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ABSTRACT This paper addresses the re-engineering of congestion control for TCP applications over
networks with coupled wireless links. Using queueing delay as a congestion measure, we show that optimal
TCP congestion control can be achieved by developing window-control oriented implicit primal-dual solvers
for intended network utility maximization problem. Capitalizing on such an idea, we prove the existence
of scalable, easy-to-deploy, yet optimal end-to-end congestion control schemes for networks with wireless
links, given that the wireless access point appropriately schedules packet transmissions. A class of so-called
QUIC-TCP congestion control algorithms are developed. Relying on a Lyapunov method, we rigorously
establish the global convergence/stability of the proposed QUIC-TCP to optimal equilibrium in the network
fluid model. Numerical results corroborate the merits of the proposed schemes in IPv6-based Internet
environments.

INDEX TERMS Congestion control, wireless-link scheduling, convex optimization, network fluid model,
Lyapunov method.

I. INTRODUCTION
The Internet TCP (transmission control protocol) is well
suited for extensibility and scalability since it does not need
network configuration information. This protocol performs
end-to-end congestion control schemes [2], where sources of
data transfers monitor their own connections and adjust their
transmission window sizes to avoid overloading the network
without explicit signals fed back from network routers. Most
existing data traffic over Internet is carried by TCP-based
protocols (such as HTTP, SMTP and FTP). After years of
development, although the network has expanded greatly
in size, load, and connectivity (by more than six orders of
magnitude), these protocols still function well [3]. However,
plenty of recent works showed that TCP protocols poorly
perform in (IPv6 based) Internet with lossy wireless links
and large bandwidth-delay products [4], [5]. As the contin-
uously growing Internet contains more and more wireless
links, the current TCP schemes need to be re-designed or
re-optimized for emerging mobile applications.

To this end, a Lagrange duality based network fluid
model was proposed in [6]. Leveraging optimization tools,
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a network utility maximization (NUM) paradigm was put
forth to analyze and design cross-layer schemes and network
protocols [7]. In such a framework, congestion control is
modeled as a source rate controller, and the queue length
of the link is used as the Lagrange multiplier. Based on
this approach, many gradient-type NUM solutions were
developed. Although a direct source-rate control may be
suitable for delay-/bandwidth-sensitive non-TCP audio/video
applications, it is difficult to be operated in a TCP window-
control manner. Furthermore, such rate controllers require
the network routers to pass message of the queue lengths,
thereby undermining the scalability of TCP. Due to the latter
implementation and scalability issues, it is hardly possible to
apply NUM schemes for TCP applications.

On the other hand, an engineering method is also used to
strengthen the transmission control protocol for large-scale
(wireless) networks, see, e.g., TCP-Vegas, DFTCP, STCP,
XJTCP, Cubic, Sprout, Verus, ABC [2], [8]–[20]. In order
to improve the efficiency of the TCP congestion control,
a TCP congestion control algorithm called TCP BBRv2 was
proposed based on the Kleinrock congestion model. Since
this algorithm does not rely on packet loss to estimate the
end-to-end bandwidth, it is insensitive to the packet loss rate.
However, when TCP BBRv2 occupies a large amount of
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bandwidth, it does not work well and the fairness is rela-
tively low. Some recent works developed solutions to improve
the performance [21]–[23]. In addition, artificial intelligence
and machine learning approaches were recently adopted to
develop TCP congestion control schemes [24]–[27]. Sim-
ulations and experiments were employed to validate those
new schemes. Yet, they somewhat lack systematic design
methodologies and theoretical performance guarantees. With
queueing delays playing the roles of congestion measures
as well as Lagrange multipliers (for intended optimization
problems), congestion control algorithms in the Mo-Walrand
scheme and FAST-TCP were developed in a systematic man-
ner [4], [28]. Stability of these schemes was demonstrated
either analytically or empirically for wired networks.
We can observe that both NUM solutions and enhanced

TCP schemes could be regarded as (explicit or implicit)
primal-dual solvers to relevant NUM problems. In optimiza-
tion theory, Lagrange multipliers are introduced as auxiliary
dual variables to help solve constrained problems. In NUM
solutions, queue lengths play the role of Lagrange dual vari-
ables [7]; whereas queueing delays are mapped into these
dual variables in TCP schemes [4], [28]. These ‘‘dual vari-
ables’’ also serve as the congestionmeasures for flow sources.
Without the participation of network routers, the round-trip
delay (i.e., the total queueing delay) of the packet can be
directly calculated at the source node. Hence, it appears that
queueing delays can be a better choice as congestionmeasure.
Confined to the TCP design space, we need to execute a
window-based congestion control algorithm at the source
based on such a measure. With the ‘‘primal’’ source rates
and ‘‘dual’’ queueing delays becoming functions of window
sizes, end-to-end window adjustments equivalently turn into
implicit primal-dual updates. The optimal TCP congestion
control then amounts to development of window-control ori-
ented implicit primal-dual solvers for intended optimization
problem.

Capitalizing on this idea, we prove the existence of scal-
able, easy-to-deploy, yet optimal congestion control solu-
tions for mobile TCP applications. To this end, we reveal
that a joint design of TCP congestion control (at transport
layer) and wireless-link scheduling (at link layer) is required.
In particular, a queueing-delay based ‘‘MaxWeight’’-type
scheduling needs to be operated at the access point of
wireless links. With such a scheduler, the wireless link
capacities, if coupled, can be coupled in a ‘‘good’’ way,
making the optimal end-to-end TCP congestion control fea-
sible. Besides, we generalize the Mo-Walrand scheme [28]
to develop a class of QueueIng-Control (QUIC) TCP con-
gestion control algorithms. We show that the proposed
QUIC-TCP algorithms together with the queueing-delay
based MaxWeight-scheduler amount to window-control ori-
ented implicit primal-dual solvers for the intended network
optimization problem. Leveraging the Lyapunov method,
we rigorously establish the global convergence of the pro-
posed schemes to an optimal equilibrium in the network
fluid model.

Notice that the present work is an extension of [29,
Chapter 2], where we only considered the case that there
exists a smooth capacity region for the wireless links (i.e.,
the case considered in Sec. IV-B). In this paper, we extend the
results to the general cases that we may have a box capacity
region or a convex piece-wise linear capacity region (see
Sec. IV-A and Sec. IV-C). In current wireless standards, wire-
less links are usually given dedicated TDMA/FDMA chan-
nels and only a few levels of rate and/or power adaptations
are adopted, leading to the box capacity region or convex
piece-wise linear region. Hence, our generalizations here are
both of theoretic values and of practical significance. The
proposed approach can serve as a stepping stone to advance
the theory for general cross-layer optimization of Internet
protocols.

The remainder of the paper is presented as follows.
Section II delineates underlying optimization, prior works,
the gap and challenges. Section III develops the proposed
joint TCP congestion control and wireless-link scheduling
scheme, while Section IV establishes the global conver-
gence/stability of the proposed scheme to optimal net-
work equilibrium. Section V contains simulation results to
validate the merits of QUIC-TCP. Section VI concludes
the paper.

II. PRELIMINARIES
Consider a network with a wired backbone and a wireless
access point (AP) for mobile devices. The set of data links
L = Lf ∪ Lw in the network consists of a wired link set Lf
and a wireless link set Lw. While any wired link l ∈ Lf has a
constant capacity cl , the capacities for wireless links need to
be carefully modeled.

Let r := {rl,∀l ∈ Lw}, where rl represents the capacity
of wireless link l. In the existing wireless standards [30],
error correction coding, rate and power adaptation, and hybrid
ARQ are generally used at the link layer to ensure reliable
data transmission. As a result, the capacities rl of wireless
links are (possibly) coupled and dynamic, due to random
fading and broadcast nature of the wireless medium. For each
fading realization h, denote byR(h) the (closed and convex)
achievable rate region for wireless links. With Eh denoting
the expectation over fading distribution, then we have on
average r ∈ Eh [R(h)] := R̄.
The network traffic consists of a set of unicast flows from

source s ∈ S. Toward its destination, each flow s may travel
over a number of wired or wireless links. Denote by L(s) ⊆ L
the set of links which flow s goes through, and S(l) ⊆ S
the set of flows carried by link l. Denote by xs the transmis-
sion rate of source s. Given a weight vector p := {ps,∀s},
we assign a weighted proportionally-fair utility function
ps log xs per flow [4].1 Then we wish to solve the following

1It was shown that ps is the number of packets maintained by flow s in the
buffers along its route at the equilibrium [4], [28]. Hence, the value of ps can
be determined as the target backlog in the network put by flow s.
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optimization problem:

max
∑
s∈S

ps log xs

s. t. (C1):
∑
s∈S(l)

xs ≤ cl, ∀l ∈ Lf

(C2):
∑
s∈S(l)

xs ≤ rl, ∀l ∈ Lw

(C3): r ∈ R̄, xs ≥ 0, ∀s ∈ S. (1)

The utility maximization in (1) is of interest since its solution
can lead to a fair and efficient equilibrium which does not
penalize the flows with large propagation delays [28].

Problem (1) can be readily solved by the NUM paradigm;
e.g., a number of queue-length based NUM solutions were
available in [7], [31], [32]. On the other hand, plenty of
heuristics based TCP enhancements for such a last-hop wire-
less network were proposed [12], [33], [34]. As will be elab-
orated, there exists a significant gap between those solutions
and desired optimal schemes for mobile TCP applications.

A. NUM SCHEMES
For (1), the primal optimization variables include vector
x := {xs,∀s} of source rates and vector r of wireless-link
capacities. Denote by λ := {λl,∀l} the Lagrange multipliers
for the link capacity constraints; and define λs :=

∑
l∈L(s) λl .

Since problem (1) is convex, the globally optimal {x∗, r∗} and
λ∗ must satisfy the following Karush-Kuhn-Tucker (KKT)
conditions [35]:

ps
x∗s
= λs

∗
:=

∑
l∈L(s)

λ∗l , ∀s ∈ S (2)

λ∗l

(
cl −

∑
s∈S(l)

x∗s

)
= 0, ∀l ∈ Lf (3)

∑
s∈S(l)

x∗s ≤ cl, ∀l ∈ Lf (4)

λ∗l

(
r∗l −

∑
s∈S(l)

x∗s

)
= 0, ∀l ∈ Lw (5)

∑
s∈S(l)

x∗s ≤ r
∗
l , ∀l ∈ Lw (6)

r∗ ∈ argmax
r∈R̄

∑
l∈Lw

λ∗l rl, x∗ ≥ 0, λ∗ ≥ 0. (7)

In existing NUM schemes [31], [36], [37], queue lengths
of links are used to play the role of scaled Lagrange multi-
pliers, Ql ≡ Vλl . The source-rate controllers, wireless-link
scheduler and the queue evolutions are seamlessly ‘‘glued
together’’ as the decomposition of a sub-gradient type primal-
dual iteration to solve the problem. Specifically, with rate
control xs(t) = Vps/

∑
l∈L(s) Ql(t) and scheduling policy

r(t) = argmaxr∈R(h(t))
∑

l∈Lw Ql(t)rl , the queue evolution

Ql(t + 1) =
[
Ql(t)+ [

∑
s∈S(l)

xs(t)− {cl or rl(t)}]
]+

then entails a stochastic sub-gradient descent iteration for λl
to solve (1) with a stepsize 1/V . Drawing from the stochas-
tic optimization tools [37], asymptotic convergence of these
schemes to optimal {x∗, r∗,λ∗} can be established.

B. WINDOW-BASED TCP ENHANCEMENTS
In TCP congestion control, flow sources adjust their trans-
mission window sizes based on their own (local) congestion
observations. Upon receiving an acknowledgement (ACK)
packet, the source transmits a new packet when the window
size is unchanged; or, it transmits out bulk traffic in bursts
when the window size is changed, tomaintain that the number
of packets in-fly is the same as the current window size.
This window-based operation is the key for implementability
and reliability of TCP in asynchronous manner and in the
presence of feedback delays.

In the standard TCP, an additive-increase-multiplicative-
decrease (AIMD) window adjustment scheme based on
packet loss is adopted. In this scheme, it is generally believed
that the only reason for packet loss is network congestion.
This leads to poor performance of TCP over wireless links.
As a remedy, some heuristic window adjustment schemes
were proposed to increase and decrease window sizes more
appropriately [5], [9]–[12], [38]. Yet, none of these schemes
is guaranteed to solve an optimization problem such as (1).

It is increasingly acknowledged that TCP relying on packet
loss as congestion measure is not stable and efficient, espe-
cially for wireless networks. This motivates a number of TCP
schemes that employ queueing delays as congestion measure
to implement congestion control [8], [11], [12]. In order to
achieve the desired optimization, congestion control algo-
rithms in Mo-walrand scheme and Fast-TCP [4], [28] were
proposed by using queueing delays as Lagrange multipliers.
Those algorithms were analyzed in the network fluid model
for wired networks (i.e., Lw = ∅ in (1)). Stability/optimality
of the resultant schemes were either proven analytically,
or validated by simulations/experiments.

C. THE GAP
In general, both the existing NUM optimization solutions
and the enhanced TCP schemes can be regarded as primal-
dual solvers for NUM problem (1). However, queue lengths
act as (scaled) Lagrange multipliers in the former, whereas
queueing delays play such a role in the latter. Dynamics of
both queue lengths and queueing delays have the right scaling
with the link capacities; yet, they are by no means equivalent
measures. In addition, the primal updates in the NUM are
directly performed by source-rate controllers, while they are
implicitly affected by the window controllers in TCP designs.
There is clearly a gap to address.

The NUM paradigm originated from the reverse engineer-
ing of TCP, as its first application was to show that TCP
congestion control indeed solves a NUM problem [6]. This
paradigm is expected to guide re-engineering the Internet
protocols. However, the source-rate controllers proposed in
NUM schemes [7] are not confined to the design space of
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TCP congestion control. Such controllers need explicit mes-
sage passing of aggregate queue lengths

∑
l∈L(s)Ql from the

network routers, thereby undermining the protocol scalabil-
ity. In addition, because the mapping from the TCP window
sizews to the source rate xs may be complicated, the proposed
rate control scheme may be difficult to be performed by TCP.
Consequently, these issues preclude operating the relevant
NUM schemes for TCP applications.

Unlilke queue lengths, the aggregate queueing delay can be
locally estimated at the flow source without explicit feedback
from the network [3], [4], thereby preserving the scalability of
TCP. Based on this congestion measure, window-based con-
gestion controllers in Mo-Walrand scheme and FAST-TCP
[4], [28] were developed for the wired networks. In optimiza-
tion theory, Lagrange multipliers are introduced as auxiliary
dual variables to help solve constrained problems. In network
optimization (1), mapping these mathematical variables to
physical measures is non-unique. From scalability and imple-
mentation considerations, it appears that queueing delays can
be a better mapping choice for Lagrange multipliers than
queue lengths. Relying on this mapping, we can develop non-
standard and implicit primal-dual solvers to perform end-to-
end window adjustment in TCP congestion control. To this
end, we next generalize Mo-Walrand approach to develop
TCP window control oriented network optimization schemes
for mobile applications.

III. ALGORITHM DEVELOPMENT
Adopting aggregate queueing delay as the congestion mea-
sure at the flow source, we develop the following TCP con-
gestion control and wireless-link scheduling schemes.
Congestion Control: Just like FAST-TCP, our proposed

congestion control method at the transport layer is divided
into four processes, namely, estimation, window control,
data control, and burstiness control [4]. Upon receiving an
in-order ACK packet, estimation component at flow source
s calculates the current round-trip time (RTT) and updates
local values of AvgRTTs and BaseRTTs, where BaseRTTs is
given by the minimum RTT observed so far to approximate
the propagation (plus processing) delay, and average RTT
AvgRTTs is updated according to the current RTTs as:

AvgRTTs←
255
256
× AvgRTTs +

1
256
× RTTs. (8)

Based on AvgRTTs and BaseRTTs, window control compo-
nent adjusts the transmission window size ws:

ws← ws − κ
BaseRTTs
AvgRTTs

w−2ρ+1s (ws −
BaseRTTs
AvgRTTs

ws − ps)

(9)

where κ is a positive stepsize, and ρ ∈ [0, 1] is a constant
parameter. Then data control component decides which pack-
ets to be transmitted, whereas burstiness control component
decides when to transmit [4]. When an ACK packet is lost or
not received in order, the slow start or fast recovery algorithm
in current TCP will be used to handle transmission time-outs
or duplicate ACKs.

Wireless-Link Scheduling: The AP coordinates slotted
transmission over wireless links. At slot n, it reads the queue
length QueLENl[n] and computes the average rate AveRl[n]
using a similar low-pass filter as with (8) per wireless link l.
Then the scheduler performs a policy so that

r∗[n] = arg max
r∈R(h[n])

∑
l∈Lw

QueLENl[n]
AveRl[n]

rl . (10)

In particular, for a time-division downlink or uplink, let Rl[n]
be the maximum rate which link l can achieve at slot n,
∀l ∈ Lw. Then the strategy (10) is just to select the link
with the highest QueLENl [n]

AveRl [n]
Rl[n] for transmissions per slot.

This scheduler in fact performs a modified largest-weighted-
delay-first (M-LWDF) strategy [39].

Stemmed from a cross-layer design, the proposed solutions
could be deployed with the current layered network infras-
tructure without difficulty. The congestion control (9) does
not violate the distributed end-to-end mechanism of TCP,
whereas the scheduler (10) can be readily modified from
existing scheduling scheme at wireless AP.Working together,
these two schemes can also approach the optimal solution of
the problem (1), as will be shown in the sequel.

A. FLUID MODEL OF NETWORK
We assume a network fluid model in which data packets can
be divided indefinitely [28]. Let w := {ws,∀s} and d :=
{ds,∀s}, where ws denotes the window size, and ds denotes
the fixed round-trip propagation (plus processing) delay for
flow s ∈ S. Let q := {ql,∀l} collect the round-trip queueing
delays ql for links, ∀l ∈ L; and define the aggregate queueing
delay qs :=

∑
l∈L(s) ql along the routes for flow s. Together

with source rates xs, we have the following relationships:

xs(ds + qs) = ws, ∀s ∈ S (11)

ql

(
cl −

∑
s∈S(l)

xs

)
= 0, ∀l ∈ Lf (12)

∑
s∈S(l)

xs ≤ cl, ∀l ∈ Lf (13)

ql

(
rl −

∑
s∈S(l)

xs

)
= 0, ∀l ∈ Lw (14)

∑
s∈S(l)

xs ≤ rl, ∀l ∈ Lw (15)

r ∈ R̄, x ≥ 0, q ≥ 0 (16)

where (11) is due to the fact that the flow rate xs is equal to the
window sizews divided by the total RTT ds+qs of flow s; (13)
and (15) are due to link capacity constraints; (12) and (14)
are due to the the following reasons: because the data packet
can be divided indefinitely (i.e., infinitely small), when the
total rate through the link l is less than its capacity cl or rl ,
the queue size (and queueing delay) on this link is zero.

Assume that the AP can accurately maintain the values
of average rates AveRl[n] per wireless link. It follows from
the Little’s law that the average queueing delay is equal to
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average queue length divided by average rate. In the schedul-
ing policy (10), the ‘‘instantaneous’’ delay, given by the ratio
of current queue length QueLENl[n] and the average rate
AveRl[n], is used as the weight for user rate rl . By taking
appropriate time scaling, a fluid limit argument can be applied
such that the ‘‘stochastic’’ delay QueLENl [n]

AveRl [n]
can take the place

of the average delay ql in the so-called fluid model [31].
The scheduling policy (10) then in turn amounts to a aver-
age queueing-delay based one; i.e., it maximizes the sum of
delay-capacity products with all links per h:

r∗(h) ∈ arg max
r∈R(h)

∑
l∈Lw

qlrl .

Based on this scheduler, we then have:

r∗ := Eh
[
r∗(h)

]
∈ argmax

r∈R̄

∑
l∈Lw

qlrl . (17)

Also assume that BaseRTTs and AvgRTTs can precisely
approximate the propagation delay ds and total RTT d̄s :=
ds + qs. The window update (9) then amounts to:

dws = −κ
ds
d̄s
w−2ρ+1s (ws − ds

ws
d̄s
− ps).

Noting xs = ws/d̄s from (11), define vs := ws−xsds−ps and
v := {vs,∀s}. The window adjustments indeed correspond to
an ordinary differential equation per flow s in the fluid model:

d
dt
ws(t) = −κ

ds
d̄s
w−2ρ+1s vs, ∀s. (18)

Our TCP congestion control scheme then amounts to
adjusting the window sizews with (18), which in turn controls
the source-rate vector x, wireless-link capacity vector r, and
queueing delay vector q via (11)–(17). Notice that thewindow
update (18) in fact controls the queueing of the flows; hence,
we name the scheme QUIC-TCP with 0 ≤ ρ ≤ 1. With ρ =
1, the algorithm becomes the Mo-Walrand’s scheme [28]:
d
dtws(t) = −κ

ds
d̄s

vs
ws
. For ρ = 1/2, it corresponds to d

dtws(t) =

−κ ds
d̄s
vs, which resembles FAST-TCP [4]: d

dtws(t) = −κvs.
The proposed scheduler (17) is in fact a MaxWeight-

type one [7], [32], [36]; yet, instead of queue lengths, here
queueing delays are used as the weights for transmission
rates over links. This queueing-delay based scheduling (17)
is readily implied by the KKT condition (7), due to the fact
that queueing delays play the role of Lagrange multipliers in
the proposed schemes. Interestingly, we will show that such
a scheduling policy and window control strategy (18) are
actually ‘‘glued’’ together to construct a primal-dual solver
for (1). Note that the proposed MaxWeight-scheduler (17) is
easy to implement for the one-hop wireless networks under
consideration, where an AP exists to compute the weights for
all its links and make the scheduling decision.

B. THE MAPPING F : w → (x, q)
The relationships (11)–(17) actually determine a mapping
from the window sizes to the flow rates and queueing delays:
F : w → (x, q) in TCP congestion control. To analyze the

proposed schemes, it is important to specify this mapping.
To this end, consider a convex optimization problem:

max
x,r

∑
s∈S

(ws log xs − dsxs), s. t. (C1)–(C3) of (1). (19)

Careful examination can tell that (11)–(17) are equivalent to
the KKT conditions for the problem (19) [cf. (2–(7)], with
q acting as Lagrange multipliers for the constraints (C1)
and (C2). Hence, the mapping F can be determined by the
solutions of (19) and its dual problem.

As with [28], we define that a link is a ‘‘bottleneck’’ if
the sum-rate over this link matches its capacity. Denote by
B(w) the set of bottleneck links for a given w. In addition,
w is called an ‘‘interior point’’ if there exists an ε > 0 so
that B(w′) remains unchanged, ∀w′ ∈ Nε(w) neighborhood
of w. All other w are called ‘‘boundary points’’. Capitalizing
on that the mapping F can be determined by the solutions
of (19), we then prove the following properties of w→ (x, q)
in the Appendix A:

1) The source rate vector x(w) is a continuous function
of w, and this function is differentiable except at the
boundary points.

2) The source rate xs is a non-decreasing function of its
own ws if all other ws′ , ∀s′ 6= s, remain fixed; in
addition, when x(w) is differentiable, we must have
0 ≤ ∂xs

∂ws
≤

1
ds
, ∀s.

3) The aggregate queueing delay vector qs(w) :=

{qs(w),∀s} is a continuous function of w, and it is dif-
ferentiable except at the boundary points; when qs(w)
is differentiable, we have 0 ≤ ∂qs

∂ws
≤

1
xs
, ∀s.

Property 1) was proven for wired networks in [28, Claims
3 and 4]. A similar proof can be used to prove it for last-
hop wireless networks here, provided that the AP performs
queueing-delay based scheduling. Properties 2) and 3) are
new. Property 2) can be derived by examining the partial first
derivative ∂xs/∂ws, whereas property 3) is a consequence of
property 2) and equation (11).

Property 2) states that a source s could increase its rate xs
by increasing its transmission window size ws, as all other
ws′ , ∀s′ 6= s, remain fixed. The marginal increase ∂xs/∂ws
is at most 1/ds which occurs when its aggregate queueing
delay qs = 0 [cf. (11)], i.e., the network is under-loaded.
Note that although the aggregate queueing delay vector qs is
uniquely determined for a given w, the queueing delay vector
q is not necessarily unique, unless the number of independent
bottleneck links is equal to the number of sources such that
q can be solved from qs. It follows from property 3) that
aggregate queueing delay qs increases as ws increases, and
its marginal increase cannot exceed 1/xs. These properties are
useful for the analysis in the sequel.

C. OPTIMAL NETWORK EQUILIBRIUM
At equilibrium of window-size adjustment (18), we clearly
have vs = 0, ∀s. Let w∗ stand for the window-size vector
at this equilibrium. Correspondingly, x∗, r∗ and q∗ stand
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for the source-rate vector, wireless-link capacity vector, and
queueing-delay vector yielded by w∗.
Theorem 1: For the proposed joint design, we have a

unique window-size vector w∗ to make v = 0; and the rate
vector x∗ = x(w∗) is an optimal solution to problem (1).

Proof: See Appendix B.
The sketches of the proof for Theorem 1 (as well as

Lemma 2, Lemma 3, and Theorem 3) appeared in [29,
Chapter 2]; we include them in the Appendix to make this
paper self-contained. Theorem 1 demonstrates that by forcing
vs = 0, ∀s, with the proposed QUIC-TCP window control,
one can approach the optimal source rate vector x∗ for (1).
In other words, the absolute value of vs can indicate the
distance from optimality per flow source s. Recall that the
value of vs can be obtained with only local observations
(BaseRTTs and AvgRTTs); hence, vs = 0 can serve as a
decoupled optimality criterion for the flow source s. Together
with the link-scheduling policy (17), window control (18)
constructs a negative feedback system towardsw∗. For a large
ws with vs = ws − xsds − ps > 0, we have a negative
dws/dt to enforce decreasing of the window size which in
turn decreases vs towards zero; and vice verse. The extra
factor ds

d̄s
w−2ρ+1s in (18) is to ensure the convergence of such

a system to the desired equilibrium.
Relying on only local observations without support of

routers, the window control (18) and link-scheduling pol-
icy (17) entail implicit primal-dual updates of {x, r, q} to
solve (1). This is different from the gradient-type explicit
primal-dual solutions in the NUM schemes [31], [32], which
are hard to implement by the TCP.On the other hand, different
from the heuristic TCP enhancements without analytical per-
formance guarantees [12], [33], [34], we next establish con-
vergence of the proposed QUIC-TCP to optimal equilibrium
via a Lyapunov method.

IV. PERFORMANCE ANALYSIS
To show the global convergence of (18), we first characterize
the capacity region R̄ for wireless links. Rewrite the prob-
lem (1) into a matrix form:

max
∑
s∈S

ps log xs

s. t. Af x ≤ c, Awx ≤ r,

r ∈ R̄, x ≥ 0 (20)

where c := {cl,∀l ∈ Lf } and the routing matrix A :=
[ATf , ATw]

T with its (l, s)th entry Als = 1 if s ∈ S(l) and
Als = 0 otherwise.

For the closed and convex capacity region R̄, we can
establish that:
Lemma 1: We can delineate the capacity region as R̄ =
{r ≥ 0 | f (r) ≤ 0} where f (r) is a convex function.

Proof: Given any convex R̄, we can always define an
indicator-alike function:

f (r) =

{
0, if r ∈ R̄,
∞, otherwise.

FIGURE 1. Typical capacity regions.

Since R̄ is convex, we can show that this f (r) is a convex
function. Actually such a function is not unique in many
cases. Here since R̄ is closed, we can also define

f (r) = dist(r, R̄)

where dist(r, R̄) calculates the distance between r and the
region R̄ [35, p. 103]. It can be shown that this f (r) is
continuous and convex.

There are possiblymany choices of f (r).What we are inter-
ested in are the ones that are continuous and differentiable.
For most of the capacity regions with wireless links, such
functions with the desired properties can be readily found.
Some typical capacity regions are shown in Fig. 1. If every
wireless link is given a dedicated channel with capacity cl by
the AP using e.g., TDMA or FDMA, the capacity region is a
box region in Fig. 1(a), for which we have:

f (r) = ||C−1r||∞ − 1 =
(∑

l
|rl/cl |∞

) 1
∞

− 1

where ||·||∞ denotes the (convex) infinity norm of vector. For
the smooth capacity region in Fig. 1(b), some differentiable
f (r) can be defined; while a convex piece-wise linear f (r) can
be found for the region in Fig. 1(c).

A. DEDICATED CHANNEL CASE
Wefirst show the convergence of QUIC-TCP (18) for the case
that each wireless link is given a dedicated TDMA/FDMA
channel with capacity cl by the AP; see Fig. 1(a). In this case,
wireless links can be actually treated as ‘‘wired’’ links since
they have decoupled and constant ergodic capacities; i.e., we
have rl ≡ cl in (20), ∀l ∈ Lw, regardless of the scheduling
scheme in use. The problem (20) then reduces to∑

s∈S
ps log xs, s. t. Ax ≤ c, x ≥ 0. (21)

This is the same problem that was considered for wired
networks in [4], [6], [8], [28]. As the wireless-link schedul-
ing becomes irrelevant, the existence and uniqueness of
optimal window vector w∗ in Theorem 1 holds under the
scheduler (17) or any other schedulers. For this simple case,
we prove the convergence of QUIC-TCP algorithms (18) to
w∗ in the following theorem:
Theorem 2: When each wireless link is given a dedicated

channel, the window adjustment scheme (18) with ρ ∈ (0, 1]
can globally converge to the equilibrium point w∗, and the
corresponding flow rates converge to x∗.

Proof: Denote by B the set of bottleneck links for a
given w, AB the sub-matrix of A obtained by keeping only
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the rows that correspond to bottleneck links, and qB and cB
the corresponding sub-vector of q and sub-vector of c for
bottleneck links.

Construct the matrices W := diag(w), X := diag(x),
D := diag(d), and D̄ := diag(d̄) with d̄ := {d̄s,∀s}. Recall
that non-bottleneck links should have zero queueing delays.
Using the latter diagonal matrices, we re-express (11) as

X(ATBqB + d) = w. (22)

For an interior point w, both x(w) and qs(w) are differen-
tiable. Notice that ATBqB + d = d̄ . Denote by Ja|b := {

∂ai
∂bj
,

∀i, j} the Jacobian matrix of vector a over vector b. Differen-
tiating both sides of (22) with respect to w, we have:

D̄Jx|w + XATBJqB|w = I (23)

where I denotes identity matrix. Multiplying both sides
of (23) by ABD̄

−1
, we further have:

ABJx|w + ABD̄
−1
XATBJqB|w = ABD̄

−1
. (24)

But since it holds for the bottleneck links that ABx = cB,
we also have ABJx|w = 0. Substituting this into (24), we can
obtain: JqB|w = (ABD̄

−1
XATB )

−1ABD̄
−1

. Substituting this
term into (23) yields:

Jx|w = D̄
−1

(I − XATB (ABD̄
−1
XATB )

−1ABD̄
−1

). (25)

Using the convenient notation

M := ATB (ABD̄
−1
XATB )

−1AB,

we have Jx|w = D̄
−1

(I − XMD̄
−1

). Clearly, here M is
positive semi-definite.

For the window control (18), construct a function

Y (w) =
1
2

∑
s∈S

(
vs

(ws)ρ

)2

. (26)

For an interior point w, we have:

d
dt
Y (w(t))

=

∑
s

(
∂Y
∂ws

dws(t)
dt

)

=

∑
s

[(∑
s′

(
vs′

wρs′

∂(vs′/w
ρ

s′ )

∂ws

))
dws(t)
dt

]
= −κvTW−ρ[W−ρJv|w − ρW−ρ−1V ]DD̄

−1
W−2ρ+1v

= −κvT [W−2ρ(I − DJx|w)− ρW−2ρ−1

× (W − DD̄
−1
W − P)]DD̄

−1
W−2ρ+1v

= −κvT [W−2ρ(I − DD̄
−1

(I − XMD̄
−1

))− ρW−2ρ−1

× (W − DD̄
−1
W − P)]DD̄

−1
W−2ρ+1v

= −κvT [(1− ρ)W−2ρ(I − DD̄
−1

)DD̄
−1
W−2ρ+1

+ ρW−2ρ−1PDD̄
−1
W−2ρ+1

+W−2ρ+1DD̄
−2
MD̄

−2
DW−2ρ+1]v (27)

where we define diagonal matrices V := diag(v) and P :=
diag(p) for convenience. Recall that M is positive semi-
definite, (I − DD̄

−1
) is diagonal with nonnegative entries,

all W , D, D̄ and P are also diagonal with positive diagonal
entries. It then readily follows that the whole matrix inside
the square bracket of (27) is positive definite, ∀ρ ∈ (0, 1].
This implies that dY (w(t))/dt < 0; in other words, Y (w(t)) is
strictly decreasing in t , at all interior points unless v = 0.
At the boundary points, for any arbitrary direction d [28,

Corollary 3], the right-hand directional derivative of x(w) can
be always easily defined; so we can extend the definition
of Jx|w as a function of direction d . Using this extended
definition, we canmimic the proof of [28, Theorem 5] to show
that Y (w(t)) is also strictly decreasing in t at boundary points
unless v = 0.

Now it is proven that Y (w(t)) is a Lyapunov function,
which is nonnegative and unbounded, and has globally nega-
tive time derivative. As a result, the unique equilibrium v = 0
of the system (18) is globally stable asymptotically [40]; this
implies that (18) globally converges to its unique equilibrium
w∗, and the corresponding flow rates converge to x∗.

Theorem 2 holds for the class of QUIC-TCP schemes (18),
∀ρ ∈ (0, 1]. It is actually a generalization of [28, The-
orem 5], which proves the convergence of Mo-Walrand
scheme, i.e., (18) with ρ = 1. An intriguing case is the QUIC-
TCP (18) with ρ = 0, leading to d

dtws(t) = −κ
ds
d̄s

vs
ws
, ∀s.

Relying on a Lyapunov function Y (w) = (1/2)
∑

s∈S (vs)
2,

we can show that d
dt Y (t) = −κvT [(I − DD̄

−1
)DX +

DD̄
−1
XMXD̄

−1
D]v. In this case, the matrix inside the

bracket is positive semi-definite but it is not always guaran-
teed to be positive definite; the equilibrium v = 0 is then
stable yet not asymptotically stable.

B. SMOOTH CAPACITY REGION CASE
From an information-theoretic viewpoint, downlink and
uplink with dedicated TDMA/FDMA channels are often
strictly sub-optimal. In wireless standards, the high-speed
data transmissions are actually carried out over a physical
channel shared by all logical wireless links and an adaptive
scheduling algorithm is performed by the AP. In this case,
the capacity region R̄ is no longer a box region and the
capacities of wireless links are coupled. We now consider a
smooth capacity region as in Fig. 1(b). For such a region,
a strictly convex and twice differentiable f (r) can be found
to delineate the boundary of R̄.

In this case, AP needs to preform the scheduler (17)
for transmissions over coupled wireless links. Let qw :=
{ql,∀l ∈ Lw}. With ∇f denoting the gradient of f , we can
prove the following lemma for the scheduling policy (17):
Lemma 2: With a strictly convex and twice differentiable

f (r), we have r∗ = argmaxr∈R̄
∑

l∈Lw qlrl iff f (r
∗) = 0 and

θ∇f (r∗) = qw for a certain constant θ > 0.
Proof: See Appendix C.

Lemma 2 states that achieved r∗ by the scheduler (17)
indeed resides on the boundary of R̄ (i.e., f (r∗) = 0) and
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FIGURE 2. Geometric interpretation of Lemma 2.

the gradient of f at this point has the same direction with
the queueing-delay vector qw (i.e., θ∇f (r∗) = qw); see an
illustration in Fig. 2.

Based on Lemma 2, it can be also shown that
Lemma 3: With the scheduling policy (17), the Jacobian

matrix Jr∗|qw is positive definite.
Proof: See Appendix D.

Building on Lemma 3, it is ready to establish that:
Theorem 3: For the capacity region R̄ = {r | r ≥

0, f (r) ≤ 0} with a strictly convex and twice differentiable
f (r), the window adjustment (18), ∀ρ ∈ (0, 1] together
with the scheduling plicy (17) can converge to the unique
equilibrium w∗, and the corresponding flow rates converge
to x∗.

Proof: See Appendix E.
Theorem 3 shows the existence of optimal end-to-end

window-based schemes for network congestion control over
coupled wireless links. This becomes possible with the help
of the queueing-delay based scheduler (17) performed at
the wireless AP. With this scheduler, the wireless links are
coupled in a nice manner so that the Jacobian matrix Jr∗|qw is
positive definite, leading to global stability of QUIC-TCP.

C. DISCUSSIONS ON OTHER CASES
When only a few levels of rate and/or power adaptations are
supported by the wireless standards, the capacity region R̄
may have a piece-wise linear boundary as in Fig. 1(c). Such
a region is defined by the intersection of the non-negative
orthant and a number of half-spaces:

aTi r− bi ≤ 0, i = 1, . . . , I , (28)

where ai is the (Lw-dimensional) normal vector and the scalar
bi determines the offset from the origin for the ith half-space.
The piece-wise linear boundary of R̄ (i.e., f (r) = 0) is then
dictated by the hyperplanes {r | aTi r − bi = 0}. Suppose
that there exist N corner points for this boundary surface,
where a corner point zn is the intersection of Lw hyperplanes
with the half-spaces (28). For the nth corner point, let the set
A(n) collect its associated Lw normal vectors ai, and C(A(n))
denote the conic hull of all the vectors ai ∈ A(n).
Claim 1: For a piece-wise linear f (r), the optimal rate

vector r∗ = argmaxr∈R̄ qTwr is given by

r∗ = zn, if qw ∈ C(A(n)).

Proof: For a corner point zn, we must have:

f (r) ≥ f (zn)+ aTi (r− zn), ∀ai ∈ A(n)

since f (r) is convex. This implies that for all r ∈ R̄.

aTi (zn − r) ≥ f (zn)− f (r) ≥ 0, ∀ai ∈ A(n);

where the last inequality holds due to f (zn) = 0 and f (r) ≤ 0,
∀r ∈ R̄.
Now if qw ∈ C(A(n)), we have qw =

∑
i:ai∈A(n) θiai for

some θi ≥ 0 by the definition of conic hull [35]. Therefore,
it follows that

qTw(zn − r) =
∑

i:ai∈A(n)

θiaTi (zn − r)

≥

∑
i:ai∈A(n)

θi(f (zn)− f (r)) ≥ 0.

In other words, zn = argmaxr∈R̄ qTwr.
Note that a corner point zn can be also the intersection of

Lw−F hyperplanes with the half-spaces (28) and F facets of
the non-negative orthant. In this case, we let A(n) collect the
associated Lw−F normal vectors ai and their projects on the
F facets of the non-negative orthant. Then it can be similarly
shown that Claim 1 still holds.

Given a wireless capacity region with a piece-wise linear
boundary as in Fig. 1(c), clearly the optimal r∗ is always
attained at one of the corner points for any non-negative
queueing delay vector qw. The Lyapunov approach in the
proof of Theorem 3 cannot be generalized to this case since r∗

is non-differentiable with respect to qw at all the points qw =
ai. We argue that convergence of the proposed schemes (18)
is also expected in this case as follows. Note that for a
normal vector ai := {ai,l, l = 1, . . . ,Lw}, the portion of the
linear function aTi r−bi in the non-negative orthant coincides
with that of a l1 norm:

∑
l(ai,lrl) − bi. With a small ε,

we replace the linear function aTi r − bi using a l1+ε norm:(∑
l(ai,lrl)

1+ε
) 1
1+ε − bi. Imagine that the capacity region R̄

becomes the intersection of non-negative orthant and(∑
l
(ai,lrl)1+ε

) 1
1+ε
− bi ≤ 0, i = 1, . . . , I . (29)

The corresponding function f (ε)(r) for R̄ then become piece-
wise l1+ε norm of r. Since the spaces defined by (29) are
convex, as the intersection of these convex spaces the region
R̄ is still convex. Furthermore, smooth the intersection points
of (29) such that f (ε)(r) has a continuous gradient vector.
This is possible due to the convexity of R̄. Then the origi-
nal piece-wise linear boundary of R̄ is smoothed such that
the corresponding f (ε)(r) becomes strictly convex and twice
differentiable. Consequently, the convergence of (18) readily
follows from Theorem 3. As a limiting case of f (ε)(r) with
ε → 0, we then expect that the convergence of (18) follows
also for a piece-wise linear f (r). To corroborate this argument,
simulation results in Section V-Awill be provided to show the
convergence of (18) in this case.

For all cases that the capacity region R̄ is a combination of
those in Fig. 1(a)–(c), convergence of proposed schemes can
be argued by combining the proofs for individual cases.
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FIGURE 3. Network topology.

V. SIMULATION RESULTS
A. MATLAB SIMULATIONS
First, we conduct Matlab simulations to assess the perfor-
mance of the proposed schemes in the fluid model. The
considered network has six fixed computer nodes (N0–N5),
a base station (BS) and four wireless user equipments (UEs).
As shown in Fig. 3, the BS is the access point for the wire-
less UEs. The capacities and delays of all links are marked.
The BS transmits to users over a shared downlink with a
5 MHz bandwidth, and the average received signal-to-noise
ratios (SNRs) for users (UE0–UE3) are 11, 17, 12, and 15 dB,
respectively. For transmissions over wireless links, the BS
supports five adaptive modulation and coding (AMC) modes.
The independent fading processes for wireless links follow
a Rayleigh random process. The mobility-induced Doppler
spread fd for each UE is 20 Hz. The AMC and wireless
channel modeling follow [41].

Four TCP connections are set up to carry four FTP streams,
where the packet size of each FTP stream is 200 bytes.
We implement the proposed window control scheme at the
source nodes, and employ the scheduling policy (17) at the
BS. In the simulations, the algorithm (9) is used to update
the window size every 20 milliseconds, where the step size
κ = 0.05. Local information ds, d̄s and vs are assumed
available at each flow source swithout feedback delay. When
ρ is set to 0, 0.25, 0.5, 1, respectively, the source rate evo-
lution processes of the four FTP streams with the proposed
algorithms are shown in Fig. 4. The optimal source rate
obtained by standard sub-gradient iterative solution (1) is also
provided to serve as a benchmark. Evidently, all QUIC-TCP
algorithms can converge to the optimal equilibrium point,
thereby validating the correctness and effectiveness of the
proposed schemes.

B. NS-2 SIMULATIONS
Consider the network in Fig. 3 again. We rely on ns-2 sim-
ulator to assess the performance of the proposed schemes in

FIGURE 4. Evolutions of the source rates.

IPv6 based Internet environment.Wemodify the ns-2 module
of the existing FAST-TCP in accordance with the algo-
rithm (9) to generate our QUIC-TCP proxy. The wireless
network simulates an IEEE 802.16 WiMax network, and
its bandwidth is 10 MHz. The average SNRs for users
(UE0–UE3) are 12, 19, 13, and 16 dB, respectively. The
wireless link is affected by Rayleigh fading, with a Doppler
frequency of 128 Hz. Eight different convolutional turbo
coded quadrature amplitude modulations (QAMs) are used
at the BS as the AMCmodes for downlink transmission [41].

Data packets are transmitted to UEs over the slotted down-
link, and the duration of the time slot is 10 ms. The four
FTP flows are asynchronous: ftp0 starts at 0 sec and ends at
2000 sec; ftp1 starts at 0 sec and ends at 2000 sec; ftp2 starts
at 0 sec and ends at 2000 sec; and ftp3 starts at 0 sec and
ends at 2000 sec. The packet size for FTP flows is 200 bytes.
Buffer size at fixed nodes and the BS is 2000 packets. The
target queue size ps of each flow is set to 200 packets.
The BS implements the scheduling policy (10). Taking into
account the feedback delay, we run TCP-Reno [11], TCP-
Vegas [8], TCP-Cubic [19], TCP-Compound [18], FAST-
TCP [4], and the proposed QUIC-TCP (ρ = 0.5). The
window update step size for FAST-TCP and QUIC-TCP is
set as κ = 1.5. Fig. 5 shows the evolution processes of the
window sizes and source rates with different TCP schemes.
According to (9), when the congestion window in QUIC-
TCP is far from the equilibrium point, it will be adjusted
sharply, and the update speed will slow down near the equi-
librium. It is clear that the proposed QUIC-TCP algorithm
can quickly and steadily converge to the equilibrium point,
and the achieved average rates of flows ftp0, ftp1, ftp2, and
ftp3 are 780.75, 781.46, 781.11, and 781.36 packets/s, respec-
tively. Although the global convergence of FAST-TCP has not
been proven, its convergence is also shown, with achieved
average flow rates given by 780.86, 781.26, 781.06, and
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781.46 packets/s, just a bit smaller than those with QUIC-
TCP. TCP-Compound uses estimated queuing delay to mea-
sure congestion; if the queuing delay is small, it assumes that
there is no congestion on the link and rapidly increases its
rate. TCP-Compound maintains two congestion windows: a
regular AIMD window, and a delay-based window. The final
actual sliding window size is the sum of these two windows.
The AIMD window is increased in the same way as TCP-
Reno. If the delay is small, the delay-based window will
increase rapidly to improve network utilization. Once heavy
queueing is experienced, the delay window will gradually
decrease to compensate for the increased AIMD window. As
a result, the average flow rates are 1216.97, 184.54, 1186.04,
and 357.48 packets/s, respectively. Compared with QUIC-
TCP, its total throughput loses 6.2%. TCP-Cubic uses a cubic
function as the growth function of the congestion window.
The growth of the congestion window is no longer related
to RTT, but only depends on the time interval since the
last congestion and the maximum window value when the
congestion last occurred. At the beginning, the congestion
window grows quickly. When approaching the symmetric
center of cubic function, the growth rate becomes gentle,
avoiding sudden increase in traffic and causing packet loss.
While it is close to symmetric center, the congestion window
no longer increases. After moving away from the symmet-
ric center, the congestion window continues to grow. When
packet loss occurs, the congestion window is multiplicatively
reduced, then the aforementioned window growth process
is resumed. The resultant average flow rates are 1008.06,
177.17, 1045.91, and 742.42 packets/s; the total throughput
is lost by 5.1% compared to QUIC-TCP. The convergence
speed of TCP-Vegas is very slow. Here, the lower and upper
limits of the window values are set to 200 and 203 pack-
ets. After comparing the size of the current queue with the
latter two thresholds, TCP-Vegas decreases or increases the
size of the congestion window accordingly. Even if it is far
from the equilibrium point, its window-size adjustment also
changes linearly, leading to a slow convergence speed. As a
result, the average flow rates are 436.48, 1453.28, 351.09, and
589.47 packets/s, respectively. Compared with QUIC-TCP,
its total throughput loses 10.4%. Unlike other TCPs, TCP-
Reno uses packet loss as congestionmeasure, and implements
the AIMD algorithm to adjust the window-size value. At the
beginning, the algorithm linearly increases the window size
to detect the effective bandwidth until the packet is lost.
After packet loss, it reduces the window size by half to avoid
congestion. Because of the AIMD scheme, the TCP-Reno
algorithm exhibits ‘‘sawtooth’’ oscillations during the win-
dow adjustment process. The average flow rates are 356.78,
345.91, 265.31, and 1718.54 packets/s; the total throughput is
lost by 16.3% compared toQUIC-TCP. It can be also seen that
all TCP schemes except FAST-TCP and QUIC-TCP allocate
less resources to certain flows, resulting in unfairness among
flows.

We also test the TCP performance under different link
scheduling schemes. In addition to the queueing delay based

FIGURE 5. Window size and source rate evolutions.

scheme (10), we simulate three other schedulers: a classic
Round-robin scheduler, a max-SNR scheduler which simply
selects the wireless link with highest SNR per slot n, and
the queue-length based scheduler in prior NUM solutions
[32]. Assuming that all data flows run from 0 seconds
to 2000 seconds, Fig. 6 shows the performance of TCP-
Reno, TCP-Vegas, TCP-Compound, TCP-Cubic, FAST-TCP
and QUIC-TCP (ρ = 0.5) under different link schedul-
ing algorithms. In addition to the total throughput

∑
s xs,

we use the celebrated Jain’s index to gauge fairness [42]:
F = (

∑
s xs)

2

|S|
∑

s(xs)2
(|S| represents the number of data streams).

Because there are four data flows in this experiment (|S| = 4),
this index ranges from 0.25 (least unfair) to 1 (most fair).
For comparison, we also provide the results

∑
s ps log xs (i.e.,

objective of optimization problem (1)) achieved by different
schemes. According to Theorem 1, QUIC-TCP only gener-
ates optimal x∗ for (1) under the scheduling policy (10). This
can be shown from Fig. 6 (top), in which QUIC-TCP using
this scheduling algorithm generates the highest

∑
s ps log xs,

thereby achieving a good balance between the total through-
put

∑
s xs and the flow fairness. As shown in Fig. 6 (mid-

dle), the total throughput of QUIC-TCP with scheduling
policy (10) is 3124.68 packets/s, which is 9.3% larger than the
throughput (2856.75 packets/s) under the Round-robin sched-
uler and is close to the those under max-SNR and queue-
length based schedulers (3313.89 and 3215.84 packets/s).
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FIGURE 6. TCP performance under different schedulers.

On the other hand, as shown in Fig. 6 (bottom), the Jain’s
fairness index under the scheduler (10) isF = 0.999, which is
significantly higher than the fairness (0.749 and 0.745) under
the maximum SNR and queue-length based schedulers, and
is even better than that (0.938) under the Round-robin sched-
uler. Under different scheduling policies, the performance of
FAST-TCP and QUIC-TCP is similar, while the performance
of other TCP drops significantly. For example, under the
queueing-delay based scheduler (10), the Jain’s index with
TCP-Cubic is 0.820 (0.179 less); while Jain’s indices with
TCP-Compound and TCP-Vegas are 0.771 and 0.722, which
are reduced by 0.288 and 0.277 respectively compared with
TCP-QUIC. Performance degradation for TCP-Reno is even
larger. Under the queueing-delay based scheduler, its Jain’s
index is 0.551 (0.448 less).

To further compare the FAST- and QUIC-TCP, Fig. 7 (a)
shows the aggregate throughputs with them for the asyn-
chronous FTP flow case, when different stepsizes are
adopted. It is found that performance of both FAST- and
QUIC-TCP is not so sensitive to stepsize; both work well
for a large range of stepsizes. The aggregate throughput
with FAST-TCP is essentially unaffected for stepsizes within
[0.01, 2.5]; whereas QUIC-TCP with ρ = 0.5 has a larger
stepsize range [0.01, 3.3] for unchanged throughput. When
the stepsize is larger than 2.5 for FAST-TCP, large oscillations
in source rates (and window sizes) occur, leading to through-
put degradation. The source-rate oscillations with QUIC-TCP
are reduced for large stepsizes such that the decrease in total
throughput is slower than the FAST-TCP. Compared with
FAST-TCP algorithm d

dtws(t) = −κvs, the window update
d
dtws(t) = −κ

ds
d̄s
vs in QUIC-TCP with ρ = 0.5 has an extra

ds/d̄s factor. In Lyapunov analysis, this factor helps establish
the global stability of the QUIC-TCP. In simulations, it turns
out to also help stabilize the window-size and source-rate
updates, especially for large stepsizes. It is worth mentioning
that the ns-2 module of QUIC-TCP here is simply modified
from the module of FAST-TCP. Re-designing QUIC-TCP
according to its specifications may have better performance.

FIGURE 7. FAST-TCP and QUIC-TCP performance for different stepsizes.

Besides ρ = 0.5, QUIC-TCP with other ρ ∈ [0, 1]
works as well. Under queueing-delay based scheduler (10),
Fig. 7 (b) shows the lower and upper bounds of the ‘‘good’’
stepsizes for QUIC-TCP with different ρ, where the aggre-
gate throughputs do not degrade. The Matlab simulations
in Fig. 4 implies that given the same stepsize, QUIC-TCP
converges quicker for smaller ρ. For Internet with large
bandwidth-delay product, the flow source needs maintain
a pretty large window size ws. In the QUIC-TCP window
update d

dtws(t) = −κ
ds
d̄s
w−2ρ+1s vs, a small stepsize κ is thus

required for ρ < 0.5 to prevent too drastic window-size
changes, while a large κ is needed for ρ > 0.5 to avoid too
slow window updates. Fig. 7 (b) also shows the least-square-
error fittings of (logarithm of) lower- and upper-bounds to
a linear model y = ax + b. It is seen that the slope of the
upper-bounds is larger than that of the lower-bounds. This
implies that QUIC-TCP with larger ρ has a larger good-
stepsize ranges; e.g., QUIC-TCP with ρ = 1.0 can have
a range across three magnitude orders. Overall, QUIC-TCP
with a ρ slightly larger than 0.5 (e.g., ρ ≈ 0.55) could
serve best, i.e., having a large range of ‘‘normal’’ stepsizes
(0.02–7.1) without performance degradation.

VI. CONCLUDING REMARKS
We proved the existence of optimal window-based TCP con-
gestion control schemes for networks with wireless links.
A class of QUIC-TCP schemes were proposed. Leveraging
the Lyapunov method, we established that QUIC-TCP can
globally converge to the optimal network equilibrium with
the help of a queueing-delay based MaxWeight scheduler at
wireless AP. For simplicity, we assumed a last-hop wireless
network. Generalization of our approach to networks with
distributed ad-hoc wireless links is possible, e.g., along with
the works in [43], [44].

The utility function in (1) is the (p, 1)-proportionally fair
function – a special case of the (p, α)-proportionally fair
functions [28]. The proposed QUIC-TCP algorithms can be
generalized to achieve the (p, α)-proportional fairness which
includes the max-min fairness as α→∞. Morever, it would
be meaningful and valuable to evaluate the proposed schemes
in a real testbed. Establishing a state-of-the-art testbed and
testing our schemes in such a testbed will be an interesting
direction to pursue in our future work.
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The proposed approach can serve as a stepping stone in
the theory of applying optimization tools to develop and
analyze readily deployed network schemes over the Inter-
net infrastructure. The framework has far-reaching impli-
cations and enables more general cross-layer design of
Internet protocols for mobile applications. For instance, here
we assumed single-path routing and unicast TCP flows.
It will be also interesting to explore generalization of our
approach to networks withmultipath source routing in emerg-
ing (e.g., multi-homing) applications, and to TCP-friendly
multicast congestion control for real-time audio/video
non-TCP flows.

APPENDIX
A. PROOF FOR PROPERTIES OF THE MAPPING
F : w → (x, q)
Proof of Property 1: Observe that the mappingF : w→ x can
be in fact defined by the unique solution of (19). Following
the similar lines proving [29, Claims 3], we take a sequence
w(n) such that w(n)

→ w and let x(n) = F(w(n)). By the
compactness of the constraint set in (19), we can have a
subsequence w(nk ) → w so that the corresponding x(nk )

converges to, say Ex.
Define f (w, x) :=

∑
s∈S (ws log xs− dsxs). By the optimal-

ity of x(nk ), we have f (w(nk ), x(nk )) ≥ f (w(nk ), x) for all other
feasible x of (19). Upon taking the limit, it follows from the
continuity of function f that f (w, Ex) ≥ f (w, x) for all feasible
x. This implies exactly Ex = F(w). Therefore, the function
x(w) := F(w) is continuous.
Mimicking the similar lines in the proof of [29, Claims

4]Mo00, we can further prove function x(w) is differentiable
except at the boundary points.
Proof of Property 2: Suppose without loss of generality that

we have two window size vector w and w′, where only the
sth entry ws > w′s and all other ws′ = w′s′ , ∀s

′
6= s. Let

x := x(w) and x′ := x(w′) be the corresponding rate vectors
for w and w′, respectively. Since x and x′ are given by the
solution of (19), we clearly have:

f (w, x) ≥ f (w, x′), and f (w′, x) ≤ f (w′, x′).

Subtracting both sizes of the two inequalities then yield:

(ws − w′s) log xs ≥ (ws − w′s) log x
′
s.

Given ws > w′s, it follows that log xs ≥ log x ′s, or simply,
xs ≥ x ′s. This proves that xs is non-decreasing in its own
window size ws if all ws′ , ∀s′ 6= s, remain fixed;
When x(w) is differentiable, we can mimic the proof of

Theorems 2 and 3 to establish that the Jacobian matrix

Jx|w = D̄
−1

(I − XMD̄
−1

)

where the matrix M (and thus XMD̄
−1

) is positive semi-
definite [cf. (25)]. Since the positive semi-definite XMD̄

−1

has non-negative diagonal entries, it readily follows that

∂xs
∂ws
≤

1
ds
, ∀s. With ∂xs

∂ws
≥ 0 inferred by that xs is non-

decreasing in its window size ws when other ws′ , ∀s′ 6= s,
remain fixed, Property 2 is proven.
Proof of Property 3: From (11), we have qs = ws/xs −

ds, ∀s. It thus simply follows from Property 1 that qs(w) is
continuous and differentiable except at the boundary points.

When qs(w) is differentiable, we can show that the Jacobian
matrix Jqs|w = MD̄

−1
, where the matrixM is positive semi-

definite; see the proof of Theorems 2 and 3. This implies that
Jqs|w is positive semi-definite, and thus all its diagonal entries
∂qs

∂ws
≥ 0. Using Jqs|w, we have the matrix Jx|w = D̄

−1
(I −

XJqs|w). Therefore, ∂xs∂ws
=

1
ds
−

xs
ds
∂qs

∂ws
, ∀s. Since ∂xs

∂ws
≥ 0,

it readily follows ∂qs

∂ws
≤

1
xs
, ∀s. The proof is complete.

B. PROOF OF THEOREM 1
At the equilibrium v = 0, we have w∗s − x∗s ds − ps = 0;
and it is implied by (11) that w∗s = x∗s (ds + qs∗). Hence,
we readily have ps = x∗s q

s∗, ∀s. Now, if we set λ∗ ≡ q∗, the
latter becomes precisely the KKT condition (2). In addition,
given this equivalence mapping, the relationships (12)–(17)
for {x∗, r̄∗, q∗} turn into the KKT conditions (3)–(7). This
proves that (x∗, r̄∗) and q∗ in fact consist of the optimal
solutions of (1) and its dual problem. Moreover, it is easy to
prove the existence and uniqueness of the optimal x∗ for (1).
As the mapping w∗ → x∗ is also unique, the existence and
uniqueness of the optimal window-size vector w∗ follow.

C. PROOF OF LEMMA 2
As f (r) is strictly convex, it follows that

f (r∗)+ [∇f (r∗)]T (r− r∗) < f (r), ∀r 6= r∗.

We in turn have

f (r∗)− f (r) < [∇f (r∗)]T (r∗ − r), ∀r 6= r∗.

Suppose that f (r∗) = 0 and θ∇f (r∗) = qw. As f (r) ≤ 0 =
f (r∗), ∀r ∈ R̄, we then have

qTw(r
∗
− r) > θ(f (r∗)− f (r)) ≥ 0, ∀r 6= r∗, r ∈ R̄

It readily follows that

r∗ = argmax
r∈R̄

∑
l∈Lw

qlrl .

Now, for a strictly convex and twice differentiable f (r), its
gradient∇f (r) can take any value in the non-negative orthant.
As a result, we can always find a r∗ which satisfies f (r∗) = 0
and θ∇f (r∗) = qw for any qw ≥ 0. Hence, the converse is
also proven.

D. PROOF OF LEMMA 3
Differentiating both sides of f (r∗) = 0 yields

[∇f (r∗)]T Jr∗|qw = 0. (30)
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Noting that θ in θ∇f (r∗) = qw is actually a function θ (r∗) of
r∗, we also have:

∇f (r∗)
([
∂r∗1
∂ql

, · · · ,
∂r∗Lw
∂ql

]
∇θ(r∗)

)

+θ∇2 f (r∗)


∂r∗1
∂ql
...

∂r∗Lw
∂ql

 = el, ∀l ∈ Lw

where el denotes the vector [0, · · · , 1, · · · , 0]T with only its
lth entry equal to one. In the matrix form, we have

∇f (r∗)JTr∗|qw∇θ (r
∗)+ θ∇2f (r∗)Jr∗|qw = I. (31)

But since ∇f (r∗)JTr∗|qw = ([∇f (r∗)]T Jr∗|qw )
T
= 0, we read-

ily have θ∇2 f (r∗)Jr∗|qw = I and thus

Jr∗|qw = (1/θ )[∇2 f (r∗)]−1.

With ∇2 f (r∗) positive definite, it follows that Jr∗|qw is too.

E. PROOF OF THEOREM 3
Note that all wireless links should be utilized for some TCP
flows, since links not in use can be simply removed from
the logical link set. Given a w, the set of bottleneck links
then either does not contain any wireless links or contains all
wireless links when we have a smooth capacity region. If the
bottleneck set contains only part of thewireless links, we have
some ql > 0 and some ql = 0 for l ∈ Lw. According to the
queueing-delay based scheduling strategy (17), the links with
zero queueing delays must have zero capacity r∗l = 0 for this
smooth capacity region case. This means that the rates xs for
the flows traveling over these links must be zero. However,
this is impossible for the following reasons: For a given w,
the source rate vector must be the solution of (19); however,
if xs = 0, the rate vector will make the objective function
of (19) become −∞, which clearly cannot solve (19).

Suppose that w is an interior point. If the set of bottle-
neck links does not include any wireless links, the deriva-
tion of (27) in the proof of Theorem 2 is clearly still valid;
i.e., dY (w(t))/dt < 0 unless v = 0.
Given a bottleneck set containing all wireless links, we par-

tition the bottleneck-only routing matrix AB and queueing
delay vector qB into two parts:

AB =
[
Af ,B
Aw

]
, qB =

[
qf ,B
qw

]
where subscripts f ,B and w denote the parts related to the
wired and wireless bottleneck links, respectively.

Following the lines from (22) to (24), we have

ABJx|w + ABD̄
−1
XATBJqB|w = ABD̄

−1
. (32)

For the wired bottleneck links, it holds Af ,Bx = cB, and
thus Af ,BJx|w = 0. For wireless bottleneck links, we have:
Awx = r∗. This implies:

AwJx|w = [0 Jr∗|qw ]JqB|w.

Then overall we have

ABJx|w =
[
Af ,B
Aw

]
Jx|w =

[
0 0
0 Jr∗|qw

]
JqB|w := NJqB|w

It then follows from (32) that

(N + ABD̄
−1
XATB )JqB|w = ABD̄

−1
.

Since Jr∗|qw is positive definite by Lemma 3, we have a

positive semi-definite N ; thus, N + ABD̄
−1
XATB is positive

definite. It follows that

JqB|w = (N + ABD̄
−1
XATB )

−1ABD̄
−1
.

Substituting the latter into (23), we further obtain:

Jx|w = D̄
−1

(I − XATB (N + ABD̄
−1
XATB )

−1ABD̄
−1

).

Define the matrix

M ′ := ATB (N + ABD̄
−1
XATB )

−1AB (33)

and use the function Y (w) in (26). We can again show that the
time derivative dY (w(t))/dt is given by (27) withM replaced
byM ′. SinceM ′ is positive semi-definite as withM , the same
result holds ∀ρ ∈ (0, 1]; i.e., dY (w(t))/dt < 0 at all interior
points unless v = 0.
Using the same arguments for boundary points in the proof

of Theorem 2, we conclude that Y (w) is a Lyapunov func-
tion, which has a negative time derivative globally for the
system (18). The theorem readily follows.
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