to be evaluated, the n or n2 value for the esti-
mation run, as well as the remarkable points of the I-V
characteristic to be modeled (i.e. Voc, Isc, Vmp and Imp). The
Rs value range was selected for each illumination condition to
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FIGURE 3. Illustrative example of the result of an Rs-sweep during
parameter estimation. The value range for Rs needs to be selected to
include the minimum MPP error.

TABLE 1. PV panel parameters (at STC).

include the minimumMPP error, which was verified through
visual inspection. An example Rs-sweep is depicted in Fig. 3.
Parameter estimations were repeated for different diode ide-
ality factors, with 1 ≤ n ≤ 10 and 1.2 ≤ n2 ≤ 10 with
increments of 0.1.

A dataset of I-V characteristics was created experimentally.
The same dataset was used to extract the remarkable points
for parameter estimation, as well as to evaluate the resulting
models. The dataset contains I-V characteristics for two PV
panels, namely an IXYS SLMD600H10L panel based on
10 crystalline silicon cells, and a Sanyo AM5610 panel based
on 6 amorphous silicon cells. Both panels are common PV
devices for indoor application scenarios, and their key prop-
erties are listed in Table 1. They differ significantly in form-
factor and rated output from large-scale PV panels commonly
used in outdoor solar applications. For each panel, I-V char-
acteristics were obtained from 100 lx to 1000 lx in increments
of 100 lx. The illumination conditions were generated by
LED light with a color temperature of 2700K, and verified
by an AMS TSL2561 ambient light sensor. In contrast to
typical outoor conditions (e.g. Standard Test Conditions with
1000Wm−2, 25 ◦C, and AM1.5), most artificial light sources
are restricted to the human visible light spectrum (approx.
380 nm to 740 nm). The I-V characteristics themselves were
obtained with a Keysight B2901 source-measure unit with a
voltage step-size of 3mV. The temperature of the PV panels
was maintained constant at approximately 25 ◦C during data
collection.

Each model was evaluated against the experimental I-V
characteristics in the dataset. For this, the estimated model
parameters were used to predict the I-V curve under a given
illumination condition, which was then compared to the true
curve from the dataset. As metrics for the evaluations the

FIGURE 4. Influence of n value on the performance of the one-diode
model with parameter estimation according to Villalva et al.
Example depicts results for the crystalline panel at 100lx.

MPP error (MPPE) and the normalized root mean squared
error (NRMSE) was utilized. For the NRMSE, the RMS
error of the I-V curves was normalized with the short-circuit
current, such that

NRMSE (%) =
100
Isc
·

√√√√1
k

k∑
i=1

(
Imodi − I expi

)2
. (10)

Here, Imodi and I expi are the ith modeled and experimental
current value in the respective datasets of length k . These
two metrics evaluate a single operating point (MPPE) and
the reproduction of the overall I-V curve shape (NRMSE),
respectively.

Each model, moreover, was evaluated with respect to the
effects of scaling the estimated parameters to different illumi-
nation conditions. For this, the model parameters estimated
at 1000 lx were scaled to the other illumination conditions.
The effects were evaluated based on the previouslymentioned
metrics. Different approaches for the scaling of the model
parameters have been reported in the scientific literature.
All these approaches have in common that they include a lin-
ear illumination-dependency of the photocurrent. However,
it is argued upon whether the shunt resistance Rsh also should
be scaled with illumination. Different such methods have
been reported, including linear [23], exponential [24], and
power-law [8] scaling. For the comparison in this study, each
scaling method was applied and the respective results were
compared with each other.

V. RESULTS
The results for each model after successful parameter estima-
tion are presented individually, followed by a discussion and
comparison.

A. ONE-DIODE MODEL
Fig. 4 depicts a representative result for sweeping the diode
ideality factor n in the parameter estimation method accord-
ing to Villalva et al. [19]. This example result relates to a spe-
cific test condition, which in this case is an illumination level
of 100 lx and the modeling of the crystalline PV panel. The
result shows a clear dependency of the model’s performance
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FIGURE 5. Comparison of measured and modeled I-V curves for the
crystalline panel at 100lx. Modeled I-V curves are estimated based on
Villalva et al.

on the chosen ideality factor. Although this dependency exists
for both the MPPE and the NRMSE, the MPPE is over
the entire range of n of negligible magnitude. In contrast,
significant differences in the NRMSE are observed. Conse-
quently, the selection of the value of n becomes significant
for the model performance, as it results in different model
parameters.

In Fig. 4 two potential choices for the value of n are
indicated. These are the values that minimize MPPE (black
marker) or NRMSE (red marker), respectively. As it can be
seen in the figure, each choice will influence the performance
of the model with respect to the respective other metric
as well. Optimizing for MPPE will result in an MPPE of
7.08e–13W and an NRMSE of 3.19%, whereas an optimiza-
tion for NRMSE results in an MPPE of 1.01e–8W and an
NRMSE of 0.55%. Due to the larger impact on NRMSE,
the value of n that optimizes NRMSE appears to be the better
alternative.

This is confirmed when investigating the resulting I-V
curve estimates of the two sets of model parameters, which
are depicted in Fig. 5. It can be seen that the model based on
the NRMSE optimized value for n results in an I-V curve that
has an overall better match with the experiment than when
optimizing for the MPPE. The MPPE optimized parameters
particularly lead to estimation errors close to Voc, which can
be observed consistently for all illumination levels. Nonethe-
less, both sets of parameters result in an accurate prediction
at the maximum power point (blue marker).

Similar observations have also been made for the amor-
phous PV panel. However, the model generally produced a
worse fit for the I-V curves of the amorphous PV panel, which
results in a larger NRMSE. The model, nonetheless, profits
from selecting n based on NRMSE minimization even in this
case.

Fig. 6 illustrates the effect of model parameter scaling
for one case of the crystalline and amorphous PV panels,
respectively. In these cases, the model parameters have first
been estimated for an illumination level of 1000 lx (NRMSE
optimized n). Afterwards, the I-V curves for the other illumi-
nation levels have been estimated by scaling Ipv and Rsh of the
estimated parameter set. The results for the crystalline panel
(Fig. 6a) shows that the I-V curves based on scaled parame-
ters demonstrate, in most cases, a good fit with experiment.
Generally, the match worsens, and the NRMSE increases,

with scaling to conditions further from the reference, i.e.
lower illumination levels. Different scaling approaches for
Rsh have been evaluated (cf. Section IV). For the crystalline
panel no significant difference was observed, and the results
shown in Fig. 6a neglect scaling of Rsh.

For the amorphous PV panel (Fig. 6b), the results show a
worse match between estimated and experimental I-V curves.
Already the initially estimated parameters (1000 lx) result in
a mismatch between the curve form of the model and exper-
iment. This mismatch remains when scaling the parameters
to other conditions, which suggests the importance of a good
initial curve match. The models result in considerable errors,
particularly in the region close to the open-circuit voltage.
Similar to the crystalline panel, an increasing NRMSE with
decreasing illumination is observed. Scaling of Rsh showed
an improvement in estimation performance, but no significant
effect was observed for different scaling methods of Rsh.

B. TWO-DIODE MODEL
Fig. 7 depicts an example result for the effect of sweeping the
diode ideality factor n2 in the parameter estimation method
according to Ishaque et al. [20]. The results show that there is
little effect on the MPPE, and that influences on the NRMSE
diminishes quickly after an initial drop. As a result, any
value above a certain threshold may be chosen, and the value
selection for n2 is much less sensitive than for the one-diode
model. For all cases evaluated in this studies, however, values
of n2 < 2 should be avoided. In particular, the minimum
value of n2 = 1.2, suggested by the authors in [20], resulted
in large NRMSEs.

In the same manner as for the one-diode model, two n2
values have been evaluated further, optimizing for MPPE and
NRMSE, respectively. Although these optimizations resulted
in several cases in considerably different values of n2, the per-
formance of the resulting set of parameters was largely unaf-
fected. In the example given in Fig. 7, optimization for MPPE
resulted in an MPPE of 4.28e–16W and an NRMSE of
3.85%, whereas an NRMSE optimized value for n2 resulted
in an MPPE of 8.07e–13W and an RMSE of 3.78%.

This performance similarity is also shown in the respective
I-V curve example depicted in Fig. 8. The I-V curves of the
two sets of parameters are almost identical and visually not
separable. In this case both model implementations, however,
underestimate the output current at voltages above Vmp.

With respect to parameter scaling, Fig. 9 depicts the
result of the scaling for the estimated parameters of the
two-diode model. In the same manner as for the one-diode
model, the parameters are first estimated at an illumination
of 1000 lx, and then the I-V curve of the other illumination
conditions are estimated based on the scaling of Ipv and Rsh.
The results show significant deviations of the estimated I-V
curves in comparison from the measured curves. This is true
for both the crystalline panel (Fig. 9a) and the amorphous
panel (Fig. 9b). However, the errors in estimating the behavior
of the amorphous panel is again significantly larger than
those of the crystalline panel. In both cases, mismatches of
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FIGURE 6. Performance of scaled parameter sets for the one-diode model parameters. Performance is depicted for (a) the crystalline
PV panel and (b) the amorphous PV panel.

TABLE 2. Summary of performance results for parameter estimation at different illumination conditions.

FIGURE 7. Effect of n2 on the model performance of the two-diode
model with parameter estimation according to Ishaque et al.
Example depicts results for the crystalline panel at 300lx.

the modeled and measured I-V curve already exist in the
reference conditions (i.e. initial parameter estimation).

C. DISCUSSION AND COMPARISON
The results presented in the previous sections show consider-
able differences between the one- and two-diode models with
parameters estimated according to the evaluated methods.
This concerns both their behavior (i.e. sensitivity to input
parameters such as the diode ideality factor), as well as the
performance of the resulting model implementations.

Table 2 summarizes the performance results of the imple-
mented one- and two-diode models for all combinations of

FIGURE 8. Comparison of measured and modeled I-V curves for the
crystalline panel at 300lx. Modeled I-V curves are estimated based on
Ishaque et al.

PV panels and illumination conditions. For each condition,
the MPPE and NRMSE are provided. The results show that
the one-diode model accurately estimated the performance
for the crystalline PV panel, whereas it resulted in larger
errors for the amorphous panel. In particular, the voltage
region between Vmp and Voc demonstrated a clear mismatch
between modeled and measured I-V curves. For the two-
diode model, the modeling of both PV panels resulted in clear
deviations from the measured curve forms, and thus relatively
high NRMSE values. For both models, the modeling of the
crystalline panel generally produced a more accurate result
than the amorphous panel model. An exception are very low
illumination levels for the two-diode model (i.e. 100 lx and
200 lx), where a high NRMSE for the crystalline panel is
observed.

172062 VOLUME 8, 2020



S. Bader et al.: Comparison of One- and Two-Diode Model Parameters at Indoor Illumination Levels

FIGURE 9. Performance of scaled parameter sets of the two-diode model. Performance is depicted for (a) the crystalline PV panel
and (b) the amorphous PV panel.

Comparing the results of the one-diode and two-diode
models, it can be observed that the one-diode model results
in a better I-V curve match. This is shown in Table 2 through
lower NRMSE values for all illumination conditions. On the
other hand, the two-diode model results in considerable lower
MPPEs, and less variation in MPPEs. Although the MPPEs
of the two-diode model are in most cases several orders of
magnitude lower than the respective error for the one-diode
model, it may be argued that the error in all cases is suffi-
ciently low. The largest MPPE for the one-diode model, for
example, is 6.71e–7W, obtained at 700 lx for the amorphous
PV panel. With a maximum power of 72.69 µW under this
condition, the relative MPPE is only 0.92%.

Also for parameter scaling, a better result of the I-V curve
form was observed for the one-diode model. Here, the curve
match of the reference condition (i.e. the condition the
parameters have been initially estimated for) plays a crucial
role in scaling performance. While the scaling of Rsh could
compensate in some cases for the initial curve mismatch,
leading to minor scaling improvements, the selection of dif-
ferent scaling approaches showed little effect on the overall
performance.

VI. CONCLUSION
The results in this paper demonstrate considerable differences
between the performances of the two models implemented
based on the selected parameter estimation techniques.
Although the two-diode model is known to be more accurate
in outdoor irradiance conditions, its overall performance was
observed to be worse under the evaluated indoor conditions.
While the two-diode model leads to more accurate estima-
tions of the maximum power point, the significance of this
improvement is negligible, as all MPPEs were low relative
to the MPP. With NRMSE differences demonstrating a clear
effect on I-V curve match, it can therefore be concluded
that the one-diode model with parameter estimation based on
Villalva et al. [19] is the preferable choice for the evaluated
indoor conditions.

A likely explanation for this is that the two-diode model
provides additional degrees of freedom. The set of model
parameters can therefore be selected by the parameter esti-
mation model to optimize its key metric, which in this case

is a matching maximum power point. However, this comes at
a potential cost of an overall mismatching curve shape, i.e.
the method overfits the result for a single operating point.
The performance results therefore show an improved MPPE,
but an increased NRMSE. It can therefore be concluded that
the higher general performance of the two-diode model is
limited by the restrictions of the applied parameter estimation
method.

It was, moreover, observed that the modeling of differ-
ent PV panels leads to considerably different performance
results. Modeling of the crystalline PV panel demonstrated
in most cases better accuracy than those of the amorphous
PV panel. This leads to the conclusion that the investigated
modeling methods are sensitive to the I-V curve form of the
PV panels to be modeled. However, with a limited number
of panels investigated, it is difficult to conclude whether
the performance can be linked to specific PV technologies.
Investigations on a larger set of devices are desirable.

Furthermore, a performance dependency on the diode ide-
ality factor was observed. While related works suggest arbi-
trary selection of these parameters, or recommend constant
values, our results suggest that the selection may have signif-
icant effects on model performance. In the presented study,
this was particularly the case for the one-diode model with
parameter estimations according to Villalva et al. From the
comparison of two alternative selection criteria, we can con-
clude that a parameter selection aiming at NRMSE optimiza-
tion is preferable if an overall match of the I-V curve form is
targeted. Consequently, the diode ideality factor selection can
be used to regain some control over the parameter estimation
method, and to fine-tune the performance of the resulting
models.

Overall, considerable errors were observed in the models’
performance under indoor illumination conditions. With
indoor photovoltaic solutions gaining in application, this
poses a challenge for accurate performance estimations. This
is in agreement with previous studies that have demonstrated
different cell behaviors, efficiencies and losseswhen operated
under indoor illumination conditions [17], [18]. Additional
work on the improvement of parameter estimation meth-
ods or entirely newmodels for indoor photovoltaic conditions
are therefore needed.
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