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ABSTRACT When used to recognize side-scan sonar images of shipwreck targets, the Faster R-CNNmodel
is time-consuming and has low efficiency and a high missed detection rate for small targets. Considering that
existing datasets of side-scan sonar images of shipwreck targets are small, we propose a YOLOv3 model
that can automatically recognize side-scan sonar images of shipwreck targets based on transfer learning.
Based on the Darknet-53 network, we froze part of the convolutional layer of the YOLOv3 model trained on
COCO dataset images, and conducted transfer learning. Multi-scale training of shallow feature fusion was
done based on multi-scale feature fusion with Feature Pyramid Networks (FPN) support, and the proportion
of recognized shallow features of shipwreck targets increased. Meanwhile, the parameters and sizes of
target anchor boxes were reset using K-means clustering, which allowed us to improve the speed of target
recognition and the precision of smaller target recognition and positioning. Lastly, the binary classification
cross entropy function was used to improve the loss function of the YOLOv3 algorithm. Experimental results
show that under the same recognition target, the average precision (AP) value of the YOLOv3 model based
on transfer learning reached 89.49%, which is an improvement of 0.31% and 1.77%, respectively, compared
with the Faster R-CNN model and the traditional YOLOv3 model. Moreover, the YOLOv3 model based
on transfer learning had the highest harmonic mean (F1), reaching 90.71%, which is 3.96% and 1.63%
higher, respectively, than the harmonic means of the Faster R-CNN and the traditional YOLOv3 model.
Lastly, the traditional YOLOv3 model takes an average 0.17s to identify a target. In contrast, the Faster
R-CNN model takes an average of 2.8s to identify a target. Hence, our transfer learning YOLOv3 model
greatly improves detection efficiency, meets the needs of real-time target recognition, and ultimately has
better overall performance than existing methods.

INDEX TERMS Side-scan sonar shipwreck target, YOLOv3model, transfer learning, shallow feature fusion,
K-means clustering algorithm, binary classification cross entropy.

I. INTRODUCTION
In recent years, with the rapid development of the marine
economy, human marine use and development activities have
become more frequent, and the incidence of marine accidents
has increased year by year. The importance ofmaritime safety
has become more and more prominent. Among them, the use
of side-scan sonar to search for wrecked ships is an impor-
tant part of marine obstacle inspection and maritime search
and rescue [1]–[4]. To address the issues with traditional
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manual interpretation, such as low efficiency, great time
and resource consumption, strong subjective uncertainty, and
excessive dependence on experiences, scholars at home and
abroad have done a lot of research on side-scan sonar image
classification and recognition and target detection [5]–[13],
Suraj Kamal proposed a deep learning framework for under-
water target recognition based on the DBN structure, which
achieved 90.23% accuracy in 40 categories of classification
problems [14]; Jason Rhinelande proposed a method for tar-
get recognition and classification of side-scan sonar images
based on support vector machines [15]; Guo Jun proposed a
side- scan sonar image classification research based on SVM
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algorithm and GLCM [16]; Chen Qiang uses a simple BP
neural network to classify and recognize underwater image
targets, manually select features and send them to the neu-
ral network for classification training, the accuracy rate is
80% [17]; Although these methods have been automated to
a large extent, there are problems in the design of feature
extraction algorithms and the lack of generalization ability.
It is difficult to grasp the validity and comprehensiveness
of the extracted feature parameters. With the wide applica-
tion of convolutional neural networks in the field of image
recognition and target detection [18]–[20], TANG Yulin and
others proposed the side-scan sonar image shipwreck target
recognition method by using the Faster R-CNN model. This
method maintains high recognition precision, but its RPN
takes too much time and decreases the processing speed;
therefore, it cannot meet the real-time requirements for mar-
itime search and rescue. Meanwhile, the shipwreck target in a
side-scan sonar image is generally small and occupies little of
the image; thus, it is considered a small-scale target. Since the
Faster R-CNN model performs regression forecasting in the
deep feature map of the convolutional network, it loses some
position information while obtaining rich semantic informa-
tion.Moreover, its recognition of smaller targets is unsatisfac-
tory due to its high missed detection rate [21]–[24]. In 2016,
Joseph Redmon and others proposed theYOLOnetwork [25].
This network uses an end-to-end training method instead
of area selection. It directly divides an image into a fixed
number of smaller areas and identifies each smaller area.
A category confidence level is obtained, and finally the areas
with confidence levels higher than the threshold are combined
to identify the category and location of the target. Because
there is no training in stages, the YOLO network is faster
than the Faster R-CNN. Thus, the YOLO network meets
real-time requirements. However, the detection result for
smaller targets is not satisfactory because the image is directly
divided into a fixed number of areas. YOLOv2 [26], [27],
proposed in the same year, added batch normalization (BN),
abandoned dropout, and hierarchical clustering to the bound-
ary prediction. These improvements make the preliminary
target boundary prediction more accurate. In target classi-
fication, a convolutional network is used instead of a fully
connected layer to further reduce the number of parameters,
thereby making target detection faster and more accurate.
Expanding on this, the YOLOv3 model was built in 2018 by
adding multi-scale prediction and a better basic classification
network, i.e., Darknet-53. This model has faster speed and
better precision in small target detection [28], and meets the
real-time requirements of side-scan sonar shipwreck target
recognition and small target detection.

Although convolutional neural networks have been widely
used in various fields, their performance can only be demon-
strated when the network structure is relatively complex and
the number of training samples is sufficient. Convolutional
neural networks often have millions of parameters. There-
fore, many labeled samples are needed to train convolutional
neural networks. However, there are generally few side-scan

sonar sample images. During training, phenomena including
overfitting, the personal best solution, and poor generaliza-
tion ability are common. The pre-trained convolutional neural
network model is often used to fix the above issues in transfer
learning. Transfer learning applies the structure and parame-
ters of the trained model to a model with similar issues, and
then obtains a model that has already fixed the issues through
retraining [29]–[36].

Based on this, the present paper intends to introduce
the YOLOv3 model into the side-scan sonar shipwreck tar-
get detection and proposes an improved YOLOv3 model
based on transfer learning to improve the detection perfor-
mance. First, according to the characteristics of the side-scan
sonar shipwreck data set, the traditional YOLOv3 model is
improved. At the same time, in view of the problem of too few
samples in the side-scan sonar shipwreck data set, a transfer
learning method is proposed to train and optimize the net-
work model. Specifically reflected in (1) Based on the orig-
inal Feature Pyramid Networks-supported (FPN-supported)
multi-scale feature fusion training, shallow features such as
contours, textures, and grayscales learned by 4x and 2x down-
sampling are fused to enrich the image information used in
algorithm learning. This allows us to improve the precision
of the model to recognize and locate the smaller scale targets.
(2) At the same time, the K-means clustering algorithm is
used to reset the parameters and size of the anchor box to
generate an anchor box that is more suitable for the features
of the wreck dataset. Therefore, a better intersection over
union (IOU) can be obtained between the predicted value
and the real value, thereby further improving the precision of
recognition and positioning of shipwreck targets. (3) Besides,
the binary classification cross entropy function is used to
improve the loss function of the YOLOv3 algorithm so that
the model achieves a better convergence effect. (4) Lastly,
freeze the partial convolutional layer of the YOLOv3 model
based on training with the COCO dataset, we achieve
transfer learning of a smaller sample side-scan sonar ship-
wreck dataset and the overall performance of the model is
improved.

II. IMPROVED YOLOv3 MODEL AND METHODS
A. BASIC STRUCTURE OF YOLOv3 MODEL
Compared with the YOLO model, the main improvement
of the YOLOv3 network is the adjustment of the net-
work structure, the new backbone network Darknet-53, and
the FPN-supported multi-scale features built for detection.
The specific model structure is shown in Figure 1. The
YOLOv3model divides the input image into an S×S grid, and
uses the Darknet-53 basic network deepened by the residual
network to perform full-convolution feature extraction while
using FPN-like upsampling and the fusion method to per-
form detection at multiple scales. Therefore, the new network
improves the precision of detectionwhile maintaining a speed
advantage. Most of all, the detection of smaller targets is
enhanced.
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FIGURE 1. YOLOv3 Model structure diagram.

FIGURE 2. Darknet-53 structure.

YOLOv3 uses the Darknet-53 network structure for image
feature extraction. As shown in Figure 2, this network is
mainly composed of 53 convolutional layers, 1×1 and 3×3,
which are located at the front of the residual layer [37].
Each convolutional layer is followed by a BN layer [38] and
a LeakyReLU layer, which make up the DBL. As shown
in Figure 1, this is the basic component of the YOLOv3 net-
work structure. The YOLOv3 model adds a skip connection
layer and an upsampling layer based on the Darknet-53 net-
work, resulting in a total of 75 convolutional layers.

To fix the issue of gradient divergence caused by deepening
the network model, the Darknet-53 network learns from the
residual network. The digits 1, 2, 4, and 8 in the leftmost
column indicate the numbers of repeated residual compo-
nents. A schematic diagram of the Darknet-53 network is
shown in Figure 2. The residual connection includes two
convolutional layers. The first convolutional layer has a con-
volution kernel size of 1 × 1, and the second convolutional
layer has a convolution kernel size of 3 × 3. The network
adds output x to output f(x), and uses the ReLU activation
function as the output of the final model. By directly passing

input x to the output, the output result is f(x) = x; when
f(x) = 0, then H(x) = x, the residual result is close to 0, and
the training model converges. This structure can ensure that
the network can still convergewhen there are numerous layers
and that the model can be trained. The deeper the network
gets, the better the expression of the features; moreover, the
recognition precision will not decrease. At the same time, the
1×1 convolution in the residual network reduces the channel
of each convolution, thereby greatly reducing the number
of parameters. Furthermore, the amount of calculation is
decreased to a certain extent, and the convergence of the
model is accelerated.

B. METHOD OF IMPROVING YOLOv3 MODEL
1) MULTI-SCALE TRAINING OF SHALLOW FEATURE FUSION
In order to increase the ability to recognize smaller targets
while ensuring acceptable detection speed, the YOLOv3 net-
work can learn the deep and shallow features at the same
time. This is inspired by the FPN [39], and the deep features
are extracted through upsampling. The YOLOv3 network’s
dimensions are the same as those of the feature layer to be
fused. The feature maps of different scales are fused and
then predicted so that the model has fine-grained features and
the ability to recognize smaller targets increases. As shown
in Figure 1, the model is tested at 32X downsampling, 16X
downsampling, and 8X downsampling. The 32X downsam-
pling results in a prediction of 13× 13× 255. The receptive
field is large and suitable for detecting large-size objects.
13× 13× 255 features are obtained by upsampling. A series
of 3 × 3 and 1 × 1 convolution operations yields 26 × 26 ×
255 features with a medium-scale receptive field, which is
suitable for detecting medium-scale objects. The process is
similar for 52×52×255 features with the smallest receptive
field, which is suitable for detecting small objects.

Although high-power downsampling can obtain a higher
receptive field, result in additional and deeper semantic
features, and achieve a good classification effect, a higher
receptive field or a larger downsampling factor loses certain
position information, resulting in reduced positioning pre-
cision. Since the shallow scan features of side-scan sonar
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FIGURE 3. Improved multi-scale feature fusion structure.

images for shipwreck targets (such as profiles, grayscale
gradient changes, and shadow distributions) play an impor-
tant role in target recognition, they should take a greater
weight. Although the traditional YOLOv3 model performs
32X downsampling, 16X downsampling, and 8X downsam-
pling, and uses multi-scale feature fusion to merge shallow
features with deep semantic features, 8X downsampling does
not comprehensively learn shallow features. Hence, this paper
conducted multi-scale training of shallow feature fusion.
Specifically, as shown in Figure 3, the features learned by 4x
downsampling and 2x downsampling were merged with the
traditional three-scale features to learn the shallow features.
Outline texture and other information of a layered wreck were
merged with deep semantic abstract features to increase the
proportions of certain features so that the image had more
abundant information. Through multi-scale fusion training of
shallow features, both the detection efficiency and the learn-
ing of shallow and deep features could be ensured, the degree
of nonlinearity improved, the generalization ability increased,
and the precision of network recognition and positioning of
sub-scale targets improved.

2) K-MEANS CLUSTERING BOUNDARY
PREDICTION STRATEGY
YOLOv3 uses the anchor box generated by the K-means
clustering algorithm in YOLOv2, divides the current feature
layer into S×S areas, and predicts three potential anchor
boxes for each area through the K-means clustering method.
The dashed rectangular box in Figure 4 is the anchor box,
and the solid rectangular box is the predicted boundary box
calculated by the network-predicted offset. (Cx ,Cy) is the
central coordinate of the anchor box on the feature map,
(Px ,Py) is the width and height of the anchor box on the
feature map, (tx , ty) is the central offset of the boundary
box predicted by the network, (tw, th) is the width–height
zoom ratio, and (bx , by, bw, bh) is the final predicted target

FIGURE 4. Schematic diagram of anchor box of YOLOv3 model.

boundary box. The conversion process from the anchor box
to the final prediction boundary box is as follows:

bx = σ (tx)+ cx (1)

by = σ (ty)+ cy (2)

bw = pwetw (3)

bh = pheth (4)

Among them, Pw =
wanchor
wimage

,Ph =
hanchor
himage

, tw = ln wpred
wanchor

,

and th = ln hpred
hanchor

functions are sigmoid functions with the
purpose to scale the prediction offset to between 0 and 1 so
that the central coordinates of an anchor box can be fixed in
a cell to speed up network convergence.

The anchor box is obtained by K-means algorithm clus-
tering. The clustering central digit is set to 9, the initial
position is randomized, the distance between each callout
box and the clustering central point in the label information
is calculated, and the callout box is assigned to the nearest
clustering central point. Having been assigned callout boxes,
the clustering central point is recalculated until the clustering
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FIGURE 5. Scope ofanchor boxes on a shipwrecktarget.

center does not change. The traditional K-means algorithm
uses Euclidean distance as the similarity measure. However,
in the detection algorithm, a reasonable presetting anchor
box is required for us to obtain a better intersection over
union (IOU) between the predicted value and the real value.
Therefore, YOLOv3 uses the K-means algorithm that takes
the IOU as the distance metric. The distance formulas are
shown in equations (5) and (6).

d(b, o) = 1− IOU (b, o) (5)

IOU (bpt , bgt ) =
bpt ∩ bgt
bpt ∪ bgt

(6)

Here, d(b, o) is the distance between the anchor box b and the
clustering center o, bpt is the anchor box, and bgt is the actual
box.

According to the network detection mechanism, the size
of the anchor box has a direct impact on the precision of
recognition. The nine preset anchor boxes in the original
YOLOv3 are obtained by clustering the COCOdataset, which
contains 80 evenly distributed types, scale shapes, and sizes.
However, the side-scan sonar images of shipwreck targets
in this experimental dataset are mostly flat and vertical.
Therefore, continuing to use the anchor box of the COCO
dataset will be unfavorable for the recognition of shipwreck
targets. In this paper, the K-means clustering algorithm is
used to recluster the wreck dataset, and the average results
obtained through five sets of clustering are ((75, 55), (85, 30),
(116, 76)); ((46, 24), (52, 17), (57, 25)); ((22, 13), (31, 12),
(34, 41)). As shown in Figure 5, the original anchor boxes
cannot adapt well to the side-scan sonar image of a sub-
marine shipwreck target, but the reclustered anchor boxes
are more in line with the shape features of the shipwreck
target.

3) IMPROVEMENT ON LOSS FUNCTION
In view of the problem of few samples and large noise in
datasets of wreck side-scan sonar images, it is difficult to
choose a suitable initial learning rate during model training.
If the learning rate is too small, the convergence speed will
be very slow. If it is too large, the loss value will continue

to oscillate or even deviate from the minimum value, and the
same learning rate cannot be applied to the learning of each
parameter. To allow the model to learn more elaborate image
features and obtain the optimal parameter values, this paper
uses the adaptive learning rate Adam algorithm combined
with the Momentum and RMSProp algorithms [40]. The
Adam algorithm comprehensively considers the first moment
estimation (the mean of the gradient) and the second moment
estimation (the non-central variance of the gradient), and
calculates the update steps. Because the update of model
parameters is not affected by the expansion and contraction
of the gradient, it can process noise samples better and auto-
matically adjust the learning rate. Hence, it provides stronger
robustness to the parameters, makes the model achieve better
convergence, and effectively prevents overfitting. The loss
function of the model is shown in formula (7).

Loss

=

s2∑
i=0

B∑
j=0

lobjij [(σ (tx)
j
i − σ (t̂x)

j
i)
2
+ (σ (ty)

j
i − σ (t̂y)

j
i)
2]

+

s2∑
i=0

B∑
j=0

lobjij [(σ (tw)
j
i − σ (t̂w)

j
i)
2
+ (σ (th)

j
i − σ (t̂h)

j
i)
2]

+

s2∑
i=0

B∑
j=0

GijL(C
j
i ,
∧
j

C
i
)

+

s2∑
i=0

B∑
j=0

∑
C∈classes

lobjij L(p
j
i(c)−

∧

pji(c)) (7)

When the prediction box predicts an object lobjij = 1,
∧
j

C
i
= 1;

when the prediction box predicts an object lobjij = 0,
∧
j

C
i
= 0.

When the prediction box is not responsible for predicting an
object and the IOU with the actual box is greater than the
set threshold (in this paper, IOU=0.5), Gij = 0; otherwise,
Gij = 1. x, y, w, and h are the central coordinates as well
as the width and height of the prediction box, respectively.
S is the number of grids into which the feature map is
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FIGURE 6. Flow chart describing transfer learning.

divided, B is the number of prediction boxes for each grid,
C is the confidence of the prediction, and p is the probability
of the category. The central coordinates, length, and width
of the prediction box are the mean square deviation, and the
error is calculated using the sigmoid function σ . Since the
mean square deviation of the partial derivative of the param-
eter is multiplied by the derivative of sigmoid σ ′, when its
variable value is large or small, σ ′ approaches 0. The gradient
update amplitude is small, the parameter update speed is slow,
and the convergence time is long. Therefore, the confidence
and category error in this paper are calculated by using the
binary classification cross entropy function (formula (8)), and
through this we achieve a better convergence effect.

L =
1
N

N∑
i=1

[(−x log
∧
x)− (1− x) log(1−

∧
x)] (8)

C. TRANSFER LEARNING
This paper adopts the transfer learning strategy to train the
network model. Retraining a complicated convolutional neu-
ral network requires massive data resources, a large amount
of computing resources, and time resources. Considering that
all tasks are correlative, the knowledge obtained in previous
tasks can be directly applied to new tasks with minor trans-
formations or even without any change. When it is difficult
to obtain this knowledge using a small amount of data in new
tasks, transfer learning can share the learned model parame-
ters to the newmodel, thereby speeding up and optimizing the
learning efficiency of the new model. This method reduces
repetitive labor and reliance on target task training data, and
improves the model’s performance.

As the depth of the convolution layer increases, the convo-
lutional neural network will learn a deeper abstract specific
target feature. The texture, profile, and color of a shal-
low layer are universal shallow features obtained through

learning and have highmobility. The convolutional layer with
multi-scale feature fusion is a deep convolutional layer, and
the extracted image features are more abstract and have lower
mobility than the aforementioned shallow features. Consider-
ing these points, this paper freezes the weight parameters of
the convolutional layer before multi-scale feature fusion, and
initializes and retrains the 59th, 67th, and 75th convolutional
layers, fully connected layers, and sigmoid output layer on
the target dataset. A flow chart of this process is shown
in Figure 6.

III. EXPERIMENT & ANALYSIS
The original experimental data consisted of 1,000 images pro-
vided by marine surveying departments and side-scan sonar
manufacturers, as well as website screenshots. The images
were labeled by using the open source application LabelImg.
This paper first expands the original dataset by means of
flip transformation, random trimming, color vibrancy, trans-
lation transformation, scale transformation, contrast transfor-
mation, noise perturbation, rotation transformation, etc., and
then normalizes the pixels of the entire dataset. The images
are fixed to 416×416 pixels. After preprocessing, the dataset
contains 5000 images: 4000 are randomly selected to divide
the training set and validation set at a ratio of 4:1, and perform
5-fold cross-validation, and 1000 are selected for the test set
by balanced sampling. Furthermore, the small batch gradient
descent method [41]–[45] is adopted: all images are divided
into 88 batches for inputmodel training, and each batch inputs
64 images for model training (i.e., the batch size is 64) with
a total of 1,000 steps (epochs).

Experimental training and testing were conducted using
Python programming based on TensorFlow. The experimen-
tal environment is Linux Ubuntu OS version 18.04, running
on an Intel (R) Xeon (R) CPU E5-2678 v3@2.50GHz, with
an NVIDIA TITAN RTX GPU and 24GB memory.
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TABLE 1. 5-fold cross-validation results of models.

A. RESULTS EVALUATION
The evaluation criteria used in this experiment are average
precision (AP) and harmonic mean (F1). AP is an indicator
that reflects the performance of the entire model. It is the area
of the precision–recall (P–R) curve, and represents the aver-
age precision. Precision (also called the precision rate) indi-
cates howmany targets are detected. Recall (also called recall
rate) indicates how many targets are accurately detected,
and thus measures the completeness of target detection.
These two metrics are expressed in equations (9) and (10),
respectively.

P =
TP

TP+ FP
(9)

R =
TP

TP+ FN
(10)

The detected samples can be divided into four categories
according to the classification results: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN).
TP + FP is the total number of correctly classified samples,
and TP + FN is the total number samples. The definition of
AP is presented in equation (11).

AP =
∫ 1

0
P(R)dR (11)

In order to better tune themodel and find the parameter values
that make the model’s generalization performance the best,
this experiment uses a 5-fold cross-validation method. The
4000 sample data used for training were randomly divided
into 5 parts, and the model training and verification were
performed 5 times. Each time 4 parts are selected as the
training set and 1 part is used as the validation set. The AP
values verified after each training are shown in Table 1.

It can be seen from Table 1 that the AP value of each fold
training of transfer learning YOLOv3 model is higher than
that of the traditional YOLOv3 model, and the mean of AP
value of the 5-fold cross-validation is 89.50%,which is 0.28%
higher than the traditional YOLOv3 model. It proves that
the transfer learning YOLOv3 model has better robustness.
Since this experiment is an experiment to find the optimal
solution, and both the transfer learning and the traditional
YOLOv3 model have the highest AP value after the 3-fold
training, the model after the 3-fold training is selected for
further analysis, including the change of the loss value during
the training process and the performance evaluation of the
model on the test set.

The loss values of the two YOLOv3 models (the tradi-
tional model and the model with transfer learning) are shown
in Figure 7. The loss values of the two models decreases with

FIGURE 7. Loss values of two YOLOv3 models.

the increase in the number of epochs, but eventually becomes
stable. The traditional YOLOv3 model tends to be stable
after 600 epochs, and the loss value is finally maintained at
around 5.5. The transfer learning YOLOv3 model extracts
the parameters of partial shallow features because it learns
from the model trained on our COCO-based dataset. The
initial loss value is low and declines quickly. It is important to
remember that our side-scan sonar wreck dataset is different
from the COCO dataset: the learning of abstractive features
uses a large number of parameters on the COCO dataset,
and therefore the loss value fluctuates greatly in the first
350 steps of training. However, because the model can obtain
the position information of the target well, and because it
uses the binary classification cross entropy to calculate the
error, its loss value tends to stabilize and converge to about
4.3 after 750 steps of training. This final loss value is lower
than the loss value of the traditional YOLOv3 model, proving
that the YOLOv3 model based on transfer learning has better
generalization.

P–R curves of the Faster R-CNN, traditional YOLOv3
model, and transfer learning YOLOv3 model in test set are
shown in Figures 8(a)–(c), respectively. The larger the area
of the curve and the coordinate, the better the model’s effect.
The AP values of the three models are 87.72%, 89.18%,
and 89.49%, respectively. The AP of the traditional YOLOv3
model is significantly greater than that of the Faster R-CNN
model, while the average precision of the YOLOv3 model
based on transfer learning is 0.31% more than that of the
traditional YOLOv3 model.

When the recall rate reaches 85%, the precision rate of
the Faster R-CNN reaches 88%. If the recall rate is further
improved, the precision rate drops significantly. The down-
ward trend in precision rate of the traditional YOLOv3 model
is slower, and the model can maintain a high recall rate
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FIGURE 8. P–R Curves of the three tested models.

TABLE 2. Comparison of test results of the three models.

and high precision rate: the model has a precision rate
of 89% when the recall rate reaches 90%. In contrast,
the YOLOv3 model based on transfer learning has an even
slower decline in the PR curve, and the area of the curve and
the coordinate axis is larger; furthermore, the precision rate is
91% when the recall rate is 90%. These results prove that the
YOLOv3model based on transfer learning can best recognize
side-scan sonar shipwreck targets.

F1 is the harmonic mean of the precision rate and recall
rate. The F1 value shown in formula (12) is used to represent
the overall performance of the algorithm. This paper sets both
the confidence interval and IOU to 0.5. The test results of the
three models are shown in Table 1.

F1 = 2×
precision× recall
precision+ recall

(12)

It can be seen from Table 2 that although the recognition
precision rate of the Faster R-CNN model is 2.37% higher
than that of the traditional YOLOv3 model, its recall rate
is 6% lower. Therefore, the Faster R-CNN is not as good
as the YOLOv3 model in detecting smaller targets. More-
over, the F1 value of the Faster R-CNN is 2.33% lower.
Considering the overall performance of the model, the tra-
ditional YOLOv3 model is superior to the Faster R-CNN
model. Meanwhile, the precision rate, recall rate, AP value,
and F1 of the YOLOv3 model based on transfer learning
are all higher than those of the other two models. Its AP
value is 1.77% and 0.31% higher than that of the Faster
R-CNN model and the traditional YOLOv3 model, respec-
tively. Moreover, F1 values are increased by 1.63% and
3.96%, respectively. The detection speed is also an important

indicator of the overall performance of the model. It can
be seen from the table that the Faster R-CNN takes 2.8 s
to detect a target, while the traditional YOLOv3 model
takes only 0.17 s. The detection efficiency is already greatly
improved by using the traditional YOLOv3, and is only fur-
ther enhanced when the YOLOv3 model based on transfer
learning is employed.

B. RESULT ANALYSIS
Figure 9 compares the shipwreck targets detection results of
the three models using side-scan sonar images. Figure 9(a)
illustrates the different sizes of shipwreck targets and the
diversity of scales. The Faster R-CNN model can recognize
large-scale shipwreck targets well, but the recognition of
smaller shipwreck targets is not satisfactory due to its high
missed detection rate. For smaller targets, the traditional
YOLOv3 model performs better than the Faster R-CNN
model, but not perfectly. The red boxes in the figure indicate
the missed targets. The transfer learning YOLOv3 model
sees further improved performance in recognizing smaller
targets. However, when the shipwreck targets are closely
arranged, the positioning precision is decreased to a certain
extent, and the two shipwreck targets are mistakenly detected
as one target. In general, however, the YOLOv3 model
can better recognize and distinguish smaller targets, and its
missed detection rate is greatly reduced. As can be seen
from Figures 9(b) and (c), the IOU of the detection frame
and actual frame of the YOLOv3 model based on trans-
fer learning is largest, and the positioning is most accu-
rate. The IOUs in Figure 9(b) are 69.92%, 75.93%, and
86.09%, for the Faster R-CNN, traditional YOLOv3 model,
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FIGURE 9. Comparison of partial target detection results of the three models. From left to right: the detection results
of the transfer learning YOLOv3 model, traditional YOLOv3 model, and Faster R-CNN.

and transfer learning YOLOv3 model, respectively; the IOUs
in Figure 9(c) are 77.03%, 69.32%, and 91.15%, respec-
tively. Meanwhile, the confidence levels of the three models
in Figure 9(b) are 98.88%, 98.97%, and 99.07%, respectively;
in Figure 9(c), the confidence levels are 96.51%, 94.45%,
and 99.42%, respectively. Obviously, the YOLOv3 model
based on transfer learning has better recognition precision,
positioning precision, and overall performance than the other
two models.

IV. CONCLUSION
When applied to recognition of side-scan sonar images
of shipwreck targets, the Faster R-CNN model is time-
consuming and has low efficiency and a highmissed detection

rate for small targets. Considering the limitation that existing
datasets of side-scan sonar images of shipwreck targets are
small, we propose a YOLOv3 model that can automatically
recognize side-scan sonar images of shipwreck targets based
on transfer learning. According to the characteristics of the
side-scan sonar wreck data set, 4x and 2x downsampling was
done based onmulti-scale feature fusion with FPN support by
multi-scale training of shallow feature fusion; the target pre-
diction was done by resetting parameters and size of anchor
box using the K-means clustering and multi-scale feature
fusion; lastly, the binary classification cross entropy function
was used to improve the loss function of the YOLOv3 algo-
rithm. Experimental results show that the AP value of the
YOLOv3 model based on transfer learning reached 89.49%,
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which is an improvement of 0.31% and 1.77%, respec-
tively, compared with the Faster R-CNN model and the tra-
ditional YOLOv3 model; the harmonic mean F1 reached
90.71%, which is 3.96% and 1.63% higher, respectively, and
it proves that the proposed model has better precision. The
YOLOv3 model takes an average of 0.17 seconds to identify
a picture, which is only 3/50 of R-CNN model. It greatly
improves the detection efficiency and the overall performance
of the model, and also meets the needs of real-time target
recognition.
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