
Received August 25, 2020, accepted September 14, 2020, date of publication September 18, 2020,
date of current version September 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3024683

Computation Migration and Resource Allocation
in Heterogeneous Vehicular Networks: A Deep
Reinforcement Learning Approach
HUI WANG 1, HONGCHANG KE 2,3,4, GANG LIU 1, AND WEIJIA SUN 1
1College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
2College of Computer Science and Technology, Jilin University, Changchun 130012, China
3School of Computer Technology and Engineering, Changchun Institute of Technology, Changchun 130012, China
4Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

Corresponding author: Gang Liu (candyweiyi088@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61841602 and Grant 61806024, in part
by the Jilin Province Education Department Scientific Research Planning Foundation of China under Grant JJKH20200618KJ, and in part
by the Jilin Province Scientific and Technological Planning Project of China under Grant 2018C036-1.

ABSTRACT With the development of 5G technology, the requirements for data communication
and computation in emerging 5G-enabled vehicular networks are becoming increasingly stringent.
Computation-intensive or delay-sensitive tasks generated by vehicles need to be processed in real time.
Mobile edge computing (MEC) is an appropriate solution.Wireless users or vehicles can offload computation
tasks to theMEC server due to it has strong computation ability and is closer to the wireless users or vehicles.
However, the communication and computation resources of the single MEC are not sufficient for executing
the continuously generated computation-intensive or delay-sensitive tasks. We consider migrating compu-
tation tasks to other MEC servers to reduce the computation and communication pressure on current MEC
server. In this article, we construct anMEC-based computation offloading framework for vehicular networks,
which considers time-varying channel states and stochastically arriving computation tasks. To minimize
the total cost of the proposed MEC framework, which consists of the delay cost, energy computation cost,
and bandwidth cost, we propose a deep reinforcement learning-based computation migration and resource
allocation (RLCMRA) scheme that requires no prior knowledge. The RLCMRA algorithm can obtain the
optimal offloading and migration policy by adaptive learning to maximize the average cumulative reward
(minimize the total cost). Extensive numerical results show that the proposed RLCMRA algorithm can
adaptively learn the optimal policy and outperform four other baseline algorithms.

INDEX TERMS Vehicular networks, mobile edge computing, reinforcement learning, computation
migration.

I. INTRODUCTION
With the development of wireless and vehicular networks,
autonomous vehicles have gradually been introduced [1]–[3].
These networks are expected to become intelligent systems
that can make predictions based on the results of self-learning
and then make decisions using machine learning methods
such as deep learning (DL) and reinforcement learning
(RL) [4]–[6]. The entire communication system will
be self-aware, self-learning, self-planning, self-growing,
and self-evolving [7], because the safety and quality of

The associate editor coordinating the review of this manuscript and

approving it for publication was Xin Zhang .

service (QoS) requirements for computation and communica-
tion are more stringent, and low latency with high reliability
is essential [8]. The computing power of on-board vehicular
systems cannot meet the demands for computing and power
consumption, and in an intensive data communication envi-
ronment, it is difficult to ensure themobility of the vehicle and
the real-time reliability of the data [9]. Some studies have pro-
posed offloading of computing data to the cloud side to reduce
the pressure on the local processor [10], [11]. However, one
of the more difficult problems in communicating with cloud
servers is the backhaul delay of downlink transmission, which
makes it impossible to meet the low-latency limit in vehicular
networks [12], [13].

171140 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5074-900X
https://orcid.org/0000-0003-0946-9289
https://orcid.org/0000-0002-0946-7075
https://orcid.org/0000-0003-0738-3617
https://orcid.org/0000-0001-5647-2777

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

Mobile edge computing (MEC) has recently emerged as
a means of computation and communication in wireless or
vehicular networks because its servers are close to devices,
and it provides supercomputing power; thus, it can meet
the delay and energy consumption constraints [14], [15].
There is some research on computation offloading or resource
allocation in wireless or vehicular networks. Wang et al.
in [16] proposed an optimization method for computation
offloading and physical resource block (PRB) allocation.
An MEC server first estimates the computation overhead
and makes offloading decisions; then, based on graph col-
oring, it allocates the PRBs. Guo et al. in [17] introduced
a blockchain-based MEC model. On the basis of a pro-
posed framework, a method of adaptive resource allocation
and computation offloading was proposed to improve the
throughput of the blockchain model and the QoS. However,
these studies focus on a single MEC system, and assumed
that the MEC servers have sufficient computing power. The
number of mobile edge computing servers that are necessary
in order to support the end-users needs. Apostolopoulos et al.
in [18] formulated a two layer operation of autonomous
MEC servers and QoS satisfaction of distributed mobile
devices framework in distributed IoT network. At the first
layer, autonomous MEC servers’ activation is described as
a minority game, and an active decision algorithm based
on distributed learning is implemented to determine whether
MEC servers are active or not. At the second layer, a non-
cooperative game-based transmission power allocation for
IoT devices algorithm is proposed to meet the QoS satisfac-
tion. Ranadheera et al. in [19] studied the state of the art of
minority game application in communication network, and
formulated the computation offloading scheme in small cell
networks. The proposed scheme can obtain the near-optimal
offloading decision based on the reinforcement technique.
Fu et al. in [20] proposed a resource allocation and trans-
mission power control policy to maximize the total profit
of a mobile operator based on an actor-critic algorithm with
an eligibility traces algorithm. The continuous action space
consists of the unit energy packet and allocated transmis-
sion power. Guo et al. in [21] presented a heuristic greedy
offloading scheme (HGOS) to solve the energy consumption
minimization with processing time constraints (EMTC) prob-
lem, and the proposed algorithm can obtain the near-optimal
offload policy. Although the aforementioned works con-
sider the multi-MEC scenarios, they does not consider the
time-varying channel states.

In vehicular networks, autonomous vehicles can leave the
region covered by the MEC server or cloud server. The per-
formance of computation tasks generated by vehicles usu-
ally requires specific services or caches. These services or
caches are usually stored on the cloud server and are then
passed to the MEC server [22]. Thus, virtual machine migra-
tion or computation migration can be used to decrease the
transmission delay and total cost. Zhang and Zheng in [23]
implemented a policy for offloading and migration decisions
based on Deep Q-learning (DQN). The proposed method can

find the optimal policy according to the distance between
the user and the MEC server to minimize the difference
between the QoS and migration cost. Wang et al. in [24]
proposed a method of migrating a service instance from one
cloudlet to another according to the location of the user.
The proposed method could minimize the total cost using
dynamic programming (DP), and an online approximation
algorithm was designed to improve the time complexity of
the proposed algorithm. Wang et al. in [25] proposed a joint
optimization method for the total cost and total delay based
on microservice migration. Two algorithms were introduced:
a DP-based offline algorithm and an RL-based online algo-
rithm. The proposed algorithms consider the location of the
vehicle and the relationship between the microservice and
MEC server; they then provide a near-optimal migration
solution. However, these works in [23]–[25] do not con-
sider time-varying channel states or the cost of bandwidth
utility; they also assume that the cost of migration is not
large.

There are some existing DRL based schemes for MEC in
vehicular networks. Qiao et al. in [26] proposed a deep deter-
ministic policy gradient(DDPG)-based cooperative caching
method for minimizing the content access cost while satisfy-
ing the constraint on content delivery latency. The proposed
scheme is designed to a double time-scale Markov decision
process (DTS-MDP) for content placement and updating
in the large time slot, vehicle scheduling and bandwidth
allocation in small time slot. For improving the content hit
ratio, the priori knowledges about the content placement
are set in advance. However, [26] considered more cache
placement and cache delivery, and assumes that the cache
placement is the priori, but did not take into account the
resource management of vehicle and MBS. Liu et al. in [27]
modelled a vehicle edge computing network architecture
and proposed a DRL-based computation offloading method
while considering the delay deadline and limited computa-
tion capabilities of vehicles to maximize the long-term sys-
tem utility. The method can learning the optimal offloading
policies and the resource allocation policy. Reference [27]
considers the computation offloading and resource allocation
on the MEC side and (Vehicle Edge Computing) VEC side,
but when the number of (User Equipment) UEs increases,
the curse of dimensionality will be trouble. Ning et al.
in [28] formulated an intelligent offloading scheme based on
DRL to minimize the offloading cost while satisfying the
latency constraint of users. The proposed scheme consists
of the Vehicle-to-Road(V2R) scheduling based on two-sided
matching algorithm and Vehicle-to-Infrastructure(V2I) allo-
cation based on distributed DRL method. However, although
the proposed distributed DRL-based method can tackle the
curse of dimensionality, resource allocation is a difficult
problem for each agent, such as the bandwidth allocation
of base station and the computing resources allocation of
MEC server.

Different from the aforementioned works, we consider
time-varying channel states and stochastic task arrival to

VOLUME 8, 2020 171141

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

propose a DRL-based joint optimization scheme for com-
putation migration and resource allocation (RLCMRA) to
minimize the total cost of the MEC framework. The total
cost consists of the delay cost, energy consumption cost,
and bandwidth cost. The main contributions of our work are
summarized as follows:
• We design anMEC framework for heterogeneous vehic-
ular networks comprising a vehicle, multiple MEC
servers, and a cloud server. The proposed MEC model
considers time-varying channels, stochastic task arrival
and the MEC servers randomly host the caching. To the
best of our knowledge, the proposed model is the first
work jointly considering time-varying channel state,
the stochastic task arrival and hosting caching, and the
bandwidth allocation.

• We investigate the computation offloading and migra-
tion problem and design the state space, action space,
and reward function. The state space consists of the
size of the arriving tasks, the channel state, the signal-
to-interference-plus-noise ratio (SINR), and the state
of hosting caching by MEC servers. The action space
consists of the offloading decision, migration deci-
sion, and allocated bandwidth ratio. The reward is a
negative total cost. For the reward function, we have
considered the influence of many factors includ-
ing the delay, energy consumption, and bandwidth
costs.

• Furthermore, we use Double Deep Q-Learning
(DDQN), which is a model-free DRL algorithm, and
propose the RLCMRA algorithm to minimize the total
cost of the designed MEC model. The RLCMRA algo-
rithm can adaptively learn the optimal policy under strin-
gent latency requirements in stochastic environments by
exploiting two emerging technologies: fixed parameters
in the target network and experience replay memory.
It is worth noting that our proposed RLCMRA method
considers more dimensions of state space including
computation offloading or migration, bandwidth alloca-
tion and caching control compared with the exists works
based on DRL [26]–[28].

• Extensive numerical simulations are implemented,
and three baseline algorithms are designed to ver-
ify the effectiveness and superiority of the RLCMRA
algorithm. The simulation results demonstrate that
the RLCMRA algorithm outperforms three baseline
algorithms.

The remainder of this article is organized as follows.
In Section II, a design for an MEC model with a macro
base station and some small base stations is presented, and
the network, communication, resource allocation, and com-
putation models are described. The problem is formulated
in Section III, and the DRL-based optimization scheme is
described in Section IV. Extensive numerical results are pre-
sented in Section V. Finally, the conclusions are listed in
Section VI.

II. SYSTEM MODEL
A. NETWORK MODEL
We implement an MEC system for computation data
migration and resource allocation in heterogeneous vehic-
ular networks. The proposed system consists of a vehi-
cle, multiple MEC servers, and a cloud server. As shown
in Figure 1, an autonomous vehicle drives on city express-
ways or highways, and collects massive amounts of data, such
as images or video, using sensors. Owing to constraints on its
computational power and battery capacity, the vehicle may
not meet deadlines for processing the data. The vehicle can
offload the real-time computation data to the MEC server in
the coverage region through a roadside unit (RSU) or small
base station. MEC servers with high-performance processors
are located near the vehicle; therefore, an MEC server can
execute computation tasks offloaded from vehicles within the
communication region covered by the server. Without loss of
generality, we denote the set of execution caching services on
the cloud side as E = {1, 2, · · · ,E}. That is, the cloud server
hosts all of the caching services.M = {1, 2, · · · ,M} denotes
the set of MEC servers. Thus, there are M MEC servers and
E execution caching services, as well as a cloud server with
a macro base station. Each MEC server is connected to a
small base station, which can communicate with a vehicle
in real time, and only a single vehicle is within the cover-
age of the small base station. Although the MEC server is
computationally powerful, it is affected by the channel state
and the requirements of each computing task offloaded by
the vehicle, such as delay limits or bandwidth restrictions.
Therefore, we assume that there are Em caching software
for executing the computation tasks equipped with on the
mec server m which can meet the computation requirement
where Em ∈ E . For instance, the vehicle v generate the

FIGURE 1. MEC framework.

171142 VOLUME 8, 2020

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

computation-intensive tasks at a certain moment, it needs
to be offloaded to the MEC server m for execution. Then,
it is necessary to check whether the MEC server m hosts
the execution cache em corresponding to the offloaded task.
If there is, calculate the offloaded tasks directly on the cur-
rent MEC server by em. If not, the offloaded tasks need
to be migrated to other MEC server m′ with the execution
cache m for execution where m′ ∈ M and m′ 6= m.
We assume that the autonomous vehicle moves from a source
to a destination along a certain trajectory. However,m regions
covered by m base stations can be seamlessly linked with
each other. Table 1 defines the main notation used in this
work.

TABLE 1. List of main notations.

B. COMMUNICATION AND RESOURCE ALLOCATION
MODEL
For wireless communication, we assume that the vehicle can
communicate with the small base station connected to the
MEC server, and the MEC server can migrate computation
tasks to anotherMEC server via the cloud server.Without loss
of generality, the channel state between the vehicle and small
base station is time-varying; that is, the channel condition
changes in a certain time epoch (time slot). The base station
connected to MEC server has N antennas and control the
communicated vehicle with single antenna by using the linear
detection algorithm zero-forcing (ZF) [29], [30].

For convenience, we split the continuous decision epoch
(execution time) into time slots, which are discretized into
specific time intervals. We denote the set of time slots as
T = {1, 2, · · · ,T }.

1) COMMUNICATION MODEL
Let Hv,m(t) denote the channel vector between autonomous
vehicle v and small base station m. We set the initial chan-
nel vector to Hv,m(0) = hv,m(d0/dv,m)σ Im, where d0 is the
distance constant, and dv,m is the actual distance between
vehicle v and MEC server m. σ is an adjustment coefficient
that depends on the communication environment [31].

In the proposed MEC model, we use the time correlation
model to simulate the time-varying channel state following
Gaussian Markov block fading autoregressive model [32],
[33]. The channel state Hv,m(t+1) in the next time slot t+1,
can be written as

Hv,m (t + 1) = ρvHv,m(t)+
√
1− ρ2v ev (t) (1)

where ρv is the normalized correlation coefficient between
time slot t and the next time slot, t+1. In addition, ev (t) is the
error vector, and ev (t) ∼ CN (0, Im), which has a complex
Gaussian distribution and is uncorrelated with Hv,m (t).

We assume that the vehicle is allocated with an orthogonal
spectrum resource block, and utilize the Rayleigh fading
model and the free-space propagation path-loss model [22].
The SINR among the MEC servers in time slot t can be
written as

ζm(t) =
Pv,m(t) · Hv,m(t)∑

j 6=m,j∈M Pv,j(t) · Hv,j(t)+ σv(t)2
(2)

where Pv,m(t) is the transmission power of vehicle v for
offloading to MEC server m. σv(t) is the variance of an
additive white Gaussian noise at v [32], [33].

2) RESOURCE ALLOCATION MODEL
In the proposed MEC model, the communication bandwidth
can affect the QoS for an autonomous vehicle, where the total
cost increases with increasing bandwidth. We assume that the
MEC system is an orthogonal frequency-division multiple
access system. During time slot t , only a few sub-channels
can be used to transmit computation data. We denote the total
bandwidth of the wireless channel for small base station m
as Wm and the bandwidth ratio allocated to vehicle v in time
slot t as τv,m(t). The uplink transmission rate of vehicle v can
be written as

rv,m(t) = τv,m(t)Wm log2 (1+ ζm(t)) (3)

where 0 ≤ τv,m(t) ≤ 1.

C. COMPUTATION MODEL
Currently, there are some works that consider the behavior
characteristics of user-end side or MEC side about computa-
tion offloading. For user-end side an optimal data offloading
of multi-users in multi-MEC is proposed in [34] taking into
accounting risk-seeking or loss-aversion behavior of users.
an optimal data offloading policy based on non-cooperative
game among the users is formulated and Pure Nash Equi-
librium (PNE) is obtained. For MEC side, the limitations in
computational and radio resources of MEC are considered

VOLUME 8, 2020 171143

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

in [35] and an energy efficient edge server activation scheme
for computation offloading based on RL and minority games
is formulated. The proposed scheme can obtain the tradeoff
between the enough computation capacity and the efficient
energy saving. In this article, due to the single vehicle drives
on the road and the computation tasks generated by the vehi-
cle are indivisible, we do not consider the behavior character-
istics of user-end side and take into account the taskmigration
of MEC side. In our future work, we will consider user-side
behavior characteristics which is significant in multi-user
scenario.

When vehicle v moves on the road, it can generate
computation-intensive tasks in each time slot. These tasks can
be executed locally or offloaded to the MEC server. In each
time slot t , we define the computation task as Dv(t)

.
=

(Dsv(t),D
c
v(t),D

max
v (t)), where Dsv(t) is the input size of the

computation task,Dcv(t) is the number of CPU cycles required
to complete Dv(t), and Dmaxv (t) is the maximum execution
delay. We assume that the arrival of computation tasks Dv(t)
follows a Poisson distribution with λv, and λv is indepen-
dently identically distributed. Thus, it can be derived that
E
[
Dsv(t)

]
= λv. We denote the offloading decision as ov,m(t).

1) LOCAL EXECUTION
Even if the computation tasks generated by vehicle v are
computation-intensive, when the input size of task Dsv(t) is
not large, the computing power of the vehicle v is sufficient.
In this case, the computing task can be considered to be
executed locally. We set the power of vehicle v allocated for
local execution in time slot t as Pv,l(t). The number of CPU
cycles allocated to vehicle v can be written as

fv(t) =

√
Pv,l(t)

κ · (1− ov,m(t)) · Dcv(t)
(4)

where κ is a switching coefficient that depends on the chip
architecture of vehicle v.

The execution delay of a computation task can be calcu-
lated as

Iv,l(t) =
(1− ov,m(t)) · Dcv(t)

fv(t)
(5)

The total energy consumption for local execution is calcu-
lated by

Ev,l(t) = Pv,l(t) · Iv,l(t) (6)

2) COMPUTATION OFFLOADING
The computation tasks (captured videos or high-definition
images) from the vehicle can be offloaded to the MEC server
for execution. For facial recognition, for example, vehicle
v can offload a video clip or image data of a human face
in each time slot. As mentioned in Section II.B, the uplink
transmission rate of offloading from vehicle v to MEC server
m, rv,m(t), can be derived. Thus, the transmission time from
vehicle v to MEC server m can be obtained as

Iov,m(t) =
ov,m(t) · β1,m · Dsv(t)

rv,m(t)
(7)

where β1,m is the transmission control coefficient for compu-
tation offloading. The total energy consumption for offload-
ing execution is given by

Eov,m(t) = Pv,m(t) · Iv,m(t) (8)

where Pv,m(t) is the transmission power for offloading the
computation task to MEC server m in time slot t .

D. MIGRATION MODEL
When vehicle v generates a computation-intensive task in
time slot t , owing to its limited computing power, vehicle
v needs to communicate with the small base station and
then offload the computation task to the MEC server for
execution. Without loss of generality, we assume that the
computation tasks offloaded by the vehicle require a specific
execution cache service e. Therefore, after MEC server m
receives the offloaded tasks, it first determines whether the
buffer server has hosted the current computation tasks and
needs to execute the cache service. If not, MEC server m
needs to host the cache service and then execute the task,
or migrate the computation task to another MEC server, m′(
m′ 6= m,m′ ∈ M

)
, for execution. We denote the migration

decision as ςv,m(t) and consider the cost of data migration,
which consists of the migration delay and migration energy
consumption.We assume that themigration delay is related to
the size of the computation task Dsv(t), and is linearly related
to Dsv(t). Then, the migration delay from MEC server m to
MEC server m′ can be obtained as

Imigrv,m (t) = ςv,m(t) · ov,m(t) ·
[
β2,m · Dsv(t)+ υv

]
(9)

where β2,m is the control coefficient for computation migra-
tion. The total energy consumption for computation migra-
tion is given by

Emigrv,m (t) = Pmigrv,m (t) · Imigrv,m (t) (10)

where Pmigrv,m (t) is the migration power.
When ςv,m(t) = 0, which indicates that the computing

tasks are not migrated from the MEC server m, the offloaded
computation task must be executed by the MEC server. The
processing delay of MEC server m can be written as

Imecv,m (t) = (1− ςv,m(t)) ·
ov,m(t) · Dcv(t)

fm(t)
(11)

where fm(t) is the number of CPU cycles allocated to MEC
server m, which can be derived using Eq. (4). It is worth
noting that the processing power of MEC server is much
stronger than that of vehicle v, and the switching coefficient
of MEC server is set as κm.

The total energy consumed by the MEC server during
processing is given by

Imecv,m (t) = Pmecv,m (t) · I
mec
v,m (t) (12)

where Pmecv,m (t) is the processing power of MEC server m.

171144 VOLUME 8, 2020

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

III. PROBLEM FORMULATION
In this section, we give an optimization scheme for com-
putation offloading and task migration selection problems.
Inspired by the base station selection optimization problem
of literature [36] and literature [37], we describe in detail the
solution to the proposed problem. In [36] proposed the game
theoretic based optimal cell selection scheme to maximize
their QoS-aware performance, that is, maximize the ratio of
transmission rate to power. In [37] formulated the deep learn-
ing based optimal user-cell assignment only on the users’
positions to the sum of uplink transmission rate. Similar
to [36] and [37], our optimization scheme is the MEC server
selection for computation offloading and task migration to
maximize the total weight cost. However, different from lit-
erature [36] and [37], we also paid attention to the aspect of
bandwidth allocation. Considering the cost of bandwidth rent,
the cost function we designed consists of the total delay, total
energy consumption, and total bandwidth cost during all the
time slots T . Therefore, our proposal is a joint optimization
problem which is more concerned with task migration and
resource allocation.

As mentioned in Section II, the total delay consists of the
local execution delay, offloading delay, and migration delay,
and can be written as

Iv(t) = Iv,l(t)+ Iov,m(t)+ I
migr
v,m (t)+ Imecv,m (t) (13)

The total energy consumption comprises the local execu-
tion energy consumption, offloaded energy consumption, and
migration energy consumption, and can be written as

Ev(t) = Ev,l(t)+ Eov,m(t)+ E
migr
v,m (t)+ Emecv,m (t) (14)

However, the user has to pay for the rented spectrum and
bandwidth. We assume that the unit price for the bandwidth
usage is proportional to the bandwidth amount. Then, the total
cost of bandwidth allocation can be calculated as Cv(t) =
β3,mτv,m(t)Wm, where β3,m is the control coefficient for the
bandwidth cost.

Finally, the total cost of the MEC model is defined as
follows.

C(t) = ω1 · Iv(t)+ ω2 · [Ev(t)+ Cv(t)]+ Cp
v (t) (15)

where ω1, and ω2 are the control coefficient for adjusting the
tradeoff between the cost of computational delay and the cost
of energy consumption as well as the bandwidthmeetingω1+

ω2 = 1. Cp
v (t) is the penalty for timeout during execution.

The cost minimization problem can be stated as follows:

P1 min
(ov,m(t),ςv,m(t),τv,m(t))

lim
t→∞

1
t

T∑
t=1

C(t) (16a)

s.t. 0 ≤ τv,m(t) ≤ 1 (16b)

ov,m(t) ∈ [0, 1] (16c)

ςv,m(t) ∈ [0, 1] (16d)

Iv,l(t), Iv,m(t)+ Imigrv,m (t), Iv,m(t)

+ Imecv,m (t) ≤ Dmaxv (t) (16e)

where Eq. (16b) gives the constraint on the allocated band-
width, which is less than 1. Eq. (16c) is the offloading
decision for the computation tasks generated by vehicle v.
Eq. (16d) indicates the migration decision of the computation
tasks offloaded by vehicle v. Eq. (16e) shows that the local
delay, offloaded migration delay, and offloaded execution
delay meet the maximum delay constraint.

IV. DESIGN OF THE OPTIMAL SCHEME
The DRL-based joint optimization method for computation
migration and resource allocation has been introduced in this
section.

A. DRL
DRL combines the perception capacity of DL with the
decision-making capacity of RL [38], [39]. The action can
be directly controlled according to the input state from a
certain environment [40]. DRL is an artificial intelligence
method that is closer to human thought. Unlike DL, DRL
can yield better results using fewer training samples [41]. The
advantage of DRL is that it has more information, and is not
limited by the given labels. However, DL gives the operating
mechanism, and RL defines the goal of optimization [42].

DQN is a typical DRL algorithm that can solve the instabil-
ity problem using function approximation in RL. It includes
two advanced techniques: experience replay memory and
target networks [43]. Experience replay memory enables the
DRL agent to sample and train data from previously observed
samples, which not only greatly reduces the amount of inter-
action required by the environment, but can also be used to
sample a mini-batch of experience to reduce the differences
in learning and updating.

As shown in Figure 2, the RL agent interacts continuously
with the environment; it observes the current state s and then
selects action a to obtain the greatest cumulative reward r .
Here, we denote the state-value function, which represents the
expected cumulative reward, as Q(s, a), which can be written
as

Qπ (s, a) = Ea∼π
[
r + γQ

(
s′, a′

)]
(17)

where γ is the discount factor, and π is the policy. The
optimal policy π? is the policy that yields the maximum
expected cumulative reward. It can be written as

π∗ = argmax
a∼π

Q (s, a) (18)

Without loss of generality, the Q-function in DQN is
defined as Q (s, a |θ), where θ represents the weights of
the main DQN network. Unlike table-based Q-learning algo-
rithm, DQN uses a neural network to approximate the
Q-function, and the update step of the Q-function updates
the parameter θ according to the temporal difference error δ,
which meets the criterion

δ = r + γ maxQ′
(
s′, a′|θ ′

)
− Q (s, a|θ) (19)

The neural network is updated using the stochastic gra-
dient descent method. The updating of the Q-function is

VOLUME 8, 2020 171145

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

FIGURE 2. Structure of DDQN.

equivalent to the update process in traditional supervised
learning, except that the DQN network is updated according
to the maximum cumulative reward maxQ(s, a), which can
be updated as

L = E(s,a,r,s′)∼M [
(
r + γ maxQ

(
s′, a′|θ ′

)
− Q (s, a|θ))2]

(20)

DQN has an inherent problem with overestimation. For a
selected policy in a certain state, the action that maximizes
Q(s′, a′|θ ′) is not selected in each sampling period, because
the general policy is stochastic; therefore, the target value
directly chooses the maximum Q(s′, a′|θ ′) of the action will
cause the target value to be greater than the true value. DDQN
can effectively eliminate the overestimation problem of the
DQN algorithm [44]. DDQN does not directly choose the
maximum Q-value Q(s′, a′|θ ′) of each action in the target
network. Instead, it selects the action corresponding to the
maximum Q-value maxQ(s′, a|θ ′) in the main network, and
then uses the selected action to calculate the target value in
the target network. The target value can be updated as

Q′
(
s′, a′|θ ′

)
→ Q′

(
s′, argmaxQ(s′, a|θ ′)|θ

)
(21)

B. OPTIMAL SCHEME BASED ON DRL
As discussed in Section III, our goal is to find the opti-
mal computation offloading and task migration policy that
minimizes the total cost, which is the weighted sum of the
total delay, total energy consumption, and total bandwidth
cost during all the time slots. We use DDQN to address the
optimization problem in the proposed MEC model. First,

we define the agent, state space, action space, and reward
function.

1) THE AGENT
The agent is defined for each vehicle and is located on the
cloud server. The agent has the global information of the
MEC system. Thus, the agent interacts with the MEC envi-
ronment to determine whether to offload or migrate compu-
tation tasks, and selects the allocated bandwidth ratio.

2) STATE SPACE
In each time slot, the vehicle generates computation-intensive
tasks. As described in Section II, the arrival of computation
tasks generated by the vehicle is stochastic. In addition,
the channel state is time-varying. As the vehiclemoves, it may
be covered by different MEC servers; therefore, the com-
munication bandwidth may change. In the proposed MEC
system, the state consists of the size of the arriving tasks,
the channel state, and the SINR in each time slot. The state
s ∈ S can be defined as

st =
{
Dv(t),Hv,1(t),Hv,2(t), . . . ,Hv,m(t), . . . ,Hv,M (t),

ζ1(t), ζ2(t), . . . , ζm(t), . . . , ζM (t)} (22)

3) ACTION SPACE
The agent interacts with the MEC environment, observes the
current state, and selects the action to obtain the reward. The
agent can determine whether to offload or migrate computa-
tion tasks, and selects the allocated bandwidth ratio. There-
fore, the action consists of the offloading decision, migration
decision, and bandwidth ratio allocation. The action a ∈ A
can be written as

a =
{
ov,m(t), ςv,m(t), τv,m(t)

}
(23)

4) REWARD FUNCTION
In time slot t , the DRL agent can obtain a reward based on
the current state and selected action. The object of the agent
is to receive the maximum cumulative reward. We define the
reward function as R = −C(t). The problem of finding the
optimal computation offloading and task migration policy
that minimizes the total cost is transformed to the problem
of maximizing the total cumulative reward.
For the optimal computation offloading and task migration

policy that minimizes the total cost, we use DDQN, which
is a value-based DRL algorithm, and we use the proposed
DRL-based RLCMRA algorithm to maximize the average
cumulative reward. The RLCMRA algorithm is presented in
Algorithm 1.
The RLCMRA algorithm exploits two emerging technolo-

gies: fixed parameters and experience replay memory.
The agent observes state s in the state space S in each

time slot and then chooses an action a in the action space A.
The immediate reward r is obtained. Furthermore, the current
state s, action a, reward r , and next state s′ are combined
in the tuple 〈s, a, r, s′〉, which is pushed into the experience

171146 VOLUME 8, 2020

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

replay memory. In the learning phase, the mini-batch sam-
ples are popped from the experience replay memory and fed
into the main network and target network of the RLCMRA
algorithm. Using the two neural networks, Q(s, a|θ) and
Q′(s′, argmaxQ

(
s′, a

∣∣ θ ′)|θ) can be obtained. The stochastic
gradient descent method is used to update the parameters of
two networks.

Algorithm 1 Computation Migration and Resource Alloca-
tion Policy Based on RLCMRA Scheme
1: Initialize main RLCMRA networks and target networks

with random parameters: θ , θ ′;
2: Initialize the experience replay memory to capacity M .
3: for episode = [1, 2, · · · ,Emax] do
4: Reset the MEC simulation environment including the

initial state s0 and initial reward r0;
5: Initialize the agent so that it can interact with the

environment;
6: for [t = 1, 2, · · · ,T] do
7: The agent observes state s, which includes the

arrival of computation tasks, channel state, and
SINR by interacting with the MEC environment;

8: According to the policy π , select a from the action
space A on the basis of ε − greedy;

9: if the random number rnd > ε:
10: Select action a using Eq. (21);
11: else:
12: Randomly select action a;
13: Observe the reward r . Then the next state s′ can be

obtained by interaction with the simulation environ-
ment;

14: If M is not full, push <s, a, r, s′> into M as the
training samples of the main network of RLCMRA;

15: Randomly select the mini-batch m samples fromM
as training samples to train the main network of
RLCMRA;

16: In line with Eq. (20), obtain the loss L and compute
the gradient ∇θL of RLCMRA’s main network;

17: Update the parameters θ of RLCMRA’s the main
network using gradient descent;

18: If the number of iteration steps is greater than
the frequency of parameter updating, copy all the
parameters θ of RLCMRA’s main network to the
parameters θ ′ of RLCMRA’s target network;

19: end for
20: end for

C. COMPLEXITY ANALYSIS OF ALGORITHM
The proposed RLCMRA algorithm is based on the neural
network. Here, we consider using a fully connected neural
network to simulate the optimization function. As far as the
complexity of the algorithm is concerned, it is related to the
dimensions of the input layer, the number of hidden layers,
the number of neurons in the hidden layer, the dimensions
of the output layer and the number of training samples.

The complexity of RLCMRA is O(n ∗ k1 +
∑K

k=2(k ∗ n)),
where n∗ k1 is the number of all samples, k1 is the dimension
of the first layer for the model, and

∑K
k=2(k ∗ n) is the total

number of overall parameters. K is the total number of neural
network’s layers.

We can see that the dimensions of the state space, the num-
ber of hidden layers, the number of neurons, dimensions of
the action space and the size of experience replay memory
affect the complexity of RLCMRA. About the state space
and the action space, we have already described in detail in
section IV.B. The dimensions of the state space is 1+ 2 ∗M ,
the dimensions of the action space is 1 + M ∗ S, S is
the discretized level for the bandwidth. In addition, when
our algorithm is training, because we use the mini-batch
and gradient descent method for optimization, the complex-
ity of the algorithm will be dramatically reduced. On the
other hand, the factor that most affects the complexity of
the algorithm is the number of training samples. Thanks
to the fact that the proposed RLCMRA execute based on
two emerging technologies: fixed parameters and experience
replay memory. Fixed parameters ensure that the algorithm
is off-line, which can meet the computational requirements
of higher complexity algorithms. Experience replay memory
ensures the storage of the massive traing samples, and the
RLCMRA can randomly select samples in the experience
replay memory during training, eliminating the correlation
of the training samples. The update speed of the experience
memory is significantly lower than the change position of the
vehicle, and the channel state of base station which ensures
the training efficiency of the proposed algorithm and thus
meets the complexity requirements of the RLCMRA.

V. NUMERICAL RESULTS
To verify and evaluate the proposed RLCMRA algorithm,
we establish a simulation environment based on the proposed
MEC system.

A. SIMULATION SETUP
A PC having an Intel Core i9-9900K CPU with a maximum
frequency of 5.0 GHz and a GeForce RTX2080Ti graph-
ics card with 11 GB of video memory was used. We used
the Pycharm integrated development environment with
TensorFlow 1.10.

There were ten MEC servers with high-performance pro-
cessors, and each MEC server was connected to a small
base station. The MEC servers randomly host the execu-
tion caching service. The time slot is set as t = 10 ms.
Tomodel the communication environment, we set d0 = 1 and
ρv = 0.95; the radius of each MEC server was 100 m. The
maximum bandwidth Wm = 1 MHz, σv(t) = 10−9. In the
computation model, κ = 10−27, κm = 0.45 ∗ 10−28, and
Dcv(t) is related to Dsv(t) according to Eq. (4). The number of
CPU cycles required for local execution is 1.46 ∗ 107 when
Dsv(t) = 5. Dmaxv (t) = 1(one time slot), Pv,l = 2 W, Pv,m = 2
W, Pmigrv,m = 2 W, and Pmecv,m = 2 W. The initial value of β1,m,

VOLUME 8, 2020 171147

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

β2,m, and β3,m are respectively set as 0.2, 0.03, 1. For the ratio
of bandwidth allocation τv,m, it is discretized into 10 levels,
that is to say, τv,m ∈ {0.1, 0.2, · · · , 1.0}.
The main and target neural networks used in the RLCMRA

algorithm have identical structures consisting of the fully con-
nected layers. Regarding the number of layers and neurons
for the the main and target networks, we will discuss later in
the numerical results on the complexity analysis of RLCMRA
algorithm. The maximum number of episodes is set to 1000,
and themaximumnumber of steps in one episode is set to 200.
The timeout penalty is Cp

v = 2.5. The maximum capacity of
the experience replay is set to 200,000. The discount factor is
set to γ = 0.8. The initial learning rate is set to α = 0.001.

B. PERFORMANCE COMPARISON
The goal of this study is to identify the optimal computation
offloading and task migration policy that minimizes the total
cost, which is a weighted sum of the total delay, total energy
consumption, and total cost of bandwidth during all the time
slots. Three benchmark algorithms have been introduced for
comparison with the proposed algorithm.

1) HEURISTIC GREEDY OFFLOADING SCHEME (HGOS)
According to [21], the computation tasks generated by the
vehicle in each time slot are executed locally, offloaded to
the MEC server, or migrated to another MEC server by the
heuristic greedy algorithm, which can obtain the near-optimal
offloading policy.

2) ALL OFFLOADING BUT NOT MIGRATION(AOBNM)
All the computation tasks generated by the vehicle in each
time slot are offloaded to theMEC server, but are notmigrated
to another MEC server.

3) ALL OFFLOADING THEN MIGRATION(AOM)
All the computation tasks generated by the vehicle in each
time slot are offloaded to the MEC server and migrated to
another MEC server that hosts the execution caching server,
regardless of the size of the computing task and the computing
power of the MEC server.

4) ALL LOCAL EXECUTION(ALE)
All the computation tasks generated by the vehicle in each
time slot are executed locally, regardless of the computing
power of the vehicle.

C. SIMULATION RESULT
First, we performed extensive simulations of the proposed
RLCMRA algorithm. We present the average cumulative
rewards during all episodes. Here, each random arrival rate
of the vehicle is trained 10 runs and each different channel
state is trained 10 runs, that is, 10 different random seeds are
set for each arrival rate of the vehicle which follows Poisson
distribution. Similarly, 10 different random seeds are set for
each error vector of the channel state which follows Complex
Gaussian distribution. The learning results of RLCMRA are

themean of 10 best runs from all 100 runs respectively. To this
end, the results obtained by training and learning are more
effective and precise.

Figure 3 shows the simulation result for different learning
rates α. Here, ω1 = ω2 = 0.5, and λv = 5, i.e., E[Dsv] = 5.
For α = 0.01, the RLCMRA algorithm cannot be guar-
anteed to converge, but oscillates in a certain region. For
α = 0.001 and α = 0.0001, the RLCMRA algorithm con-
verges. Because the arrival of computation tasks is stochastic,
the curves are somewhat volatile. The performance of the
RLCMRA algorithm for α = 0.001 is better than that for
α = 0.0001. Therefore, in the simulation environment used
here, we set α = 0.001.

FIGURE 3. Simulation results of MEC model for various values of the
learning rate α.

Figure 4 displays the results for different values of ω1. The
arrival of computation tasks is set to λv = 5. Regardless
of the value of ω1, the RLCMRA algorithm converges well.
According to Eq. (15), since the total delay cost Iv(t) is less
than the energy computation and bandwidth allocation costs,
the average cumulative reward increases with increasing ω1.

In addition to the execution delay and energy consumption
costs, our optimization scheme considers the cost of the
rented spectrum and bandwidth as well. As shown in Fig-
ure 5, the average cumulative rewards for β3,m values of 0.5,
1.0, and 1.5 are different. According to Section IV, the unit
price for the bandwidth usage is proportional to the band-
width amount. Therefore, the average cumulative reward
increases with increasing β3,m. However, the convergence
of the RLCMRA algorithm is not affected by the change
coefficient β3,m.
Figure 6 illustrates the numerical results on the theoretical

complexity analysis of the proposed RLCMRA algorithm.
The structure of the main network and target network for
RLCMRA is fully connected network. The layer of the main
network and target network is set as 2, 3, 4 respectively, and
the number of neurons are 300, 200, 200, 200 respectively.
We set ω1 = ω2 = 0.5, and λv = 5. As shown in Figure 6(a),

171148 VOLUME 8, 2020

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

FIGURE 4. Simulation results of MEC model for various values of ω1.

the average computation time of the RLCMRA algorithm
executing during the training and testing increases as the
number of layers increases, but the average computation time
do not significantly change. This is because the complexity
of RLCMRA is related to the number of layers for the neural
network, but it is not an exponential change, but an additive
change. But we can see from Figure 6(b), The convergence
of RLCMRA is not greatly affected by the number of layers
for neural network. No matter how many layers of the neural
network of the algorithm are, the algorithm can guarantee
convergence. So, In simulation environment of our proposed
MEC framework, layer of the main network and target net-
work for RLCMRA is set as 2, and the number of neurons
are 300, 200 respectively for each layer.

To verify the advantages of the proposed RLCMRA algo-
rithm over the other methods, Figures 7, 8, 9, 10, and 11
compare the results of the RLCMRA algorithm and the four
benchmark algorithms.

FIGURE 5. Simulation results of MEC model for various values of the
coefficient β3,m.

Figure 7 illustrates the relationship between the size of
the arriving computation tasks and the average cumulative
reward of the proposed MEC system. Here, ω1 = ω2 = 0.5.
As shown in Figure 7(a), as the size of the arriving computa-
tion tasks increases, the average cumulative reward decreases.
Owing to the limited computing power and battery level,
the ALE algorithm usually cannot complete the task pro-
cessing within the deadline, and thus exhibits the worst per-
formance. The performance of HGOS algorithm is greater
than that of AOM, AOBNM and ALE due to it pays more
attention to exploring different offloading modes according
to the size of the arrival tasks. When λv < 5, the arriving
computation tasks are not great, and the processing capac-
ity of the MEC server is sufficient; thus, the cost of com-
putation migration is greater than the cost of processing
on the MEC server. Consequently, the AOBNM algorithm
outperforms the AOM algorithm. When λv > 5, Due to

FIGURE 6. The complexity analysis of RLCMRA.

VOLUME 8, 2020 171149

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

FIGURE 7. Simulation results for MEC model for arriving tasks of various sizes.

FIGURE 8. Comparison on the different algorithms for the tradeoff
between delay and energy consumption, bandwidth cost.

the great number of tasks arriving, the computing power of
MEC server has been challenged, and the execution effi-
ciency of migrating tasks to other MEC servers with exe-
cution caching is greater than computation on the current
MEC server without execution caching. However, regardless
of the value of λv, the RLCMRA algorithm yields the greatest
average cumulative reward. As shown in Figure 7(b), as far
as the improvement ratio for RLCMRA’s performance is
concerned, the improvement ratio of RLCMRA’s is over 5%
compared to the AOBNM when the arrival rate of computa-
tion tasks is greater than 5. Although theHGOS algorithm can
obtain the better offloading policy, compared to the proposed
RLCMRA, whose performance is less than that of RLCMRA
about 1.5% in each time slot. For the computation-intensive
and delay-sensitive computation tasks in vehicular networks,
the improvement of performance for RLCMRA is still
obvious.

FIGURE 9. Simulation results for MEC model for various transmission
control coefficients for computation offloading.

Figure 8 shown the Comparison on the different five algo-
rithms for the tradeoff between delay and energy consump-
tion, bandwidth cost. According to Eq. (15), ω1, and ω2
are the control coefficient for adjusting the tradeoff between
the cost of computational delay and the cost of energy con-
sumption as well as the bandwidth, meeting ω1 + ω2 = 1.
As shown in 8, when the delay cost coefficient ω1 < 0.5,
the five algorithm is more focused on considering the impact
of energy consumption and bandwidth costs. Therefore,
RLCMRA, HGOS, AOM, and AOBNM are greatly affected
and resulting in their average cumulative rewards becoming
smaller. However, we can see from Figure 8 that no matter
what value the delay cost coefficient ω1 is, in terms of the
average cumulative rewards, RLCMRA outperforms other
four algorithms.

Figure 9 shows the relationship between the transmis-
sion control coefficient for computation offloading and the
average cumulative rewards of the proposed MEC system.

171150 VOLUME 8, 2020

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

FIGURE 10. Simulation results for MEC model for various control
coefficients for computation migration.

According to Eq. (7), when the transmission control coeffi-
cient β1,m increases, the transmission delay of computation
offloading must increase as well. The average cumulative
rewards of the RLCMRA algorithm are greater than that of
the AOM, AOBNM, and ALE algorithms. The ALE algo-
rithm is not affected by changes in the transmission control
coefficient β1,m; therefore, its curve is very stable.

Figure 10 shows the relationship between the control coef-
ficient for computation migration and the average cumula-
tive rewards of the proposed MEC system. According to
Eq. (9), the migration delay Imigrv,m has a linear relationship
with the data migration coefficient β2,m. For β2,m > 0.3,
because the migration delay of some offloaded computa-
tion tasks cannot meet the delay requirements, the penalty
for timeout during execution affects the effect of AOM.
The cost of computation migration increases rapidly which
result in the average cumulative rewards of AOM decrease
dramatically. Therefore, it is more cost-effective to process
the computation data on the appropriate MEC server. The
ALE and AOBNM algorithms are not affected by β2,m; thus,
their average cumulative rewards do not change. Therefore,
the RLCMRA algorithm yields greater average cumulative
rewards than the other four algorithms. It is worth noting that
when β2,m > 0.5 the cost of computation migration is too
great, most offloaded tasks cannot complete the task migra-
tion under the delay constraint. So, in terms of the average
cumulative rewards, the AOBNM is the optimal policy and
the performance of RLCMRA is approximately equal to that
of AOBNM.

As shown in Figure 11, the distance between the vehicle
and MEC server affects the average cumulative rewards of
the RLCMRA, AOBNM, and AOM algorithms. At larger
distances between the vehicle and MEC server, the average
cumulative reward is lower, and thus the total cost of the entire
MEC system is higher. The RLCMRA algorithm outperforms
the AOBNM, AOM, and ALE algorithms, demonstrating its
greater adaptability.

FIGURE 11. Simulation results for MEC model for various distances
between the vehicle and MEC server.

VI. CONCLUSION
In this article, we modeled an MEC framework for heteroge-
neous vehicular networks. To minimize the total cost of the
proposed MEC framework, which consists of the delay cost,
energy computation cost, and bandwidth cost, we proposed
the RLCMRA algorithm. For a time-varying channel state
and stochastically arriving computation tasks, the RLCMRA
algorithm could make offloading and migration decisions,
and choose the bandwidth ratio that maximized the aver-
age cumulative reward. The RLCMRA algorithm outper-
formed three benchmark algorithms under various parameter
configurations.

REFERENCES
[1] C. H. Liu, Z. Chen, and Y. Zhan, ‘‘Energy-efficient distributed mobile

crowd sensing: A deep learning approach,’’ IEEE J. Sel. Areas Commun.,
vol. 37, no. 6, pp. 1262–1276, Jun. 2019.

[2] C.-M. Huang, M.-S. Chiang, D.-T. Dao, W.-L. Su, S. Xu, and H. Zhou,
‘‘V2 V data offloading for cellular network based on the software defined
network (SDN) inside mobile edge computing (MEC) architecture,’’ IEEE
Access, vol. 6, pp. 17741–17755, Mar. 2018.

[3] F. Qiao, J. Wu, J. Li, A. K. Bashir, S. Mumtaz, and U. Tariq, ‘‘Trustwor-
thy edge storage orchestration in intelligent transportation systems using
reinforcement learning,’’ IEEE Trans. Intell. Transp. Syst., early access,
Jun. 29, 2020, doi: 10.1109/TITS.2020.3003211.

[4] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, ‘‘Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,’’ IEEE Commun. Mag., vol. 57, no. 5,
pp. 64–69, May 2019.

[5] L. Huang, S. Bi, and Y. J. Zhang, ‘‘Deep reinforcement learning for online
computation offloading in wireless powered mobile-edge computing net-
works,’’ IEEE Trans. Mobile Comput., early access, Jul. 24, 2019, doi:
10.1109/TMC.2019.2928811.

[6] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[7] Y. Cui, Y. Liang, and R. Wang, ‘‘Resource allocation algorithm with multi-
platform intelligent offloading in D2D-enabled vehicular networks,’’ IEEE
Access, vol. 7, pp. 21246–21253, Dec. 2019.

[8] H. Ye, G. Y. Li, and B.-H.-F. Juang, ‘‘Deep reinforcement learning based
resource allocation for V2V communications,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 4, pp. 3163–3173, Apr. 2019.

VOLUME 8, 2020 171151

http://dx.doi.org/10.1109/TITS.2020.3003211
http://dx.doi.org/10.1109/TMC.2019.2928811

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

[9] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, ‘‘Deep reinforcement
learning-based adaptive computation offloading for MEC in heteroge-
neous vehicular networks,’’ IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 7916–7929, Jul. 2020.

[10] M. Goudarzi, M. Zamani, and A. T. Haghighat, ‘‘A fast hybrid multi-site
computation offloading for mobile cloud computing,’’ J. Netw. Comput.
Appl., vol. 80, pp. 219–231, Feb. 2017.

[11] L. Hadded, F. Ben Charrada, and S. Tata, ‘‘Efficient resource alloca-
tion for autonomic service-based applications in the cloud,’’ in Proc.
IEEE Int. Conf. Autonomic Comput. (ICAC), Trento, Italy, Sep. 2018,
pp. 193–198.

[12] J. Du, L. Zhao, J. Feng, and X. Chu, ‘‘Computation offloading and resource
allocation in mixed Fog/Cloud computing systems with min-max fair-
ness guarantee,’’ IEEE Trans. Commun., vol. 66, no. 4, pp. 1594–1608,
Apr. 2018.

[13] J. Zheng, Y. Cai, Y. Wu, and X. Shen, ‘‘Dynamic computation offloading
for mobile cloud computing: A stochastic game-theoretic approach,’’ IEEE
Trans. Mobile Comput., vol. 18, no. 4, pp. 771–786, Apr. 2019.

[14] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Jun. 2017.

[15] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, ‘‘Delay-optimal compu-
tation task scheduling for mobile-edge computing systems,’’ in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Barcelona, Spain, Jul. 2016,
pp. 1451–1455.

[16] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, ‘‘Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 66, no. 8,
pp. 7432–7445, Aug. 2017.

[17] F. Guo, F. R. Yu, H. Zhang, H. Ji, M. Liu, and V. C. M. Leung, ‘‘Adap-
tive resource allocation in future wireless networks with blockchain and
mobile edge computing,’’ IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 1689–1703, Mar. 2020.

[18] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, ‘‘Game-
theoretic learning-based QoS satisfaction in autonomous mobile edge
computing,’’Global Inf. Infr. Netw. Syst., vol. 66, no. 6, pp. 1–5, Oct. 2018.

[19] S. Ranadheera, S. Maghsudi, and E. Hossain, ‘‘Minority games with appli-
cations to distributed decision making and control in wireless networks,’’
IEEE Wireless Commun., vol. 24, no. 5, pp. 184–192, Oct. 2017.

[20] F. Fu, Z. Zhang, F. R. Yu, and Q. Yan, ‘‘An actor-critic reinforcement
learning-based resource management in mobile edge computing systems,’’
Int. J. Mach. Learn. Cybern., vol. 11, no. 8, pp. 1875–1889, Aug. 2020.

[21] H. Guo, J. Liu, and J. Zhang, ‘‘Computation offloading for multi-access
mobile edge computing in ultra-dense networks,’’ IEEE Commun. Mag.,
vol. 56, no. 8, pp. 14–19, Aug. 2018.

[22] C. Xu, Y. Wang, Z. Zhou, B. Gu, V. Frascolla, and S. Mumtaz, ‘‘A low-
latency and massive-connectivity vehicular fog computing framework for
5G,’’ in Proc. IEEE Globecom Workshops (GC Wkshps), Abu Dhabi,
United Arab Emirates, Dec. 2018, pp. 1–6.

[23] C. Zhang and Z. Zheng, ‘‘Task migration for mobile edge computing
using deep reinforcement learning,’’ Future Gener. Comput. Syst., vol. 96,
pp. 111–118, Jul. 2019.

[24] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
‘‘Dynamic service placement for mobile micro-clouds with predicted
future costs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4,
pp. 1002–1016, Apr. 2017.

[25] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen, ‘‘Delay-
aware microservice coordination in mobile edge computing: A reinforce-
ment learning approach,’’ IEEE Trans. Mobile Comput., early access,
Dec. 5, 2019, doi: 10.1109/TMC.2019.2957804.

[26] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, ‘‘Deep reinforce-
ment learning for cooperative content caching in vehicular edge comput-
ing and networks,’’ IEEE Internet Things J., vol. 7, no. 1, pp. 247–257,
Jan. 2020.

[27] Y. Liu, H. Yu, S. Xie, and Y. Zhang, ‘‘Deep reinforcement learning for
offloading and resource allocation in vehicle edge computing and net-
works,’’ IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11158–11168,
Nov. 2019.

[28] Z. Ning, Y. Li, P. Dong, X. Wang, M. S. Obaidat, X. Hu, L. Guo, Y. Guo,
J. Huang, and B. Hu, ‘‘When deep reinforcement learning meets 5G-
enabled vehicular networks: A distributed offloading framework for traffic
big data,’’ IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1352–1361,
Feb. 2020.

[29] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[30] C. Singhal and S. De, Resource Allocation in Next Generation Broadband
Wireless Access Networks. Hershey, PA, USA: IGI Global, 2017.

[31] H. Ke, J. Wang, H. Wang, and Y. Ge, ‘‘Joint optimization of data
offloading and resource allocation with renewable energy aware for IoT
devices: A deep reinforcement learning approach,’’ IEEE Access, vol. 7,
pp. 179349–179363, Dec. 2019.

[32] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, ‘‘Energy and spectral
efficiency of very largemultiuserMIMO systems,’’ IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[33] H. A. Suraweera, T. A. Tsiftsis, G. K. Karagiannidis, and A. Nallanathan,
‘‘Effect of feedback delay on Amplify-and-Forward relay networks with
beamforming,’’ IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 1265–1271,
Mar. 2011.

[34] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, ‘‘Risk-
aware data offloading in multi-server multi-access edge computing envi-
ronment,’’ IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1405–1418,
Jun. 2020.

[35] S. Ranadheera, S. Maghsudi, and E. Hossain, ‘‘Mobile edge computation
offloading using game theory and reinforcement learning,’’ Nov. 2017,
arXiv:1711.09012. [Online]. Available: http://arxiv.org/abs/1711.09012

[36] E. E. Tsiropoulou, G. K. Katsinis, A. Filios, and S. Papavassiliou, ‘‘On the
problem of optimal cell selection and uplink power control in open access
multi-service two-tier femtocell networks,’’ in Proc. Int., Conf. Adhoc.
Netw. Wire, Benidorm, Spain, Jun. 2014, pp. 114–127.

[37] A. Zappone, L. Sanguinetti, and M. Debbah, ‘‘User association and load
balancing for massive MIMO through deep learning,’’ in Proc. 52nd Asilo-
mar Conf. Signals, Syst., Comput., Pacific Grove, CA, USA, Oct. 2018,
pp. 1262–1266.

[38] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge MA, USA: MIT Press, Mar. 1998.

[39] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, ‘‘Policy gradi-
ent methods for reinforcement learning with function approximation,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 12, pp. 1057–1063, Feb. 2020.

[40] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, ‘‘Continuous deep q-
learning with model-based acceleration,’’ in Proc. ICML, New York City,
NY, USA, Jun. 2016, pp. 2829–2838.

[41] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep rein-
forcement learning,’’ in Proc. ICML, New York City, NY, USA, Jun. 2016,
pp. 1928–1937.

[42] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. Adv. Neural Inf. Syst. (NIPS), San Jose, CA, USA, Jun. 2017,
pp. 6379–6390.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[44] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. AAAI, Phoenix, AZ, USA, Feb. 2016,
pp. 2094–2100.

HUI WANG received the B.S., M.S., and Ph.D.
degrees from the College of Computer Science and
Technology, Jilin University, in 2004, 2007, and
2010, respectively. She is currently working with
the Changchun University of Technology. She has
published more than 20 articles on international
publications. Her research interests include wire-
less networks and machine learning.

171152 VOLUME 8, 2020

http://dx.doi.org/10.1109/TMC.2019.2957804

H. Wang et al.: Computation Migration and Resource Allocation in Heterogeneous Vehicular Networks: A Deep RL Approach

HONGCHANG KE received the B.S. and M.S.
degrees from the College of Computer Science and
Technology, Jilin University, in 2004 and 2007,
respectively. He is currently pursuing the Ph.D.
degree in computer application technology with
Jilin University. He is currently an Associate Pro-
fessor with the Changchun Institute of Technol-
ogy. He has published more than 20 articles on
international publications. His research interests
include wireless networks and vehicular networks,

especially for offloading and caching optimization.

GANG LIU received the B.S. and M.S. degrees
from the College of Computer Science and Tech-
nology, Jilin University, in 1998 and 2006, respec-
tively. He is currently a Professor with the
Changchun University of Technology. He has pub-
lished more than 30 articles on international pub-
lications. His research interests include wireless
communication and network security.

WEIJIA SUN received the B.S. degree from the
College of Computer Science and Technology,
Liaoning Normal University, in 1990, and theM.S.
degree from the College of Computer Science and
Technology, Jilin University, in 2004. He is cur-
rently a Professor with the Changchun University
of Technology. His research interests include wire-
less communication and network security.

VOLUME 8, 2020 171153

