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ABSTRACT A new model is presented to resolve cycle slips detection for triple-frequency observations of
BeiDou navigation satellite system (BDS) in this article when pseudorange observations aremissing or insuf-
ficiently accurate under harsh or special situations. Based on the first-order time-difference geometry-free
(GF) pseudorange-phase combination model, the new cycle slips detection and correction method based on
the triple-frequency carrier phase and Doppler observations is proposed. With analyses on the two common
sampling intervals (30 s and 1 s), it can be concluded that the optimal combination coefficients of the
proposed model relate to sampling intervals. Combinations [4, −2, −3], [−1, −5,6], and [−3,6, −2] are
selected to detect and correct cycle slips for 30 s sampling interval, while combinations [0,−1,1], [1,0,−1],
and [−3,2,2] are selected for 1 s sampling interval. The validity of the phase-Doppler combination model
under the static condition and the steady ionosphere with 30 s sampling interval and 1 s sampling interval
is verified by two static experiments. Results show that the phase-Doppler combination model can achieve
the same performance as the pseudorange-phase combination model. All the small, insensitive, and large
cycle slips added to the three types of BDS satellites which separately belong to Geostationary Earth Orbit
(GEO), Inclined Geosynchronous Orbit (IGSO), and Medium Earth Orbit (MEO) are detected and corrected
successfully by the proposed model.

INDEX TERMS Triple-frequency, BDS, cycle slips detection, geometry-free pseudorange-phase combina-
tion model, phase-Doppler combination model.

I. INTRODUCTION
‘‘Positioning, Navigation, Timing’’ (PNT) is an important
national strategy in countries such as America and China,
while Global Navigation Satellite System (GNSS) plays a
most crucial role in PNT [1]. Generally, GNSS has three
types of measurements, which are carrier phase observation,
pseudorange observation, and Doppler shift. Since the carrier
phase observations have high precision, they are widely used
in many precise positioning techniques. Meanwhile, the cycle
slip is often inevitable. It is a discontinuity of an integer
number of cycles in the carrier phase observations, and it
generally results from signal interruption, low signal noise
ratio (SNR) or breakdown of the receiver [2], [3]. If a cycle
slip is ignored or cannot be correctly identified and corrected,
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it will affect carrier phase observations and lead to deviation
in the ultimate positioning results. So the cycle slips detection
and correction methods are essential.

Cycle slips detection and correction methods have been
widely researched for several decades [4]. However, on the
whole, based on the different types of observations used,
the existing methods can be classified into two types. The
first type is based on a single observation type (carrier phase
observation) alone. Beutler and Davidson proposed polyno-
mial fitting method in 1984, and Hofmann-Wellenhof et al.
provided the high-order between-epoch phase differentia-
tion in 2008. However, both methods can only detect large
cycle slips and are insensitive to small cycle slips [5], [6].
Feng et al. put forward a modified geometry-free
(GF) phase-only linear combination to quickly determine
cycle slips for high-sampling-rate-multi-GNSS real-time
kinematic positioning [7]. Cocard et al. presented the
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GF combinations for the triple-frequency phase measure-
ments [8]. Nevertheless, both methods are deeply affected
by sampling interval and ionospheric activity. Therefore,
combined with other observation types, cycle slips detec-
tion methods are further studied and improved by many
researchers in the past decades.

At present, the second type is based on the combination of
two observation types, which are mainly pseudorange/phase
and phase/Doppler observations. Moreover, the former is the
most studied over the world. By imposing position-based
polynomial constraint, Li et al. proposed a new method for
single-frequencyGNSS cycle slip estimation, but it is only for
single-frequency observations [9]. For dual-frequency obser-
vations, the most famous method is the TurboEdit algorithm
which uses the Hatch-Melbourne-Wübbena (HMW) combi-
nation and GF combination [10]–[13]. However, owing to the
ionospheric delay variation and the high pseudorange noise,
it may gain incorrect cycle slips. Considering ionospheric
activity, Cai et al. improved the TurboEdit algorithm based on
the forward and backward moving window averaging algo-
rithm and the first-order/second-order time-difference phase
ionospheric residual (PIR/STPIR) algorithm [14]. However,
the TurboEdit algorithm needs several minutes of continu-
ous carrier phase data before and after a cycle slip. So the
above two methods are not suitable to be used for real-
time application [15]. Compared with dual-frequency sig-
nals, triple-frequency signals can provide more observation
combinations, which will contribute to obtain better prop-
erties of models such as longer wavelengths, lower noises,
and lower ionospheric errors. So cycle slips detection meth-
ods based on triple-frequency observations are also widely
investigated [16]–[20]. Based on Least-squares Ambiguity
Decorrelation Adjustment (LAMBDA), two GF phase com-
binations and one GF pseudorange-phase linear combina-
tion were used to detect cycle slips by Huang et al. [21].
But the method only applies to smooth ionospheric delay
variations. Zhao et al. proposed another method based on
the traditional extra-wide-lane HMW combination and mod-
ified HMW combinations [22]. And results showed that
the proposed method could provide a 100% success rate in
detecting cycle slips. Li et al. presented a geometry-based
ionosphere-weighted approach to estimate integer cycle
slips with taking full advantage of the mutual correlations
between multi-frequencies, between satellites, and between
systems [23]. And to solve ‘‘blind detection spots’’ problem,
Yin et al. proposed a complementary symmetric GF (CSGF)
method and a CSGF second-order differential model to detect
cycle slips [24]. Besides, Kalman filter is also used to detect
cycle slips. Li et al. put forward a novel method based
on a Kalman-filter-based procedure with the undifferenced
and uncombined precise point positioning (PPP) model [25].
Considering the impact of ionospheric delay, Chang et al.
developed an adaptive Kalman filter based on variance com-
ponent estimation to aid the cycle slips detection [26]. But
Kalman filter may increase the time complexity and the space
complexity of the algorithm.

However, another type based on the combination of carrier
phase and Doppler observations is limited. Cannon et al.
proposed a method that the phase measurement at the current
epoch was predicted by the previous observations of carrier
phase and Doppler at a high sampling rate [27]. Cederholm
and Plausinaitis used expected Doppler shift to identify cycle
slips [28]. Doppler cycle slips detection method was also
studied by Dai, but limitation was the sampling interval and
the degraded quality of Doppler observations [29]. Xu used
an external instantaneous Doppler integration and fitted the
Doppler data with a suitable order polynomial for cycle slips
detection. But the order should be confirmed in advance [30].
Zhao et al. introduced a high-rate Doppler-aided cycle slips
detection and repair (DACS-DR) method to detect and repair
cycle in single-frequency low-cost GNSS receiver [31]. But
all the above methods are based on single-frequency, and they
are deeply affected by sampling intervals. They cannot detect
some small or particular cycle slips as well. Unfortunately,
studies on the triple-frequency phase and Doppler measure-
ments are few.

In summary, most researches of cycle slips detection
methods focus on carrier phase and pseudorange observa-
tions [32]. And their performance is better than that of the
first type. So they are widely used to detect cycle slips under
different situations. However, on the one hand, the most
important precondition is that pseudorange observations at
the corresponding epochs must exist. Unfortunately, some
harsh or special situations where pseudorange observations
are insufficient or poor exist in the practical work. Mean-
while, methods with only phase observations or methods
based on single-frequency phase/Doppler observations can-
not detect small or insensitive cycle slips, and they are easily
influenced by the ionospheric activity. On the other hand,
triple-frequency signals can provide more observation com-
binations that will help to obtain better properties of a model.
Therefore, combinations of the triple-frequency phase obser-
vations andDoppler observations for cycle slips detection and
correction are worth studying.

In this article, firstly, as a reference, the first-order
time-difference GF pseudorange-phase combination model
is introduced. Then a new cycle slips detection and correc-
tion model based on the triple-frequency phase and Doppler
observations of BeiDou navigation satellite system (BDS)
is proposed. In the subsequent section, the optimal combi-
nations, the underlying mechanism, and advantages of the
proposed model are discussed. At last, data from two static
experiments are used to confirm the validity of the proposed
model under 30 s and 1 s sampling intervals. Conclusions are
followed.

II. CYCLE SLIPS DETECTION AND CORRECTION MODEL
A. BDS BASIC OBSERVATION MODEL
Generally, the undifferenced pseudorange, carrier phase, and
Doppler observation equations can be expressed as [15], [30]:

Pi = ρ + qiI + εPi (1)
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λiϕi = ρ − qiI + λiNi + λiεϕi (2)

Di = −
d(ρ − qiI )
λidt

+ εDi (3)

where the subscript i(i = 1, 2, 3) refers to the three frequen-
cies of BDS. Pi is the pseudorange measurement in units of
meters. ϕi and Di represent the carrier phase observation in
units of cycles and theDoppler observation in units of Hz. The
symbol ρ (in meters) is the geometric distance between satel-
lite and receiver, which also includes the tropospheric error,
the satellite and receiver clock error, and the receiver and
satellite hardware delay. I (in meters) denotes the ionospheric
delay at frequency f1, and qi = f 21 /f

2
i is the ionospheric

scale factor (ISF) which represents the amplification factor of
different frequencies. λi is the carrier wavelength (in meters),
and Ni means the integer ambiguity. εPi , εϕi , and εDi are
pseudorange noise (in meters), carrier phase observations
noise (in cycles), and Doppler observations noise (in Hz),
respectively. Doppler shift increases as distance decreases.
So Di will be positive if the distance between the receiver
and satellite decreases, and when the distance between the
receiver and satellite increases, it will be negative. In addition,
according to the actual values of Doppler observations in the
observation file of BDS, the negative sign on the right of (3)
is essential.

B. BDS LINEARLY COMBINED TRIPLE-FREQUENCY
CARRIER PHASE AND PSEUDORANGE OBSERVATION
The geometry-based, linearly combined triple-frequency car-
rier phase observation equation is defined as [33]:

λ(i,j,k)ϕ(i,j,k) =
if1λ1ϕ1 + jf2λ2ϕ2 + kf3λ3ϕ3

if1 + jf2 + kf3
= ρ − β(i,j,k)I + λ(i,j,k)N(i,j,k) + λ(i,j,k)εϕ(i,j,k)

(4)

where εϕ(i,j,k) = iεϕ1 + jεϕ2 + kεϕ3 , and the combination
coefficients i, j, k are integers. β(i,j,k) represents the ISF of
the combined signals, and is derived as:

β(i,j,k) =
f 21 (i/f1 + j/f2 + k/f3)

if1 + jf2 + kf3
(5)

The linearly combined wavelength and integer ambiguity
are:

λ(i,j,k) =
c

if1 + jf2 + kf3
(6)

N(i,j,k) = iN1 + jN2 + kN3 (7)

Similarly, the geometry-based, linearly combined triple-
frequency pseudorange observation equation is modelled
as:

P(l,m,n) = lP1 + mP2 + nP3
= ρ + β(l,m,n)I + εP(l,m,n) (8)

where εP(l,m,n) = lεP1 + mεP2 + nεP3 .

β(l,m,n) is the ISF of P(l,m,n), and is derived as:

β(l,m,n) = l + m
f 21
f 22
+ n

f 21
f 23

(9)

where the combination coefficients l,m, n are real numbers
and should meet the equation l + m+ n = 1.

C. PSEUDORANGE-PHASE COMBINATION MODEL
To derive the phase-Doppler combination equations,
pseudorange-phase combination model should be introduced
first. Whereas pseudorange-phase combinations are usually
based on first-order time-difference as well as second-order
time-difference, only the former is discussed in this article.
And it also contributes to comprehend the phase-Doppler
combination model.

According to (4) and (8), the GF pseudorange-phase com-
bination can be expressed as:

ϕ(i,j,k) −
P(l,m,n)
λ(i,j,k)

= −Q(i,j,k,l,m,n)I + N(i,j,k) + εϕ(i,j,k) −
εP(l,m,n)

λ(i,j,k)
(10)

where Q(i,j,k,l,m,n) = (β(l,m,n) + β(i,j,k))/λ(i,j,k). From (10),
it can be concluded that the GF pseudorange-phase combi-
nation can eliminate the geometric distance between satellite
and receiver, the satellite and receiver clock error, the tropo-
spheric delay, as well as the satellite and receiver hardware
delay.

The GF pseudorange-phase combination based on the first-
order time-difference can be derived as:

1ϕ(i,j,k) −
1P(l,m,n)
λ(i,j,k)

= −Q(i,j,k,l,m,n)1I +1N(i,j,k) +1εϕ(i,j,k) −
1εP(l,m,n)

λ(i,j,k)

(11)

where 1 denotes the first-order time-difference between
two consecutive epochs. 1N(i,j,k) refers to the cycle slip
of the combination, 1I denotes the first-order ionospheric
delay variation. From the equation above, the inter-frequency
biases and inter-observation-type biases can be neglected
through the first-order time-difference algorithm, since the
inter-frequency biases for pseduorange and phase of both
receiver and satellite as well as the-observation-type biases
can be deemed as constant over a short time span.

For two consecutive epochs t0 and t1, the estimated com-
bined cycle slip 1Ñ(i,j,k) on the triple-frequency phase com-
bination ϕ(i,j,k) can be defined as:

1Ñ(i,j,k) = 1ϕ(i,j,k) −
1P(l,m,n)
λ(i,j,k)

= [ϕ(i,j,k)(t1)

−ϕ(i,j,k)(t0)]− [P(l,m,n)(t1)

−P(l,m,n)(t0)]/λ(i,j,k) (12)

Assuming that the noise terms of the carrier phase observa-
tions on each frequency are independent in time and identical
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in variance (i.e., σϕ = σϕ1 = σϕ2 = σϕ3), and the noise terms
of pseudorange observations are same (i.e., σP = σP1 =

σP2 = σP3), the standard deviations (STDs) of the estimated
first-order time-difference combined cycle slip 1Ñ(i,j,k) can
be calculated by:

σ1N(i,j,k) =

√
σ 2
1ϕ(i,j,k)

+ σ 2
1P(l,m,n)

/λ2(i,j,k)

=

√
2(i2 + j2 + k2)σ 2

ϕ + 2(l2 + m2 + n2)σ 2
P/λ

2
(i,j,k)

(13)

If σ1N(i,j,k) is sufficiently small, a small bias in float cycle
slip estimation can hardly affect the cycle slip fixing. Then
with making a comparison between (11) and (12), it can be
inferred that:

δ1N(i,j,k) = 1N(i,j,k) −1Ñ(i,j,k)

= Q(i,j,k,l,m,n)1I −1εϕ(i,j,k) +
1εP(l,m,n)

λ(i,j,k)
(14)

where δ1N(i,j,k) refers to the value of1N(i,j,k) minus1Ñ(i,j,k).
And large combined wavelength can decrease the influence
of pseudorange noise in (14).

Algorithm of the pseudorange-phase combination model
based on first-order time-difference is widely used in many
situations. However, on the one hand, the noise of pseu-
dorange can reach 3 m or even more significant in some
situations, especially under the harsh environment, which
will significantly reduce the success ratio of cycle slips
detection. On the other hand, the valid pseudorange data
may be insufficient in some situations. So researches on
Doppler cycle slips detection are indispensable. Combined
with the pseudorange-phase combination model above, the
phase-Doppler combination model is studied and illustrated
as follow.

D. PHASE-DOPPLER COMBINATION MODEL
For the time from t0 to t1, the Doppler equation (3) can be
integrated as:

Ki = −λi

t1∫
t0

Didt = 1(ρ − qiI )+ ε̃Di

ε̃Di = −λi

t1∫
t0

εDidt (15)

where 1(ρ − qiI ) denotes the change of ρ − qiI between t0
and t1.
For (1), the differenced pseudorange between t0 and t1 can

be expressed as:

1Pi = 1(ρ + qiI )+1εPi (16)

Then from (15) and (16), it can be inferred that:

1Pi = Ki + 21qiI − ε̃Di +1εPi (17)

Similarly, from (8) and (17), the combined time differenced
pseudorange observation can be also modelled as:

1P(l,m,n)
= l1P1 + m1P2 + n1P3 = (lK1 + mK2 + nK3)

+2(l1q1I + m1q2I + n1q3I )− (lε̃D1 + mε̃D2 + nε̃D3 )

+(l1εP1 + m1εP2 + n1εP3 ) (18)

With (18) substituted to (11), it can be inferred
that:

1ϕ(i,j,k) −
K(l,m,n)

λ(i,j,k)
= W(i,j,k,l,m,n)1I +1N(i,j,k)

+1εϕ(i,j,k) +
εD(l,m,n)

λ(i,j,k)
(19)

with

W(i,j,k,l,m,n) = (β(l,m,n) − β(i,j,k))/λ(i,j,k)
K(l,m,n) = lK1 + mK2 + nK3

εD(l,m,n) = lε̃D1 + mε̃D2 + nε̃D3 (20)

Since the time interval 1t = t1− t0 is sufficiently small,
(15) can be expressed as [25]:

Ki = −λi

t1∫
t0

Didt = −λi
Dt0i + D

t1
i

2
1t (21)

Thus, it can be inferred that:

K(l,m,n) = −
1
2
1t(lλ1Dt01 + mλ2D

t0
2 + nλ3D

t0
3

+ lλ1Dt11 + mλ2D
t1
2 + nλ3D

t1
3 ) (22)

Similarly, like (12), and with (22) substituted to (19), for
the two consecutive epochs t0 and t1, the estimated combined
cycle slip1Ñ(i,j,k) on the triple-frequency phase combination
ϕ(i,j,k) can be defined as:

1Ñ(i,j,k) = 1ϕ(i,j,k) −
K(l.m.n)

λ(i,j,k)
= [ϕ(i,j,k)(t1)− ϕ(i,j,k)(t0)]

+
1t

2λ(i,j,k)
(lλ1Dt01 + mλ2D

t0
2 + nλ3D

t0
3 + lλ1D

t1
1

+mλ2Dt12 + nλ3D
t1
3 ) (23)

Assuming that the noise terms of the Doppler observa-
tions on each frequency are independent in time and are
identical in variance (i.e., σD = σD1 = σD2 = σD3),
the STDs of the estimated combined cycle slip 1Ñ(i,j,k)
is expressed as (24), as shown at the bottom of the next
page:

Likewise, if σ1N(i,j,k) is sufficiently small, the correct cycle
slip fixing can hardly be affected by a small bias in float cycle
slip estimation. This article also defines

|1Ñ(i,j,k)| ≥ κσ1N(i,j,k) (25)

to justify the occurrence of the cycle slip. From (23) and (24),
it is the between-epoch difference of carrier phases rather than
carrier phases themselves that are directly used to detect cycle
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slips. And to be more specific, the between-epoch difference
when a cycle slip occurs will make the corresponding noise
satisfy (25) [26].

Then it can be derived from (19) and (23) that:

δ1N(i,j,k) = 1N(i,j,k) −1Ñ(i,j,k) = −W(i,j,k,l,m,n)1I

−1εϕ(i,j,k) −
1ε̃D(l,m,n)

λ(i,j,k)
(26)

where δ1N(i,j,k) refers to the value of 1N(i,j,k) minus 1Ñ(i,j,k)
like (14). And large combined wavelength can decrease the
influence of Doppler noise as well.

Like pseudorange-phase combination model, the success
rate can also be expressed as [34]:

P = 2φ(0.5σ−11N(i,j,k)
)− 1

φ(x) =

x∫
−∞

1
2π

exp
(
−
1
2
z2
)
dz (27)

E. CYCLE SLIPS CORRECTION
Once the cycle slips of three combinations are correctly
detected, the integer triple-frequency cycle slips 1N̄1, 1N̄2,
and 1N̄3 are finally determined by:1N̄1

1N̄2
1N̄3

 = A−1

1N̄(i1,j1,k1)
1N̄(i2,j2,k2)
1N̄(i3,j3,k3)


=

 i1 j1 k1
i2 j2 k2
i3 j3 k3

−11N̄(i1,j1,k1)
1N̄(i2,j2,k2)
1N̄(i3,j3,k3)

 (28)

where 1N̄(i1,j1,k1), 1N̄(i2,j2,k2), and 1N̄(i3,j3,k3) are also inte-
gers. And they can be obtained by rounding the esti-
mated combined cycle slip 1Ñ(i,j,k). A-matrix must be a
non-singular matrix. Then after the three original carrier
phase observations are corrected by subtracting the 1N̄1,
1N̄2, and1N̄3, the new value of1Ñ(i,j,k) will be recalculated
by (23) and should be smaller than κσ1N(i,j,k) .

III. ANALYSIS ON THE PHASE-DOPPLER COMBINA-TION
MODEL
A. THE COMBINATION COEFFICIENTS
In this section, the six combination coefficients are discussed.
In the above equations, the combination coefficients l,m, n
are real numbers with a sum of 1. In addition, to reduce
the impact of noises and the first-order ionospheric delay
variations, the optimal phase-Doppler combinations based on
first-order time-difference should comply with the following
conditions (29)–(31), as shown at the bottom of the next page:

The frequency values of three carrier signals of BDS used
in this article are listed in Table 1. Firstly, l, m, and n are

TABLE 1. Carrier signals, frequencies, and wavelengths in BDS.

considered. To make (30) small enough, l2λ21 + m2λ22 +

n2λ23 should be reduced as much as possible. Based on the
Arithmetic-Geometric mean inequality, it can be derived that
(l2λ21 + m

2λ22 + n
2λ23)/3 ≥

3
√
(lmnλ1λ2λ3)2. And only when

l2λ21 = m2λ22 = n2λ23, l
2λ21 + m2λ22 + n2λ23 can reach

the minimum value. Compared with the pseudorange-phase
combination model below, l,m, and n are all taken as positive
values [21]. Thus, combined with (29), l = 0.3867, m =
0.2990, and n = 0.3142 are obtained to minimize (30) in this
article.

Then optimal i, j, and k are selected from -10 to 10 in this
section. However, (30) shows that the value of the time inter-
val between two epochs will also influence σ1N(i,j,k) . So two
common time intervals (1t = 1 s and 30 s) are studied in
this article. Tables II-III show the optimal ten combinations of
the phase-Doppler combinationmodel within the range (−10,
−10, −10) to (10,10,10) when σϕ = 0.01 cycles and σD =
0.3 Hz [21], [28]. From the two tables, it can be concluded
that the optimal combinations of phase-Doppler combination
model will be greatly influenced by time intervals. The first
three combinations under 1t = 30 s are [4, −2, −3], [−1,
−5,6], and [−3,6, −2], while they are [0, −1,1], [1,0, −1],
and [1, −1,0] under 1t = 1 s. In addition, when the time
interval is smaller, σ1N(i,j,k) can also be smaller in (30). Owing
to (25) and the cycle slip correction method in this article,
the σ1N(i,j,k) should not be too large. That is to say, the STD
ofDoppler noise should not be too large. Otherwise, 4σ1N(i,j,k)

will exceed 0.5 cycles, and rounding the estimated com-
bined cycle slip may not bring a reliable result. At this time,
large combined wavelength and compensating for the large
Doppler noise are needed. And rounding operation may be
substituted by LAMBDA algorithm or modified LAMBDA
algorithm, which should be further studied [3], [21]. On that
account, Tables II-III also indicate that numbers of potential
combinations under 30 s sampling interval are less than those
under 1 s sampling interval in this article. And smaller STD
of Doppler noise can also have more potential combinations.

Table 4 shows the optimal ten combinations of the
pseudorange-phase combination model. The empirical value
of σP and σϕ are 0.3 m and 0.01 cycles. But the values
of l, m, and n are different from the phase-Doppler com-
bination model, and they are all equal to 1/3 [21]. From
Tables II-IV, there exist obvious differences among the
optimal combinations of the proposed model and the
pseudorange-phase combination model.

σ1N(i,j,k) =

√
σ 2
1ϕ(i,j,k)

+ σ 2
K/λ

2
(i,j,k) =

√
2(i2 + j2 + k2)σ 2

ϕ + (l2λ21 + m
2λ22 + n

2λ23)1t
2σ 2

D/(2λ
2
(i,j,k)) (24)
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TABLE 2. The optimal ten combinations which have small σ1N(i,j,k)
of

the phase-Doppler combination model under 1 t = 30 s.

TABLE 3. The optimal ten combinations which have small σ1N(i,j,k)
of

the phase-Doppler combination model under 1 t = 1 s.

Generally, all the combinations can be clarified from three
layers: the combined wavelength, the ISF (W(i,j,k,l,m,n)), and
the observation noise. From (30) and (31), it can be concluded
that large combined wavelength will contribute to decreasing
the influence of observation noise, while small ISF will help
to reduce the bias resulting from the ionospheric activity.
Moreover, although the combined noise of linearly combined
triple-frequency observations will indeed larger than that of
single-frequency observations, small combined observation
noise is expected to increase the success rate of cycle slips
detection in (27). But from Tables II-III, it is not easy to
obtain three linear independent combinations whose ISFs and
observation noises are all very small. So it is essential to
select different combinations based on the actual situation.
If the ionospheric activity is low, combinations with small
combined noise can be chiefly considered to obtain a high
success rate. If the ionospheric activity is high, combinations
with small ISF should be chiefly considered, or ionospheric
compensation is needed.

In the end, to test the effectiveness and availability of
the phase-Doppler combination model under low ionospheric
activity, small combined noise is considered first in this

TABLE 4. The optimal ten combinations which have small σ1N(i,j,k)
of

the pseudorange-phase combination model.

TABLE 5. Optimal [i,j,k] and the success rate (P) of the phase-Doppler
combination model for BDS cycle slips detection and correction under
1 t = 30 s.

article. Table 5 shows several optimal [i,j,k] and the cor-
responding success rate of the phase-Doppler combination
model for BDS cycle slips detection and correction, while
W(i,j,k,l,m,n) is also considered and 1t = 30 s. Since the
three combinations should be linearly independent. It can be
seen that the optimal combinations for BDS are [4, −2, −3],
[−1, −5,6], and [−3,6, −2]. And W(i,j,k,l,m,n) of [−1, −5,6]
is −0.493 m−1, which is relatively small. The success rate
can reach almost 100%. But when the sampling interval is
1 s, the optimal combinations are [0, −1,1], [1,0, −1], and
[−3,2,2]. The success rate also reaches almost 100%.

In addition, to ensure whether the ionosphere is steady
or not, 1I can be computed by using two of undifferenced
triple-frequency phase observations [35]:

1I =
1ϕ1λ1 −1ϕ3λ3

f 21 /f
2
3 − 1

(32)

whereas different orbit types have different velocities and
ionosphere variations for BDS, it will be preferentially con-
sidered with the test data as well.

B. UNDERLYING MECHANISM AND ADVANTAGES
The underlying mechanism and advantages of the phase-
Doppler combination model are presented as follow.

Doppler is an instantaneous measurement. And time dif-
ferenced carrier phase observations between two consecutive
epochs can be viewed as an integral of Doppler. Counting

l + m+ n = 1 (29)

min : σ1N(i,j,k) =

√
2(i2 + j2 + k2)σ 2

ϕ + (l2λ21 + m
2λ22 + n

2λ23)1t
2σ 2

D/(2λ
2
(i,j,k)) (30)

min : −W(i,j,k,l,m,n)1I (31)
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TABLE 6. Two static cases.

cycles is an ingredient of the integration. Cycle slip is an error
in the counting, and will only occur in the integration. In other
words, only carrier phase measurement will be affected by
the cycle slip, and it will not affect instantaneous Doppler
measurements. So Doppler can be used to aid to detect cycle
slips.

Although Doppler is usually used to measure the speed at
present, the phase-Doppler combinationmodel may provide a
new application for triple-frequency Doppler measurements.
And it can also be used for real-time application. In addi-
tion, there often exist missing data in the observation file.
So the phase-Doppler combination model can be used to
detect cycle slips when pseudorange observations are missing
or insufficiently accurate. Moreover, it will also enrich the
current cycle slips detection methods and may provide more
detection combinations with other methods. For example,
combined with GF and GIF methods, one combination of the
phase-Doppler combination model may be used as the last
detection combination.

IV. NUMERICAL RESULTS AND ANALYSES
Two static cases are used to verify the validity of the phase-
Doppler combination model, which are marked as case-1 and
case-2, respectively. Combined with the above section, two
common sampling intervals (30 s and 1 s) are studied in this
article. Table 6 lists the information of the two cases. The
triple-frequency BDS observations of case-1 and case-2 were
obtained from experiments in Huairou, Beijing, China on dif-
ferent dates. The observations of case-1 were collected with
30 s sampling interval fromGlobal Positioning System (GPS)
time 00:00:00 to 23:59:30 on 29 July 2019, while data of
case-2 were on 14 July 2018 with 1 s sampling interval.
Fig. 1 shows the situation of the experiment of case-1, which
is also similar to case-2. And time reference used in this
article is GPS time.

Moreover, owing to the different visible time of the same
satellite in a different date, and to better verify the validity of
the phase-Doppler combination model, BDS C05, C06, C08,
C14, C25, and C26 that separately belong to Geostationary
Earth Orbit (GEO), Inclined Geosynchronous Orbit (IGSO),
and Medium Earth Orbit (MEO) are selected.

A. ANALYSIS ON IONOSPHERIC ACTIVITY
In this section, to judge whether ionosphere is steady or not,
ionospheric activity is analyzed from two aspects. Firstly,
the levels of ionospheric disturbances are analyzed with Kp
index, which is a mean value of the geomagnetic disturbance

FIGURE 1. The situation of the case-1.

FIGURE 2. Kp index of the two cases.

levels denoting the severity of the global magnetic distur-
bances in near-earth space. Fig. 2 shows theKp index released
by the German Research Center for Geosciences (GFZ) on
the above two dates. It is worth mentioning that although Kp
index is given under UTC time, the gap of GPS time and UTC
time is small and will not affect the conclusions. From Fig. 2,
it can be seen that all the values of Kp index are smaller than 2.
The average values of Kp index on the two dates are 1.00 and
0.875, respectively. So it can come to a conclusion that the
ionosphere is steady and the ionospheric activity is low on
the whole day.

However, since the Kp index is a global index, it may
not reveal the local ionospheric variations accurately. So the
ionospheric delay variation should also be further computed
by (32). Owing to the different visible time of satellites, data
insufficiency, and elevation angle, sometimes two satellites
belonging to the same orbit are selected for the purpose that
the time span of data can include a non-midday period as well
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FIGURE 3. Between-epoch first order ionospheric delay variations (1I)
for case-1.

FIGURE 4. Between-epoch first order ionospheric delay variations (1I)
for case-2.

as midday period. The midday is about GPS time 4:00 a.m.
in Beijing.

Figs. 3-4 show the between-epoch first-order ionospheric
delay variations (1I ) for different satellites computed
by (32). For simplicity, GPS time 00:00:00 is marked as
epoch No. 1 in case-1. However, for case-2, owing to too
many data, only about 5000 data that vary most are shown in
Fig. 4. Since there exist many epochs when some data miss
and have low elevation angles (the default cutting-off angle:
15◦), the curves of IGSO and MEO are discontinuous in
Fig. 3 [21].

From Fig. 3, it can be seen that almost all the 1I data are
smaller than 0.04 m with 30 s sampling interval. Most data
are even smaller than 0.02 m, and the change rates are smaller
than 0.067 cm/s. From Fig. 4, almost all the 1I data of GEO
are smaller than 0.02 m and the change rates are also smaller
than 2 cm/s, while the 1I data of IGSO and MEO are even
smaller than 0.01 m. 1I is also influenced by the sampling
interval, and small interval relatively brings small 1I . From
the two figures, it can also be concluded that the ionosphere
is steady and the ionospheric activity is low.

FIGURE 5. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations on GEO for case-1, when no cycle slip occurs.

FIGURE 6. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations on IGSO for case-1, when no cycle slip occurs.

FIGURE 7. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations on MEO for case-1, when no cycle slip occurs.
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Owing to steady ionosphere and low ionospheric activ-
ity, combinations with small combined noise are selected
to detect and correct cycle slips. The linearly independent
combinations [4, −2, −3], [−1, −5,6], and [−3,6, −2] are
selected for case-1, while combinations [0, −1,1], [1,0, −1],
and [−3,2,2] are selected for case-2. And threshold coeffi-
cient (κ) of cycle slips detection is set to 4 in (25).

B. CYCLE SLIPS DETECTION AND CORRECTION WITH
CASE-1
According to the above section, linearly independent combi-
nations [4,−2,−3], [−1,−5,6], and [−3,6,−2] are selected
in case-1. Figs. 5-7 show the differencing values (1Ñ(i,j,k))
of the cycle slips detection combinations on GEO, IGSO, and
MEO when no cycle slip occurs. Combined with Table 2, all
1Ñ(i,j,k) are smaller than 4σ1N(i,j,k) and (25) is satisfied.
In the beginning, all the cycle slips that will be added to

the phase data should be clarified. They can be divided into
three types which are the small cycle slip (S), the insensitive
cycle slip (I), and the large cycle slip (L), respectively. More-
over, the insensitive cycle slip can also be divided into two
types. The first type that will be marked as I1 represents
cycle slips which are only insensitive to one combination.
For instance, the cycle slip (2,1,2) is only insensitive to
combination [4,−2,−3], while it is sensitive to combination
[−1, −5,6] and combination [−3,6, −2]. The second type
that will be marked as I2 represents cycle slips which are
simultaneously insensitive to two combinations. For instance,
the cycle slip (27,21,22) is simultaneously insensitive to com-
bination [4, −2, −3] and combination [−1, −5,6].
Then as done in Pu and Xiong [15], the above four differ-

ent types of cycle slips are added to the phase data, which
are (0,1,0) (S) and (1,1,0) (S), (2,1,2) (I1) and (2,2,2) (I1),
(27,21,22) (I2) and (22,17,18) (I2), (1,3,3) (L) and (3,3,4)
(L). The results of the cycle slips detection and correc-
tion by the phase-Doppler combination model are shown in
Figs. 8-10 and listed in Table 7. Figs. 8-10 show that after the
cycle slips are added on some epochs, obvious changes occur
consistently. And A-matrix in (28) is

A =

 4 −2 −3
−1 −5 6
−3 6 −2

 (33)

Combined with Table 7, it can be concluded that the
most cycle slips added can be directly detected by the three
linear independent combinations [4, −2, −3], [−1, −5,6],
and [−3,6,−2]. And they can even detect and correct cycle
slips as small as 1 cycle. For example, when the cycle slips
(0,1,0), (1,1,0), (1,3,3), and (3,3,4) occur, all the differencing
values of the three combinations have exceeded the cycle slips
detection threshold in (25), while κ = 4 and σ1N(i,j,k) of the
three combinations are 0.101, 0.118, and 0.117. However, for
the insensitive cycle slips, there will exist one or two differ-
encing values that do not exceed the cycle slip threshold. For
example, the differencing value of combination [4, −2, −3]
for the cycle slip (2,1,2) is 0.056, which do not satisfy (25).

FIGURE 8. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations of the phase-Doppler combination model on GEO for
case-1, when the four types of cycle slips are added.

FIGURE 9. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations of the phase-Doppler combination model on IGSO for
case-1, when the four types of cycle slips are added.

FIGURE 10. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations of the phase-Doppler combination model on MEO for
case-1, when the four types of cycle slips are added.
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TABLE 7. The detection performance of the phase-Doppler combination model when the four types of cycle slips are added to the three types of orbits
for the three cases (∗: value that do not exceed the cycle slips detection threshold. The detection combinations are [4, −2, −3], [−1, −5,6], and [−3,6, −2]
for case-1, while they are [0, −1,1], [1,0, −1], and [−3,2,2] for case-2).

So (2,1,2) can only be detected by combination [−1, −5,6]
and combination [−3,6, −2], while it cannot be detect by
combination [4, −2, −3]. In the same way, the cycle slip
(27,21,22) can only be detected by combination [−3,6, −2].
But it is enough to indicate that cycle slip occurs, so the
cycle slip can also be detected and corrected by the linearly
independent combinations.

However, the above analyses cannot exclude contingency,
so further work is still needed. Three groups of cycle slips
are separately added to the phase data of different orbit types
randomly. The first group (G1) that includes (0,0,1), (0,1,0),
(1,0,0), (1,1,0), (1,0,1), and (0,1,1) belongs to the small cycle
slips. The second group (G2) that includes (2,1,2), (1,1,1),
(2,1,0), (27,21,22), (26,20,21), and (22,17,18) belongs to the
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TABLE 8. The detection performance of the phase-Doppler combination model (P-D model) and the pseudorange-phase combination model (P-P model)
when the cycle slips of the corresponding groups are randomly added to the three types of orbits for case-1 and case-2, respectively.

insensitive cycle slips. The third group (G3) that includes
(1,3,3), (3,3,4), (2,7,6), (5,9,8), (12,11,19), and (21,23,17)
belongs to the large cycle slips.

To keep all the insensitive cycle slips in G2 unchanged,
values of the coefficients [i,j,k] of the pseudorange-phase
combination model are identical with the values of the
phase-Doppler combination model, and the above principle
is also adopted in case-2. In addition, as shown in section III,
values of the coefficients l,m, and n of the pseudorange-phase
combinationmodel are all equal to 1/3. Table 8 lists the results
of cycle slips detection and correctionwith the phase-Doppler
combination model (P-D model) and the pseudorange-phase
combination model (P-P model). For the reason that the
triple-frequency pseudorange observations at some epochs
do not exist, the detection and correction results of the
phase-Doppler combination model in the sixth column of
Table 8 are divided into three parts. The three parts are in
the form of I (II/III):

(1) The part I represents the total number of cycle slips that
are detected and corrected successfully.

(2) The part II in the bracket represents the detection and
correction results when all the Doppler and pseudorange
observations at some epochs exist.

(3) The part III represents the detection and correction
results when all the Doppler observations at some epochs
exist, and the pseudorange observations at the corresponding
epochs are missing.

It can be seen from Table 8 that all the cycle slips added
are detected and corrected successfully by the two models.
Moreover, when some pseudorange observations at some
epochs are missing, the phase-Doppler combination model
can also detect and correct all the three types of cycle slips.
So it can be concluded that the phase-Doppler combination
model is an effective method to detect cycle slips when the
ionosphere is steady, and the sampling interval is 30 s.

C. CYCLE SLIPS DETECTION AND CORRECTION WITH
CASE-2
Section B has verified the effectiveness of the phase-Doppler
model under 30 s sampling interval. According to section
III, the phase-Doppler combination model is also affected
by sampling intervals. So case-2 with 1 s sampling interval
is also needed. Combined with Table 3, the linearly inde-
pendent combinations [0, −1,1], [1,0, −1], and [−3,2,2]
are selected for case-2. Figs. 11-13 show the differencing
values (1Ñ(i,j,k)) of the cycle slips detection combinations on
GEO, IGSO, and MEO for case-2 when no cycle slip occurs,
respectively. From the three figures, it can be seen that all the
differencing values are smaller than 0.08 cycles, 0.13 cycles,
and 0.24 cycles, respectively. So no cycle slip exists.

For case-2, the A-matrix in (28) becomes

A =

 0 −1 1
1 0 −1
−3 2 2

 (34)

So the four different types of cycle slips that are added to the
phase data turn into (0,0,1) (S) and (1,1,0) (S), (1,2,2) (I1)
and (1,3,1) (I1), (4,3,3) (I2) and (2,1,2) (I2), (3,2,1) (L) and
(5,7,6) (L). Figs. 14-16 show the results of the cycle slips
detection and correction by the phase-Doppler combination
model, and the results are also listed in Table 7. Combined
with Figs. 11-13, it can be seen that after the above cycle
slips are added, obvious changes occur consistently. All the
four types of cycle slips added can be detected and corrected
successfully like case-1.

However, the data used in Figs. 11-16 only cover no more
than 1.5 hours. Therefore, to reduce the influence of some
accidental factors, three groups of cycle slips are separately
added to the phase data of the whole day randomly. And
the three groups of case-2 are different from those of case-
1 for the reason that the detection combinations of them are
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FIGURE 11. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations on GEO for case-2, when no cycle slip occurs.

FIGURE 12. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations on IGSO for case-2, when no cycle slip occurs.

FIGURE 13. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations on MEO for case-2, when no cycle slip occurs.

different. The first group (G4) that includes (0,0,1) and (1,1,0)
belongs to the small cycle slips. The second group (G5) that

FIGURE 14. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations of the phase-Doppler combination model on GEO for
case-2, when the four types of cycle slips are added.

FIGURE 15. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations of the phase-Doppler combination model on IGSO for
case-2, when the four types of cycle slips are added.

FIGURE 16. Differencing values (1Ñ(i,j,k)) of the cycle slips detection
combinations of the phase-Doppler combination model on MEO for
case-2, when the four types of cycle slips are added.
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includes (0,1,1), (0,1,0), (2,2,1), (1,1,1), (4,3,3), and (2,1,2)
belongs to the insensitive cycle slips. The third group (G6)
that includes (2,7,6), (3,2,1), (3,8,10), (5,7,6), (12,11,19), and
(21,23,17) belongs to the large cycle slips.

Table 8 also lists the results of cycle slips detection and
correction with the two models. It can also be concluded that
the two models can detect and correct all the three groups
of cycle slips successfully when the sampling interval is 1 s.
And when some pseudorange observations are missing, all
the cycle slips can also be detected and corrected successfully
by the phase-Doppler combination model.

In conclusion, according to the results of case-1 and
case-2 in Table 8, the phase-Doppler combination model
achieves the same performance as the pseudorange-phase
combination model. In addition, the advantages of methods
that combine triple-frequency pseudorange and phase obser-
vations over some other existing methods have been pre-
sented and explained in section I. So the proposed method in
the paper can be a choice for cycle slips detection, especially
when the pseudorange observations are missing. And it can
detect small, insensitive, and large cycle slips successfully
under steady ionosphere with 30 s and 1 s sampling intervals.

V. CONCLUSION
A new cycle slips detection and correction method based on
the triple-frequency carrier phase andDoppler observations is
introduced in this article for some harsh and special situations
when the valid pseudorange data are missing or insufficient
accuracy. Moreover, the effectiveness of the phase-Doppler
combination model under steady ionosphere is verified when
the sampling interval is 30 s and 1 s. And all the cycle slips
that are added to the phase measurements of different types
of BDS satellites (GEO, IGSO, MEO) can be detected and
corrected successfully.

However, there still exist many problems that need to be
further resolved. The performance of the phase-Doppler com-
bination model under the kinematic situation, higher iono-
spheric activity, other sampling intervals, and larger Doppler
noise should be further researched. Maybe compensating for
ionosphere and Doppler noise will be needed. Whether a
more accurate way of fitting in (21) exists is needed to be
studied. In general, the new model still needs to be further
improved and completed in different situations.

In addition, to reduce the impact of the ionospheric delay,
the second-order time-difference phase-Doppler combination
method can be further studied as well.
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