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ABSTRACT In this study, artificial intelligence and image recognition technologies are combined with
environmental sensors and the Internet of Things (IoT) for pest identification. Real-time agricultural
meteorology and pest identification systems on mobile applications are evaluated based on intelligent pest
identification and environmental IoT data. We combined the current mature AIoT technology and deep
learning and applied it to smart agriculture. We used deep learning YOLOv3 for image recognition to obtain
the location of Tessaratoma papillosa and analyze the environmental information from weather stations
through Long Short-Term Memory (LSTM) to predict the occurrence of pests. The experimental results
showed that the pest identification accuracy reached 90%. Precise positioning can effectively reduce the
amount of pesticides used and reduce pesticide damage to the soil. The current research provides the location
of the pest and the extent of the pests to farmers can accurately use pesticide application at a precise time and
place and thus reduce the agricultural workforce required for timely pest control, thus achieving the goal of
smart agriculture. The proposed system notifies farmers of the presence of different pests before they start
multiplying in large numbers. It improves overall agricultural economic value by providing appropriate pest
control methods that decrease crop losses and reduce the environmental damage caused by the excessive
usage of pesticides.

INDEX TERMS Deep learning, YOLOv3, pests and diseases, smart agriculture, unmanned aerial vehicle
(UAV), artificial intelligence (AI), Internet of Things (IoT), the artificial Intelligence of Things (AIoT).

I. INTRODUCTION
Crop production is closely related to the presence of pests and
plant diseases. Pests often hide behind the leaves of plants
during the day to avoid the heat and appear on the leaves in
the evening or at night. Therefore, it is not easy to observe
their presence on crops during the day.When farmers become
aware of pest damage, pests have often multiplied and spread
uncontrollably. At this stage, a large quantity of pesticides
is required to spray the crops to eliminate the pests and
reduce agricultural damage. However, once the crops have
been sprayed with pesticides in the growing season, pesticide
residues remain even after washing.

The associate editor coordinating the review of this manuscript and
approving it for publication was Patrick Hung.

Crops often suffer from bacterial infections due to pests
that result in large-scale crop diseases. To prevent such con-
ditions, it is necessary to burn the infected crops to prevent
the spread of the bacteria. However, this approach causes
significant damages in agricultural production without effec-
tively resolving pest problems. Therefore, the goal of this
research is to apply the AIoT and deep learning technology to
an environmental analysis of crop growth and the prediction
of pest occurrence to improve the productivity of crops and
reduce the size of the agricultural workforce.

The application of image recognition has become more
extensive due to the development of artificial intelligence in
image processing models. Gladence et al. [1] applied AIoT
to home automation recommendations. In another work by
Priya et al. [2], the common image recognition CNN model
was used in medical detection and prediction.
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In recent years, image recognition technology has been
used to assist with pest recognition for the purpose of control-
ling agricultural pest damage and increasing crop production.
Mary Gladence et al. [3] proposed the use of human-robot
interaction in the field of artificial intelligence and provided
a reference for pest identification through a combination of
environmental factor information and deep learning to help
farmers analyze crop growth trends and prevent pest damage
early

II. RELATED WORKS
Martin and Moisan [4] established an automated system for
pest identification. In their system, the camera is placed above
a sticky insect trap and automatically captures images of
pests collected by the insect trap each day. The Single Seed
Descent (SSD) method was used to identify and analyze
the pests in the images. The collected data has been used
to develop appropriate pest control methods based on the
identified pest species. Once the SSDmodel has been trained,
the pests identification accuracy reaches 84%, and the pest
species classification accuracy reaches 86%.

Wang et al. [5] set up a large number of environmental
sensors in an apple orchard for the purpose of recording
the status of the orchard. The YOLOv3 model was used to
identify anthrax on the surface of the apples and analyze the
health of the apples. The authors also used the YOLOv3-
Dense model, which is more suitable for identifying apple
anthracnose.

In the abovework, the YOLOv3 andYOLOv3-Densemod-
els were both used to identify apple anthracnose, and the SSD
was successfully used to identify pests.

A. MACHINE LEARNING TO IDENTIFY AND CLASSIFY
PEST IMAGES
With the advancement of science and technology, the amount
of image data is increasing, along with the time required to
classify the image data. Therefore, scholars are studying how
to use machine learning to recognize and classify images.
Machine learning is divided into supervised learning and
unsupervised learning, the main difference being whether or
not the machine is able to automatically extract features from
the data structure.

1) SUPERVISED LEARNING
During the machine training process, it is necessary to
provide machines with labeled data. For example, after a
machine has seen 1,000 labeled images of apples and oranges,
we can give a test image and asked whether the image con-
tains apples or oranges.

2) UNSUPERVISED LEARNING
There is no need to label the data in advance, and the machine
does not know whether or not the result of its classification
is correct during learning. The machine must find the rules
from all of the input examples in order to classify on its own.

In summary, supervised learning adds artificial labels to
the input data and uses regression analysis methods to obtain
the predicted results. Unsupervised learning finds suitable
patterns from a large amount of data through algorithms and
classifies the data automatically.

B. DEEP LEARNING TO IDENTIFY AND CLASSIFY PEST
IMAGES
Deep learning is based on the machine learning framework,
so the training process first involves unsupervised learning
and clusters the training data set to learn what sort of data
will be classified. Supervised learning is then performed to
label the expected output value of each entry with the feature
vectors in the training data set given as input and the expected
classification given as the output. Finally, the loss function is
used to calculate the standard deviation between the expected
output and the actual output.

There are two common approaches in deep learning for
pest identification and classification:

1) Miranda et al. [6] used the VGG19 method for image
feature extraction and recognition in the detection
of 24 types of pests from crop images.

2) The authors in [7] detected and classified 12 different
pests using several CNN approaches and compared the
classification results with machine learning methods
such as SVM and Fisher. The classification accuracy
of the machine learning method was 80%, and the
classification accuracy rate of the CNN method was
95%.

C. USING IMAGE AUGMENTATION TO INCREASE THE
PESTS TRAINING SAMPLE DATABASE
Data augmentation methods can be roughly divided into
Geometric Transformation and Photometric Transformation
methods. Ding and Taylor [8] studied the impact of different
data augmentation methods on image recognition rate. Three
geometric transformations (flipping, rotating, and cropping)
and three luminosity transformations (color jittering, edge
enhancement, and fancy principal component analysis). The
amplified image samples and the original image samples are
used as training data for training on the CNN model. The
experimental results showed that each amplification method
improves the accuracy of CNN, where the impact of cropping
is the most obvious. Therefore, the authors speculate that the
training samples generated by the croppingmethod will avoid
the over-fitting of data and improve CNN performance.

In addition to augmenting the images by geometric and
photometric transformations, it is also possible to transform
the image style through the CycleGAN [9] or transfer the
features of objects to other objects to increase the number
of training samples. The aforementioned apple anthracnose
identification research uses the CycleGAN [9] to increase
the number of training samples and improve the accuracy
of image recognition. Perez and Wang’s research (supple-
mentary source of literature) have also found that geometric
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transformation and brightness variation of image and
CycleGAN are able to enhance the image recognition
accuracy [10].

D. IDENTIFY THE LOCATION OF THE PEST WITH THE
TARGET DETECTION MODEL
With the advancement of technology and the development
of artificial intelligence, deep learning has significantly
increased the efficiency of image recognition, resulting in
many different artificial intelligencemodels that have encour-
aged the development in image recognition technology.
These models can be divided into two types, the two-stage
object detector method and the one-stage object detector
method [11].

1) TWO-STAGE OBJECT DETECTOR METHOD
The two-stage method is used to generate a region proposal
after receiving the input image in order to identify the type of
object. Its accuracy is higher, but it requires more computing
resources. The most representative model is the R-CNN [12]
and the Faster R-CNN [11], [13].

1) The RNN is mainly used to solve time series problems.
It typically has no temporal data in the input data.
In Fig.1, it can be seen that the RNN stores the output of
the hidden layer in thememory, andwhen the next input
item has been entered, it also considers the last value
stored in the memory in its calculations. For the simple
stock price learning RNN, we can input the Pt−1 data
to learn the Pt stock price, and M1 is the saved hidden
output. When we modify the Pt+1 value from training
Pt ,M2 will be taken into consideration and added to the
output of Pt+1.

2) The Faster R-CNN method is divided into four parts:

a) Conv layers: The input image is reshaped and the
rescale factor is recorded in im_info as a proposal
layer for the ROIPooling alignment information.
Then, the feature map is extracted after 13 Conv
layers, 13ReLU layers, and 4Max Pooling layers.

b) Region Proposal Network (RPN): The most sig-
nificant difference from the Fast R-CNN is that
the RPN is used to generate region proposals. The
RPN uses softmax to distinguish positive and neg-
ative anchors, and the Bounding-box regression
is used to modify anchor position information to
obtain more accurate positions.

c) RoIPooling: The results from the feature maps
and the RPN are collected; the information is then
integrated and sent to the FC for training.

d) Classification: The ROIPooling input value is
used for classification and the Bounding-box
regression to obtain the best object position.

2) ONE-STAGE OBJECT DETECTOR METHODS
One-stage object detector methods detect and identify
objects simultaneously without a prior region proposal.

FIGURE 1. The flowchart of RNN stock price prediction.

The recognition speed is faster, but the accuracy is lower.
Two popular one-stage object detector models are the Single
Shot MultiBox Detector [14] and the YOLO [15] model.
The YOLO model only uses a single convolutional neural
network (CNN) to determine the image inputs and outputs,
so the efficacy of deep learning is greatly accelerated.

After inputting the image into the YOLO model, the fea-
tures of the image are first extracted. Then, the image is
divided into an grid. The CNN is used to predict the number
of possible bounding boxes in each grid; the detected object
type is calculated, and the image recognition result is then
output.

In the Titan X GPU hardware device environment, the
YOLO model can process 45 images per second, where the
delay time for real-time video processing is less than 25 mil-
liseconds.

Since the YOLO model uses the entire image for training,
the image detection accuracy will be higher with SSD.

The developer of the YOLO model continued to improve
the model and published the YOLOv3 model [16]. The
YOLOv3 model uses multi-scale fusion for predictions and
increases the network architecture to 53 convolutional layers.
In Fig.2, The YOLOv3 model also introduces the concept of
the residual network to increase the accuracy of the model
and improve the traditional YOLO model problem of having
poor recognition of small objects.

The YOLO algorithm extracts the features from an input
image through the feature extraction network to obtain a
fixed-size feature map, such as 13×13, and divides the input
image into 13 × 13 grid cells. If the center coordinate of the
object falls in a grid cell in the ground truth, then the grid cell
has predicted the object successfully.

The YOLOv3 model uses multiple-scale fusion methods
to make predictions. It uses FPN-like up-sample and fusion
methods (respectively 13×13, 26×26 and 52×52) to detect
the multiple-scale feature maps. The detection outcome for
small targets is significantly improved. It is able to find the
location of the identified target in the entire image and frame
it.

E. ANALYSIS MODEL OF ENVIRONMENTAL SENSING DATA
In 2016, Liu et al. [12] proposed integration of the num-
ber of pests, risk level, and historical environmental data
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FIGURE 2. The YOLOv3 network architecture diagram.

with the data provided by the user, where the time series
data set is based on the daily maximum temperature, daily
minimum temperature, daily maximum humidity, daily min-
imum humidity, and the number of pests caught per day.
The prediction model used in the network-based decision
support program is built on a mixed regression model, which
is referred to as the Vector Autoregression Moving-Average
with Exogenous Regressors (VARMAX)model with endoge-
nous and exogenous variables. The prediction results are
location-specific and can be used to determine the future risk
level. They can provide recommendations for pest prevention
and control so that farmers and pest managers can take pre-
ventative measures to avoid crop damage due to pests. These
functions can be used to implement the main components of
the IPMprogram, including the inspection, identification, and
control of pests in the orchard.

F. DEEP LEARNING FOR DATA ANALYSIS
The LSTM (long short-term memory) model is currently
the most commonly used model in RNNs (Recurrent Neural
Networks) [17]. The flow chart of this model is shown in Fig.
3, which is composed of four main components: the input
gate, the output gate, the memory cell, and the forget gate.

1) Input Gate: When a feature is given as an input, the
input gate controls whether or not to input the value in
this iteration.

2) Memory Cell: Stores the calculated value to be used in
the next stage.

3) Output Gate: Controls whether or not to output the
estimated value in this iteration.

4) Forget Gate: Controls whether or not to clear the mem-
ory, similar to a restart.

The mathematical structure of the LSTM model is shown
in Fig. 4. The input is represented as g(z), and the input gate
is f (zi); the general activation function f uses the sigmoid
function to determine the probability of turning on the gate.

The probability that the input gate is turned on can be
determined by multiplying g(z) and f (zi). The memory cell
records the current value of the input, adds the previous input

FIGURE 3. The schematic diagram of the LSTM process.

FIGURE 4. The mathematical representation of LSTM.

value, and multiplies the probability of the forget gate to
decide whether or not to forget the previously recorded value
[c’ = g(z)f (zi)+ cf (zf )].
The value of ct−1 is a vector stored in the LSTM memory,

where the vector input at time t is zt . zt is multiplied by a
linear conversion function to obtain g(zt ) as an input. zt is
multiplied by another linear conversion function to obtain
I (zt ) to control the input gate. zt is multiplied by another
linear conversion function to obtain F(zt ) to control the forget
gate, and zt is multiplied by a linear conversion to get O(zt )
to control the output gate. The LSTM flowchart is shown in
Fig. 5.

The value of g(zt ) is multiplied by the value of I (zt ) after
the Sigmoid function. The result is added to the product
of F(zt ) after the Sigmoid function and ct−1 and stored in
the LSTM. The value of O(zt ) after the Sigmoid function
is multiplied by the stored value to obtain the output value
at . The same steps are followed to calculate the value to be
stored in the LSTM and the output value from the next input
data zt+1.

III. METHODS
In this study, the pests are identified using artificial intelli-
gence; the pest recognition model is trained through deep

VOLUME 8, 2020 180753



C.-J. Chen et al.: AIoT Based Smart Agricultural System for Pests Detection

FIGURE 5. The LSTM flowchart.

learning, and the image data for Tessaratoma papillosa are
collected using a mobile application and a drone from a
longan orchard. A real-time image recognition system for
Tessaratoma papillosa is established. It is combined with
environmental sensors to analyze the impact of environmental
factors on the pests’ life-cycle so that the system can promptly
inform the farmers regarding pest occurrences and damage,
and the farmers can apply pesticides accurately on a timely
basis. The proposed system is able to provide improved con-
trol over Tessaratoma papillosa, reduce the labor costs in the
orchard, and improve the yield and quality of the crop.

The YOLOv3 model is used in this study, which is based
on CNN and has good results in terms of image detection
and classification. The YOLOv3 model is used to classify
and label the pests. The drone and mobile application are
used to collect images of the pests in the orchards. Multiple
environmental sensors are placed as meteorological observa-
tion stations for the orchard to regularly obtain environmental
information including the temperature, humidity, and light
intensity, for the analyses of the pest’s life-cycle and popu-
lation. The purpose of the system is to predict the distribution
location and periods of occurrence of the pests, and to provide
pest locations and damage level, as well as other relevant
information to the farmers for real-time management of the
orchard.

We use drones and mobile devices to collect images of
Tessaratoma papillosa, perform image enhancement and aug-
mentation, and use the YOLOv3 model to classify and iden-
tify the processed image samples. We use a random gradient
descent as the learning algorithm and mAP to assess the
accuracy. The architecture of the proposed system is shown
in Fig. 6.

A. SAMPLE COLLECTION
We collaborated with the farmers to collect the training data
samples. The farmers used the mobile application that we
designed to take images of the pests. The mobile application
sent the pest identification results to the cloud database.
We also used a drone to collect images of the pest, which

FIGURE 6. The architecture of the proposed system.

FIGURE 7. The labeled training data.

were sent to the cloud database as well. In this research,
approximately 687 images of adult Tessaratoma papillosa
were collected. The pest was first labeled in the image, which
is then augmented through image pre-processing, as shown in
Fig. 7, and finally, the GPS information from the image was
used to indicate the location of the pest.

B. IMAGE PRE-PROCESSING
To improve the pest image recognition accuracy, we increased
the number of training samples through image pre-
processing, using feature enhancement, edge detection, and
grayscale processing.

1) COLOR FEATURES ENHANCEMENT
The color information was composed of red, green and blue
(RGB) channels, and the color histogram records the occur-
rences of each color in the image formed three 256-dimension
vectors. This vector was used to represent the color charac-
teristics of the image.

2) SOBEL EDGE DETECTION
In the proposed method, the vertical Sobel edge detector
is first applied to enhance the vertical edges of the image,
followed by the application of the horizontal Sobel edge
detector to enhance the horizontal edges of the image. The
two images are then merged to obtain the final edge detected
image.

3) GRAYSCALE IMAGE PROCESSING
Since the electromagnetic radiation (reflection or emis-
sion) of various substances causes them to have different
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FIGURE 8. Image pre-processing of samples to enhance the
characteristics of the pests.

intensities, and photo-sensitive materials also have varied
sensitivities, the intensities of the detected radiation are inter-
preted as a grayscale image. The grayscale images are divided
into seven levels: white, gray-white, light gray, gray, dark
gray, light black, and black, which serve as essential markers
and the basis for image interpretation.

Fig. 8 shows the different features of a captured image
used as a multiple-input training data sample, where the
separately obtained probability was accumulated through the
deep learning model to improve identification accuracy.

We analyzed the identification accuracy of Tessaratoma
papillosa in different directions. For each of the back, left,
right, and abdominal perspectives, 20 pest images were used
to determine the recognition rate, as shown in Fig. 9.

Table 1 shows that the training data had significantly fewer
samples for the left, right, and abdominal views than for the
back view, but the recognition rate for the back view was
higher than 80%, and the recognition rates for the left, right,
and abdominal views were less than 60%.

Many studies have found that data augmentation improves
model recognition accuracy, where it is recommended that
sufficient training samples be collected for image pre-
processing, such as cropping, rotation, contrast enhancement,
noise addition, and edge sharpening.

Imgaug is a library for Python with 98 types of image
augmenting functions that can be used to process images and
revise the image information.

After completing the labeling, the imgaug library was
used for image enhancement in machine learning and the
labeled information was automatically generated to increase

FIGURE 9. Tessaratoma papillosa images acquired from different viewing
directions.

TABLE 1. 20 images per view to evaluate the recognition accuracy.

the number of training samples and improve the recognition
accuracy of the YOLOv3 model.

In this work, we augmented the image data for the left,
right, and abdominal views to increase the number of images
in the training dataset.

In this study, six image augmentationmethods were used to
increase the number of images for the YOLOv3 training sam-
ples: normalization, left-right flip, edge sharpening, gamma
contrast adjustment, Gaussian noise addition, and Gaussian
blur. Fig. 10 shows the image augmentation results.

We used the 1) image augmentation method and 2) sample
compensation method to increase the number of left, right,
and abdominal image samples before performing image aug-
mentation for these images. Two different expanded sample
methods were used to evaluate the enhanced recognition
accuracy of the pest images.

4) IMAGE AUGMENTATION METHOD
Table 2 shows the pest identification accuracies for the back,
left, right, and abdominal views after using six kinds of
images augmentation processing: normalization, left-right
flip, edge sharpening, gamma contrast adjustment, Gaussian
noise addition, and Gaussian blur. It can be observed from
Table 2 that the recognition accuracy of each view was
improved after image augmentation. However, the recogni-
tion accuracies of the left, right and abdominal views were
still lower than that for the back view.
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FIGURE 10. The results of image augmentation.

TABLE 2. Accuracies after the equal-scale image augmentation method.

5) SAMPLE COMPENSATION METHOD
In this experiment, additional image data have the same
amount of sample images for the left, right, and abdominal
views were generated by rotating the images at different
angles (90o, 180 o and 270 o), flipping the images left and
right, as well as through other operations. All of the images
in the training samples underwent six types of image augmen-
tation: normalization, left-right flip, edge sharpening, gamma
contrast adjustment, Gaussian noise addition, and Gaussian
blur. After the training, it was found that the recognition
accuracy of each view increased to more than 90%. The
results of the pest recognition accuracy are shown in Table 3.

After the SSD model was trained, the pest identification
accuracy reached 84%, and the pest classification accuracy
reached 86%.

C. OBJECT DETECTION ON IMAGE CLASSIFICATION
Traditional fixed feature extraction methods often fail to
obtain useful features for image segmentation. In recent
years, the convolutional neural network (CNN) architecture
was developed and has led to improved feature extraction.

TABLE 3. Accuracies after increasing the image samples followed by
image augmentation.

FIGURE 11. Convolutional layer and pooling layer.

Convolutional neural networks belong to one of the feed-
forward neural networks, which extracts image features and
completes image classification at the same time. The input of
the neural network is a set of images, and each image passes
through several convolutional layers and places a pooling
layer in the convolution layer appropriately, as shown in
Fig. 11. The features of the model are obtained first, and these
features are placed into the fully connected layer for clas-
sification. Image classification is achieved through repeated
learning in the deep layers.

The main differences between the CNN and the general
neural network are the CNN’s local perception and weight
sharing. The local features of the image are extracted by the
convolution kernel so that each area of the image shares this
convolution kernel. This is a method widely used in the field
of image recognition.

The traditional CNN model was used in this study. After
inputting the original image data into the model, it only has
to be classified in advance, and then it can be trained without
any labeling.

In this study, the number of pests was recorded to indicate
the degree of damage and the location of the pests so the drone
could carry out accurate pesticide spraying. Therefore, this
study used the YOLOv3 network architecture to re-train the
target detection model.

The YOLOv3model is a Darknet-53 network structure that
uses full convolution and introduces a residual structure. Due
to the large number of layers in the deep learning network,
gradient descent problems often occur during training. With
ResNet residual architecture, the YOLOv3model reduces the
difficulty of training deep networks. The Darknet-53 network
system can be as deep as 53 layers and significantly improves
identification accuracy.

In the experiment, we calculated the average accuracies
from 10 different angle images and found that when the
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TABLE 4. The research results of the number of training samples that are
uneven with the YOLO V3 model, and the number of training samples is
average with the YOLO V3 model.

training samples were uneven (more images of the back,
but fewer of the left, right, and abdomen), the accuracy was
approximately 73%. We classified images of the back, left,
right, and abdominal angle images and then generated a lim-
ited number of training samples through data preprocessing
(rotation and cropping) so that all angles had the same number
of training samples. The accuracy of pest recognition rose to
more than 92% after training using the neural network with
an average amount of training samples.

We compared the research results for an uneven number of
training samples with an average number of training samples
using the YOLOv3 model, as shown in Table 5. Based on
the results, we inferred that a useful data pre-processing
method can improve the efficiency of deep learning as well
as recognition accuracy.

D. SENSOR DISTRIBUTION
Crop pests thrive in excessively dry, hot environments. In this
research, we combined environmental sensors through awire-
less environmental sensor transmission platform and a cloud
big data computing server system to collect environmental
data. These data were analyzed to determine the real-time
agricultural meteorology, soil conditions, crop growth, and
other relevant information necessary to assist the manage-
ment of an orchard environment.

The research and development of wireless sensor transmis-
sion systems focus on multiple sensors to transmit services
through a wireless network in real-time and send the data
back to the system for analysis. It is one of the essential
development applications of the IoT in smart agricultural
technology.

In this study, the sensor modules were evenly arranged in
an orchard on a hillside according to thewireless transmission
sensor characteristics. The environmental data collected by
the sensor modules were aggregated and transmitted to the
cloud database through a wireless communication protocol
for subsequent analysis and calculation.

Fig. 12. shows a schematic diagram of the transmission
mechanism of the wireless sensing platform in the orchard
on a slope.

We obtained 6 evenly distributed sets of environmen-
tal sensing modules in the orchard, as shown in Fig. 13,
to observe the proliferation of pests in different environments.

Fig. 14 shows the designed environmental sensing module.
The Arduino Nano was used in a small embedded platform.
The four sensors, GY-30, soil, DHT22, and BMP180, were

FIGURE 12. The schematic diagram of the transmission mechanism of the
wireless sensing platform.

FIGURE 13. The actual configuration of the sensors in the field.

used to measure six kinds of environmental data, including
temperature, humidity, light, soil humidity, atmospheric pres-
sure, and altitude.

We use the DS3231 module to calibrate the time on the
microprocessor. The Raspberry Pi receives the environmental
data from the sensors every hour. It transfers the data to the
Cloud via a wireless network and stores the data in the SD
module on the client-side at the same time to avoid data loss
through failed wireless transmission.

The environmental data are transmitted to the Raspberry
Pi on the server station from the client-side through the
SX1276 Lora module via a wireless network. The Raspberry
Pi uploads the data to the cloud database to provide devel-
opers with real-time observations of environmental changes,
as well as data retrieval and analysis.

To collect the environmental data in the field any time we
wanted, we set up six sets of sensors and a LORA trans-
mission module on the client-side. The LORA module is
used to transmit the data to the Raspberry Pi on the server
station, which transfers the data to the cloud database through
a wireless network to provide query and analysis functions
to the managers in real-time. The architecture is shown in
Fig. 15.

The six sets of client sensors send data to the server sta-
tion at different times. To ensure the correctness of the data
received by the server station, the server station returns an
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FIGURE 14. The hardware architecture of the sensor box content.

FIGURE 15. Transmission architecture of client-side sensor and server
station sensor.

acknowledgment value to the client-side after receiving the
data. Otherwise, the client re-sends the data.

The environmental sensing module in this experiment
included the Lora transmission module, sensors for tem-
perature, humidity, soil humidity and atmospheric pressure,
a clock module, an SD card module, a micro-controller
Arduino Nano, and a lithium battery. All components are
shown in Fig.16.

E. ANALYZING ENVIRONMENTAL SENSOR DATA WITH
LSTM
We collected a total of 6 sets of environmental sensor infor-
mation on the slope area in a longan orchard in Nanhua
District in Tainan, Taiwan, from January to June 2020. Data
for each environmental sensor module was collected at one
hour intervals, where each set of data included real-time
environmental information for the time, temperature, humid-
ity, light, soil humidity, atmospheric pressure, and relative
altitude. Up to the present time, we have collected a total of
12,960 sets of environmental data. The environmental data
had slight variations due to the location of the sensor module.
Hence, we used LSTM to analyze the six sensor modules
to predict environmental factors at six locations and used
machine learning methods to predict whether environmental
factors will result in the presence of pests.

FIGURE 16. (a) The external module of the environmental sensors (b) The
internal module of the environmental sensors.

The proposed system integrated an agricultural manage-
ment mobile application to provide pest image collection,
real-time pest identification, and visualization of sensor data.
The developed mobile application provides real-time access
to environmental data and displays the historical records of
the environmental sensors. In this work, the analytical results
from the environmental data are displayed in the form of an
App on the mobile device to provide farmers with real-time
agricultural management. The mobile application is divided
into two parts and is described follows:

1) BROWSING OF THE ENVIRONMENTAL SENSORS
DATABASE
The environmental sensors deployed in the orchard allow
users to monitor the current growing environment of the
fruits trees. The historical environmental data also provide
information about the environmental conditions.

2) UAV MISSION DISPATCH MODE
Users can use drones to plan precise pesticide spraying oper-
ations in real-time, either using manually-controlled flights
or pre-input flight paths obtained through the mobile appli-
cation.

In this work, multiple sensors are placed in an orchard to
collect environmental data and provide instantaneous infor-
mation on pest damage in various areas of the orchard, so that
the correlation between pest occurrence and related environ-
mental factors can be determined. We used the LSTM in the
RNN neural network to build a suitable training model based
on an on-site investigation of the pest severity in orchards by
professional farm managers and the environmental data. The
model is able to analyze the predicted data and determine
the extent of pest occurrences. The prevention and control
information are then provided to the farmers as quickly as
possible to reduce the agricultural damage caused by the
identified pests.

IV. RESULTS
In the experiment, the data was processed, and image aug-
mentation was performed to increase the number of training

180758 VOLUME 8, 2020



C.-J. Chen et al.: AIoT Based Smart Agricultural System for Pests Detection

FIGURE 17. The experiment results of using K-means to find a suitable
anchor box.

samples. The image augmentation methods used in this work
included left and right reversal, angle conversion, Gaussian
blur, and zoom in and out, among others. The number of
training samples was increased from 849 to more than 7,000.
The YOLOv3 model was used for deep learning training. The
anchor box in the YOLOv3TensorFlow model was obtained
by clustering the VOC data set. However, the 20 types in the
VOC data set comprise large differences in the target object
sizes, ranging from large objects such as a bicycle or a bus to
smaller objects such as a bird or a cat. Therefore, the VOC
data set was not suitable as a data set for target training and
detection in this experiment. In the experiment, we found the
anchor box with k = 9 to be more suitable for the target
detection in this work, as shown in Fig. 17.

The Stochastic Gradient Descent is used in this work as
the learning algorithm. The gradient descent algorithm uses
each weight update and parameter deviation to advance each
update to a negative gradient in order to obtain a minimum
error function value. The formula is as follows:

θl+1 = θl − a∇E(θl) (1)

where l is the number of iterations; a is the learning rate,
which is set at 0.0001 in this experiment; θ is the parameter
vector, and E(θ ) is the loss function.

The gradient ∇E(θ ) of the loss function is calculated by
taking a subset of the training data to measure and update the
gradient parameters. The process for updating and adjusting
the gradient of the entire training data set is called an epoch.

In object recognition, the score and IOU are significant
figures. The score is given by the target framewhen themodel
recognizes it as having the highest pest probability. The IOU
is the intersection between the two rectangles representing
the frame of the recognition result and the correct target.
The amount of intersection between the rectangular frames

FIGURE 18. The schematic diagram of the user interface.

FIGURE 19. The spatial distribution of identified pests and the impact
map.

TABLE 5. The correlation adjustment between the score/IOU parameters
and mAP.

is assigned a value from 0 to 1. The experimental results are
shown in Table. 4.

During the training process, the YOLOv3 model continu-
ously uses different parameters in an attempt to find the most
suitable model for the given dataset. The test data is given as
input into the model and combined with the sensor data from
the orchard to analyze the level of damage and the growth
stages of the pest. It has been found that the mAP accuracy is
0.92.

To make the system more accessible and convenient to
farmers, we designed a mobile application with a photog-
raphy function. The mobile application is also capable of
updating the environmental data at any time. The mobile
application is shown in Fig. 18 and Fig. 19. The mobile appli-
cation makes it possible for farmers to identify pests while
patrolling the orchard. The identification results are sent to
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the cloud to analyze the location of the pest, so the farmers
can be informed as to the best time for pesticide spraying with
the goal of improving pest prevention and management.

V. CONCLUSION
It is difficult to obtain image data of pests since they prefer
hiding behind leaves and in the tops of trees. Therefore,
we applied image data augmentation to increase the number
of pest training samples and improve the recognition accuracy
for Tessaratoma papillosa.

In this study, the YOLO series (You Only Look Once,
YOLO) neural network algorithm was used to identify the
pests in the input images. The recognition rate was about
90%. The main target was Tessaratoma papillosa. Drones
were used to collect images of these pests on fruit trees in
an orchard on a slope. A mobile application was used to
collect pest images from the ground at the same time. The
pest images were uploaded to the Cloud for image recog-
nition in real-time, and the pest location and distribution
were determined for the purpose of pesticide application. The
proposed system is designed to facilitate farmers in advanced
pest control operations.

In this study, a deep-learning image recognitionmethod for
Tessaratoma papillosa was proposed that uses the YOLOv3
model to mark and classify the pests in images and extract the
characteristics of the pests. The pest identification accuracy
and model training time are used to determine the most
suitable model for the application. Also, the data from the
environmental sensors was used to analyze locations prone
to the presence of pests. The location and distribution of the
pests were instantly provided to farmers to provide accurate
pesticide application, reduce agricultural pest damage, and
increase crop quality and yield.

Since Tessaratoma papillosa mostly grows on the backs
of leaves and in treetops, it is difficult to collect training
samples for the purpose of identifying these pests. Further,
the inconsistency of outdoor lighting results in low image
recognition accuracy. Therefore, here, an APP installed on
a mobile phone was used to collect images of Tessaratoma
papillosa that appeared on the back of the leaves in order
to locate these pests. We plan to apply the Tessaratoma
papillosa identification model to small drones in the future,
hoping to reduce the human effort for collecting pest image
samples by the maneuverability of drones. It is hope that this
will increase the number of images of Tessaratoma papillosa
that appear in treetops and improve identification accuracy.

Some difficulties were encountered in the research insti-
tute: The first was the need to continuously increase the
different angles in the images to solve the issue of insufficient
training samples; the second was to stabilize the drone flying
between the trees to get good quality images of pests and
resolve the disturbances of the leaves caused by the wind
from the UAV propeller; the third was speeding up the image
recognition process to improve pest positioning efficiency
and reduce the time required for farmers to inspect the area
for pests. We plan to overcome the problems mentioned

above and continue to experiment to find solutions, hoping
to achieve immediate recognition of pest by drones as soon
as possible and establish intelligent agriculture.
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