
Received August 3, 2020, accepted September 1, 2020, date of publication September 18, 2020,
date of current version September 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3024698

Integer Programming Techniques for Static
Scheduling of Hard Real-Time Systems
ANA GUASQUE 1, HOSSEIN TOHIDI 2, PATRICIA BALBASTRE 1, JOSÉ MARÍA ACEITUNO1,
JOSÉ SIMÓ 1, AND ALFONS CRESPO 1
1Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain
2Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27607, USA

Corresponding author: Ana Guasque (anguaor@ai2.upv.es)

This work was supported by the Spanish Science and Innovation Ministry (predictable and dependable computer systems for Industry 4.0)
under Grant MICINN: CICYT project PRECON-I4 and Grant TIN2017-86520-C3-1-R.

ABSTRACT Hard real-time systems focus on obtaining a feasible schedule while satisfying different
temporal requirements. In safety-critical applications, this schedule is generated offline. This article explores
different integer linear programming techniques (ILP) to schedule uniprocessor hard real-time systems. The
goal is to efficiently obtain a static schedule for periodic tasks and partitioned systems where temporal and
spatial isolation is crucial. The advantage of the proposed ILP techniques is the possibility of choosing the
optimization criteria so that deadlines are met and better performance quality is achieved. The drawback
is the time spent finding an optimal solution. We propose an ILP method that reduces by 70% the time
needed to obtain an optimal solution compared to basic approaches. This method is called the rolling task
MILP approach and the optimization problem is addressed task by task. Experimental results show that
our approach also achieves better results than heuristics when trying to reduce temporal parameters such as
response times, context switches, and jitter. This makes our solution suitable for control systems and other
applications.

INDEX TERMS Integer linear programming, optimization, partitioned systems, real-time systems, static
scheduling.

I. INTRODUCTION
Modern real-time embedded systems comprise many appli-
cations, often of different criticalities, executing on the same
computing platform. If a hard real-time task misses any
temporal constraint in high criticality applications, it may
suppose catastrophic results. As defined in [1], critical-
ity is a designation of the level of assurance against fail-
ure needed for a system component. It is necessary to
certify the system’s safety and security to avoid any catas-
trophic or hazardous failure. Independent organizations cer-
tify the system if the collected evidence proves that it
is behaving as expected. Conformance to a safety stan-
dard is of great help, or even required, for certification.
There are several such standards for different domains, such
as electronic systems (IEC 61508), airborne civil avionics
(DO-178B), nuclear power plants (IEC 880), medical

The associate editor coordinating the review of this manuscript and

approving it for publication was Kai Li .

systems (IEC 601-4), European railways (EN 50128]),
European space (ECSS), etc. Temporal and spatial partition-
ing (TSP) is often a requirement to isolate faults and avoid
recertifying the whole system when the requirements change.
Partitioned systems are a way to ensure TSP in which appli-
cations with different criticalities are grouped into partitions
that run in isolation from each other. This isolation prevents
a failure in a low criticality application to propagate in more
critical applications.

Both static and dynamic allocations might be used to
obtain a feasible schedule of a hard real-time task set. Static
allocation of resources is a major requirement for fulfilling
certification requirements, for example, in standards such as
ARINC-653 [2]. Static scheduling requires a priori knowl-
edge of the characteristics of the tasks. The static scheduler
generates an offline plan, a sequence of task executions, for
a group of available tasks. This scheme is known as cyclic
executive [3], [4]. This static plan is saved in a table and
indicates when each task should be executed. The verification

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 170389

https://orcid.org/0000-0002-2900-8466
https://orcid.org/0000-0002-9865-4357
https://orcid.org/0000-0001-9458-4083
https://orcid.org/0000-0003-4677-7627
https://orcid.org/0000-0002-6606-7406
https://orcid.org/0000-0002-0517-2392

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

of the schedulability using this strategy must be carried out
during the construction of the plan. Due to this determinism
in the execution, static scheduling is widely used in real-time
high integrity systems. Static scheduling presents advantages
such as low cost at run time, and disadvantages, such as a
lack of flexibility, and good knowledge of the task set is
required.

Preemptive and non-preemptive periodic tasks scheduling
is NP-hard in the strong sense [5]. Commonly used heuristics
are mainly focused on obtaining a feasible schedule. How-
ever, optimizing certain temporal parameters, such as the best
case response time, might be of interest, especially when
timing constraints impose lower bounds on response times
to events. For example, upon a collision, an airbag has to be
inflated neither too early nor too late [6]. Jitter is the other
critical parameter that measures the variation in response
time. Especially in control systems, any delays can cause
the system instability since these delays are not taken into
account in the control law [7].

Exact optimization methods, such as integer linear pro-
gramming (ILP) have been mostly used for scheduling tasks
on multiprocessor systems rather than uniprocessor systems,
as there are heuristics that can optimally schedule tasks on an
uniprocessor system in polynomial time. By formulating the
problem as an ILP, we can theoretically determine the optimal
schedule in any system considering different objectives and
constraints. The possibility of customizing an objective func-
tion that satisfies the needs of the designers is an interesting
proposition that can be applied to different fields with differ-
ent goals. However, solution times might not always remain
tractable. Recent progress in optimization solvers diminishes
this issue as they can effectively solve practical size instances.

In this work, we explore ILP for generating static sched-
ules on uniprocessor applications for periodic and partitioned
systems. Our goal is to find optimal static schedules with a
customized objective rather than focusing on obtaining a fea-
sible schedule.We formulate the problem for the periodic task
model, both preemptive and non-preemptive, and propose an
alternative ILP formulation that significantly improves the
simple model performance. This new approach can be used to
schedule a partitioned system to obtain an optimal solution in
a reasonable time. The objective function can be changed to
optimize any combination of temporal parameters. Response
times (worst and best), jitter and context switches can be min-
imized in order to obtain better a performance in a variety of
applications. The context switch is one of the most significant
attributes of a multi-task operating system. It occurs when the
CPU switches from one task to another, and requires saving
the context of the current task so that the CPU can restore and
complete it later. If not properly controlled, context switches
may lead to reduced responsiveness, unnecessary delays,
energy wastage, and extra memory requirements. These can
lead to a high overhead in real-time embedded systems.
Therefore, this work provides a highly versatile scheduling
technique, with customized objectives and feasible results.

The rest of the paper is organized as follows: Section II
describes the relatedwork. Section III defines themodel used.
Section IV formulates the scheduling problem and presents
the ILP approaches for both periodic tasks systems and par-
titioned systems. We evaluate the proposals in Section V.

II. RELATED WORK
Initially, static scheduling was the most used method in
real-time systems, with the cyclic executive approach being
the most common according to [3]. The idea is based on
building a cyclic system that is practically made to measure.
Static planning is a widely used planning method in real-time
high integrity systems according to [8], since determinism is
the most valued characteristic as a safety feature.

In contrast, dynamic scheduling offers greater flexibility.
However, static scheduling with cyclic executives continues
to exist. Several certification standards, like those listed in the
previous section, include a requirement for the use of static
allocation of resources. Even in the proposed safety-critical
Java specification (SCJ) [9], the most constrained level,
which should be especially suited for certification, prescribes
the use of a cyclic executive.

As mentioned, there are heuristic algorithms that can find
the optimal real-time schedule for simple uniprocessor archi-
tectures. However, many researchers are recently converting
the classical scheduling problem into an ILP problem in order
to optimize more complex models.

The works that obtain feasible schedules with ILP tech-
niques in complex real-time models includes, among others:
multiprocessor systems [10]; power consumption optimiza-
tion [11]; consideration of architectures with local instruction
or data caches [12]; weakly hard real-time systems [13];
mixed criticality [14]; distributed systems [15]; etc. This is
due to the absence of heuristic optimal algorithms for more
complex models than the typical periodic task model.

In [16], the precedence relation between tasks is consid-
ered. This work uses relaxed ILP techniques to obtain an
optimal priority/deadline assignment for preemptive dynamic
priority scheduling under precedence constraints. Also,
the response time calculation and priority assignment prob-
lem with an ILP is presented in [17], where the ceiling of the
response time equation is reformulated as an ILP problem.
An improved real-time schedulability test that allows an exact
and efficient definition of the feasible region by fewer binary
variables is provided in [18]. Our goal is not only to find
a feasible schedulable plan, but we are seeking to find the
optimal schedule considering different objectives.

Regarding optimal strategies but not based on ILP,
in [19] offline scheduling strategies for non-preemptive real-
time tasks on uniprocessors are proposed. Using formal
approaches such as supervisory control theory (SCT) or time
discrete event systems (TDES), authors present an optimal
scheduler for aperiodic and sporadic tasks. In [20], similar
techniques have been used to reclaim unused task computa-
tion times.

170390 VOLUME 8, 2020

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

III. MODEL DEFINITION
A. PERIODIC TASK MODEL
In a hard real-time system, there is a set of n independent
real-time tasks τ = [τ1, . . . , τn], where each task generates
a set of infinite jobs (τij, j ≥ 0) that must be completed
before the arrival of the due time. This work considers that
all tasks are periodic, i.e., composed by a activations every
specified time. Each task is characterized as τi = (Ci,Di,Ti),
where Ti is the period, Di is the deadline and Ci is the worst
case execution time. From now on, Di is relative deadline,
in contrast with absolute deadline, which is dij = j · Ti + Di
for activation j. The utilization of a task τi is calculated as
the relation between the computation time and the period,
Ui =

Ci
Ti
.

For notational convenience and without loss of generality,
we assume that the tasks are given in order of increasing
deadline. Under the same deadline conditions, an order of
increasing period is assumed.

The hyperperiod of the task set H, is the smallest interval
of time after which the periodic patterns of all the tasks are
repeated, and it is calculated as the least common multiple of
the periods of the tasks.

The response time (wij) of task τi in activation j is the
time between an activation being released and the end of
its execution. The worst case response time [21], [22] is the
maximum time interval between arrival and finish instants for
each task (WCRTi = max{wij}). Similar to the worst case
response time, the best case response time of a task is defined
as the minimum time between any release of a task and its
corresponding completion (BCRTi = min{wij}), where the
minimum is taken over all executions of the tasks and all
possible phasing of the task respect to each other. If, for
each task, BCRTi ≤ WCRTi ≤ Di, the task set will be then
schedulable.

Usually, it is desirable to reduce the overhead intro-
duced by the context switch [23]. Multiple works address
this topic. For example, [24] develops a new schedul-
ing model, which unifies the concepts of preemptive and
non-preemptive scheduling, and proposes algorithms for opti-
mal assignment of priorities and preemption threshold. [23]
presents a solution for reducing the number of context
switches in multi-task scheduling, with task sets with limited
hyperperiods.

B. PARTITIONED MODEL
Partitioned systems were developed to address security and
safety problems and provide temporal and spatial isolation.
A partition consists of an encapsulated group of applications
that provide independent execution on a common platform.
The operating system is in charge of supporting the exe-
cution of the applications. Partitions are executed indepen-
dently on the top of the hardware, which could be virtual or
otherwise.

In a partitioned system, tasks are organized in a set of p
partitions P1, ..,Pp.

Therefore, we can extend our periodic task model to con-
sider a partitioned model in the following way:

τi = (Ci,Di,Ti, ρi) (1)

being ρi the identifier of the partition it belongs to.
An illustrative example of a partitioned system is presented

in 2 in Section IV-C.

IV. MILP SCHEDULING APPROACHES
This section proposes a mixed-integer linear program-
ming (MILP) formulation to determine the optimal offline
schedule of periodic tasks on a uniprocessor hard real-time
system. The following approaches can be taken to solve the
proposed scheduling problem:
• A basic MILP formulation for periodic task systems
that provides the optimal scheduling plan according to a
certain optimization criteria based on reducing response
times and context switches (see Section IV-A); This
problem (feasibility of periodic tasks on uniprocessors)
is co-NP-complete [25] and intractable inmost cases, but
it will serve as a reference for the rest of the approaches.
Preemptive and non-preemptive scheduling will be
considered.

• AMILP formulation with a rolling task approach. In this
approach the MILP problem is decomposed into a set of
MILP problems, one for each task. Each task activation
is allocated in priority order.

• A MILP formulation for partitioned systems based on
the two previous approaches (see Section IV-C).

Section III-A has introduced the general notations used
throughout this article, and the rest of notations will be intro-
duced when describing any particular approach.

A. MILP MODEL OF UNIPROCESSOR PERIODIC TASK
SYSTEMS
We will call this model the Simple MILP model. Table 1
introduces the different indices, parameters, and variables
used in the model.

According to the problem statement, the objective function
is defined in Equation (2), which is minimizing the total
number of context switches and the total response time for all
tasks in all system executions. The problem is considered as
multiobjective because it tries to reduce context switches and
response times. The range of values and the units of context
switches and response times are different. There is a need for
scaling. Context switches are dimensionless. Thus, we need
to normalize both context switches and response time to be
of a similar scale. As context switching variable (s) is binary
(0-1), we scale response times by dividing by deadlines for
each activation and task, to have a fair trade-off between
competing objectives. Later, in section IV-D, we define the
weights using a goal programming approach presented in [26]
in order to optimize each objective by minimizing its devia-
tion from their target value.

Therefore, Equation (2) minimizes the sum of multi-
ple (normalized) objectives, depending on the levels of

VOLUME 8, 2020 170391

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

TABLE 1. MILP model notation.

importance of each objective. Exact values for K1 and K2
will be provided in Section V to evaluate the proposed
approaches.

min Obj =
∑
∀(i,j)

∑
∀t

K1sijt +
∑
∀(i,j)

K2
wij
Di

(2)

s.t: xijt = 0 ∀t, i, j|t /∈ Rij (3)∑
t∈Rij

xijt = Ci ∀i, j (4)

t · xijt ≤ dij − 1 ∀t ∈ Rij (5)∑
(i,j)

xijt ≤ 1 ∀t ∈ {0, 1, . . . ,H} (6)

sijt ≤ xijt + xij(t+1) ∀t, i, j|t ∈ {0, 1, . . . ,H − 1} (7)

sijt ≥ xijt − xij(t+1) ∀t, i, j|t ∈ {0, 1, . . . ,H − 1} (8)

sijt ≥ xij(t+1) − xijt ∀t, i, j|t ∈ {0, 1, . . . ,H − 1} (9)

sijt ≤ 2− xijt − xij(t+1) ∀t, i, j|t ∈ {0, 1, . . . ,H − 1}

(10)

wij ≥ t · xijt − j · Ti + 1 ∀t, i, j (11)

xijt , sijt ∈ {0, 1} (12)

wij ≥ 0 (13)

Constraints (3), (4), (5) and (6) are the key constraints
and are the basic scheduling conditions. Constraint (3) does
not allow a task to be executed outside its possible intervals
of execution, [j · Ti, (j + 1) · Ti], for all each activation a.
Constraint (4) assures that the task completes all its execution
time. Equation (5) ensures real-time requirements, as tasks
must end before the arrival of their deadlines. Constraint 6
ensures that only one task is being executed at each point in
time.

Constraints (7 - 10) determine if a context switch sijt
happens or not, i.e., if a task is activated in a time t and not
in time t + 1 or vice versa. This behaviour is treated as an
exclusive OR (XOR), which gives true only if one, and only

one, of the inputs is true, xij(t+1) ⊕ xijt . As stated before,
sijt takes value 1 if there is a context switch.

Constraint (11) calculates the response time of each acti-
vation of all tasks. Equations (12) and (13) represent the
decision variable domains.

1) NON-PREEMPTIVE MILP MODEL
The previous approach provides an offline preemptive
scheduling plan for a task set. It means that tasks can be inter-
rupted by other tasks and restarted later. If non-preemptive
behavior is desired, i.e., if a task has to be executed until it
is completed without interruption, a new constraint will be
added in the model (Equation (14)).∑

∀(i,j)

sijt ≤ 2− xij0 ∀t ∈ {0, 1, . . . ,H − 1} (14)

2) ENHANCED MILP MODEL OF UNIPROCESSOR PERIODIC
TASK SYSTEMS
A possible way to reduce solution times of MILP problems
is via a warm start, i.e., to provide manually starting solution
vectors of the problem to the solver [27].

If the MILP solver finds that the input solution is feasible,
then the input solution provides an incumbent solution and
a bound for the branch-and-bound algorithm. If the solution
is not feasible, the MILP solver tries to repair it. When it is
difficult to find a good integer feasible solution for a problem,
a warm start can significantly reduce the solution time.

The effectiveness of the warm start in MILP solvers
depends onmany factors. Sometimes, warm starts do not help
the solver to find solutions more quickly, but authors may
consider providing feasible starting points to fix an upper
bound on the objective value (in case of minimization) and
thus can be used to prune nodes during the search.

The feasible starting point considered in this work is the
optimal scheduling policy known as Deadline Monotonic
Scheduling (DM) [28]. DM is a fixed-priority scheduling
algorithm that assigns the highest priority to the task with the
shortest deadline.

Therefore, an offline feasible scheduling plan for the
task set will be generated using DM, and this plan will
be the starting point of the Simple MILP model described
in Section IV-A.

3) DECISION VARIABLES SIZE
In some cases, the solution time of MILP problems grows
exponentially with respect to the problem size. For the simple
MILP model, the size of the decision variables is the number
of elements in matrices xijt , sijt and wij. Let be Sx , Ss and
Sw the number of elements that differ from zero in xijt , sijt
and wij, respectively. For all these matrices, the number of
rows is equal to the number of tasks in the system, n.

As far as wij matrix is concerned, the size is (rows x
columns):

Sw =
∑

i=1,...,n

Ni (15)

170392 VOLUME 8, 2020

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

However, the number of zero elements in the matrices
xijt and sijt is considerably large. Therefore, we only count
the nonzero elements of those variables when computing the
problem size.

For xijt , the number of nonzero elements in one row i and
activation j is Ci. So, in row i for all activations, the number
of nonzero elements is:

Ci · Ni = Ci
H
Ti
= Ui · H (16)

As xijt has n rows, the set of points of xijt to calculate in the
MILP problem is:

Sx =
∑

i=1,...,n

Ui · H = U · H (17)

In sijt , the same reasoning applies, but the maximum num-
ber of elements in a row is Ci+ 2, considering the worst case
in which a context switch occurs in each execution unit of Ci.
Thus:

Ss = U · H + 2 ·
∑

i=1,...,n

Ni (18)

The size S of the problem is then:

S = Sx + Ss + Sw = 2 · U · H + 3 ·
∑

i=1,...,n

Ni (19)

which is directly proportional to the number of tasks n,
the total utilization U and the length of the hyperperiod H.
As it has been demonstrated, the simple MILP model is

too computationally intensive to be used for large task sets
with high utilization and long hyperperiods. For this reason,
we propose an alternative MILP formulation in the next
section.

B. ROLLING TASK MILP MODEL
In the rolling task scheme, the MILP problem consists of
scheduling only one task in the hyperperiod. Once all acti-
vations of this task are allocated, the next task is chosen. The
previous solution is an input to the new problem as a new
constraint. This constraint implies that the new task can not
be allocated in the same instants of time that the first one. This
process is repeated until all tasks are allocated. The algorithm
is explained in Fig. 1. For instance, let us define a set of three
tasks τi = (Ci,Ti), with implicit deadlines (Di = Ti ∀i),
being τ0 = (2, 5), τ1 = (3, 9) and τ2 = (3, 18). Note
that tasks are ordered by increasing deadlines. First, τ0 is
allocated with the objective of minimizing its response time
and context switches. As a result, plan σ0 is defined. τ1 is
then allocated in the idle slots of time of plan σ0. Note that,
among all possibilities of allocation, the algorithm selects the
one with the most balanced weighted sum of context switches
and response times. As a result, plan σ1 is defined. Finally,
τ2 is allocated in the idle slots of time of plan σ1, following
the same criteria.

If tasks are chosen in a priority scheme, the result is similar
to the fixed priority non-preemptive scheduling algorithm

FIGURE 1. Functioning of the rolling task algorithm.

with priorities equal to deadlines. Note that the reduction
in time in rolling MILP approach comes from the a priori
determined priority ordering.

The optimization criteria are maintained as in the simple
MILP problem, minimizing both context switch and response
time.

With this purpose, variations over the previous approach
are done and are explained in Algorithm 1. The algorithm
works as follows: the system receives the task set ordered
by increasing deadlines. The first task, i = 0, is selected
in order to be optimized, with the objective of reducing its
context switch and response time. To avoid that other tasks
are now included in the model, we force that all xijt = 0
for i > 0 (line 8). Once this is done, the variable x00t is
saved in a global auxiliary variable that contains the plan, σijt
(line 14). Previous constraints are then removed (line 18) and
the model is updated (line 19). The algorithm moves to next
task, i = 1. To maintain the previous assigned values of x,
we force xijt = σijt for those tasks i < 1 and xijt = 0 for i > 1
(line 10). x11t is then optimized. This process is repeated for
all tasks and the optimized scheduling plan is saved in the
variable σijt .1

The previous algorithm is translated into an MILP prob-
lem, which is similar to that stated in Section IV-A. For
each task, the value of the objective function is calculated
in Equation (20). The difference between this equation and
the one in the simple MILP is that Equation (20) evaluates
the objective function once for each task, while Equation (2)
evaluates it for all the tasks in one step.

min Obj =
∑
∀j∈Ni

∑
∀t

K1sijt +
∑
∀j∈Ni

K2
wij
Di

(20)

s.t: xkjt = σkjt ∀k, t|j ∈ [0, 1, . . . , i− 1],

t ∈ {0, 1, . . . ,H} (21)

xkjt = 0 ∀k, t|j ∈ I − [0, 1, . . . , i],

t ∈ {0, 1, . . . ,H} (22)

xijt = 0 ∀t, j|t /∈ Rij, j ∈ Ni (23)∑
t∈Rij

xijt = Ci ∀j ∈ Ni (24)

t · xijt ≤ dij − 1 ∀t, j|t ∈ Rij, j ∈ Ni (25)

1In Fig. 1, variable σijt omits subindexes j and t for improved clarity and
only refers to the task i.

VOLUME 8, 2020 170393

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

Algorithm 1 Rolling Task MILP Algorithm
1: INPUT: Task set with n tasks ordered by increasing

deadlines
2: OUTPUT: Scheduling plan, σ
3: procedure ROLLING TASK MILP ALGORITHM(τ)
4: Calculate H, dij, Rij
5: Plan σijt → 0
6: for τi ∈ τ do
7: if i < n then
8: xkjt = 0 i < k ≤ n

9: if i > 0 then
10: xkjt = σkjt
11: add Constraints for task i
12: set Objective and optimize
13: if feasible then
14: σijt = xijt
15: else
16: Exit
17: if i < n-1 then
18: Remove constraints of the model
19: Update the model

∑
l

xijt ≤ 1 ∀t ∈ {0, 1, . . . ,H} (26)

sijt ≤ xijt + xij(t+1) ∀t, i, j|t ∈ {0, 1, . . . ,H − 1},

j ∈ Ni (27)

sijt ≥ xijt − xij(t+1) ∀t, i, j|t ∈ {0, 1, . . . ,H − 1},

j ∈ Ni (28)

sijt ≥ xij(t+1) − xijt ∀t, i, j|t ∈ {0, 1, . . . ,H − 1},

j ∈ Ni (29)

sijt ≤ 2− xijt − xij(t+1) ∀t, i, j|t ∈ {0, 1, . . . ,H − 1},

j ∈ Ni (30)

wij ≥ t · xijt − j · Ti + 1 ∀t, j|j ∈ Ni (31)

xijt , sijt ∈ {0, 1} (32)

wij ≥ 0 (33)

In each pass of the algorithm (i.e., for each task) only
that task is evaluated. Therefore, it inherits the execution
plan of previous tasks (Constraint 21) and ignores next tasks
(Constraint 22). The other constraints are similar to the ones
presented in Section IV-A, considering only a single task
rather than a set of tasks. Note that the non-preemptive ver-
sion of the rolling task MILP model is easy to obtain by
adding constraint 14 to the previous model.

C. PARTITIONED SYSTEMS MILP MODEL
The model presented in Section IV-B can be used to schedule
a partitioned system, as defined in Section III-B. The idea is to
make a hybrid approach between the periodic and the rolling
task model.

Given a task model where each task is defined as τi =
(Ci,Di,Ti, ρi), the rolling partition approach selects the first

partition and schedules all tasks within this partition, follow-
ing the rolling task approach defined in Section IV-B. The
next partition is then selected and all its tasks are scheduled.
The algorithm ends when all partitions are allocated. It is
explained in Algorithm 2.

Algorithm 2 Rolling Partition MILP Algorithm
1: INPUT: Task set with n tasks ordered by increasing

deadlines
2: OUTPUT: Scheduling plan, σ
3: procedure ROLLING PARTITION MILP ALGORITHM(τ)
4: Calculate H, dij, Rij
5: Order tasks by number of partition→ Partitions[]
6: for ρi ∈ Partitions do
7: for τi ∈ ρi do
8: Rolling task MILP algorithm(τi)

We have made numerous simulations to investigate the
feasibility of this method; however, we found some counter
examples that make it necessary to propose another approach
to solve the partitioned MILP scheduling problem. First,
we are going to show one of these counter examples.

1) COUNTER EXAMPLE
Given a task set as shown in Table 2, we can schedule
this system following a flat scheduling approach. But first,
the hierarchical scheduling is presented. Partitioned software
architectures define two levels of hierarchy: the global level,
with a scheduler that allocates CPU time to partitions; and a
local scheduler per partition, which schedules the tasks using
the available time per partition. Flat scheduling is consid-
ered [29] among the strategies that can be followed to achieve
hierarchical scheduling. This approach consists in removing
all the barriers defined by the partitioned system and schedule
and considering all the tasks at once. We then suppose that
a single global scheduler is in charge of managing all the
tasks and conducts the corresponding scheduling algorithm.
The last step is to adapt the solution back to the partitioned
system by grouping. With this, the final schedule will be very
efficient and, sometimes, optimal. In this strategy, the timing
knowledge of tasks should be previously detailed in depth in
order to analyze the overall system and optimize the solution.

TABLE 2. Task set parameters τ .

Fig. 2 shows the scheduling plan obtained with this
approach. To schedule the flat system, we can use both the
DM or the rolling task MILP algorithm. As seen in the tem-
poral plan, all deadlines are met, so the system is schedulable.

We are now applying the rolling partition MILP algorithm
to the same set. According to Algorithm 2, partition 0 is

170394 VOLUME 8, 2020

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

FIGURE 2. Task set τ scheduled with DM.

initially selected. All tasks within that partition (τ0 and τ2)
are then allocated in the core, using the rolling task algorithm.
The result is shown in Fig. 3a. The algorithm then moves to
partition 1 and tries to allocate the tasks within that partition
(τ1) into the available slots of the previous scheduling plan.
As shown in Fig. 3b, it is impossible to execute τ1 entirely,
and the task misses the deadline in its first execution. There-
fore, the system is not schedulable.

FIGURE 3. Task set τ scheduled with Rolling partition algorithm.

As shown in this example, the rolling task approach per-
forms well in terms of feasibility, but its extension to the
hybrid rolling partition algorithm does not provide a feasible
result. Therefore, another approach for partitioned systems
must be proposed.

2) HIERARCHICAL MILP MODEL FOR PARTITIONED SYSTEMS
As mentioned in the previous section, we will consider a
hierarchical system with global and local levels. We consider
a periodic server at the global level and the rolling task
MILP approach at the local level.

At the global level, the scheduler periodically assigns the
CPU to the partition, i.e., 0 = (θ, π) provides θ units of CPU
every π units of time. Once time has been assigned for each
partition, the local scheduler allocates the tasks that belong to
the partition in their corresponding time slots, following the
rolling task algorithm.

The method for calculating the global level periodic
resource is explained hereafter: the first step consists of cal-
culating the amount of CPU required for each partition Pi as
the sum of the utilizations required for its tasks:

UPi =
∑
∀τm∈Pi

Cm
Tm

(34)

We now have to fix θPi or πPi and calculate the other
usingUPi .Wewill set the period of the partition to the shortest
period of the tasks that belong to this partition. The credit of
the periodic server for each partition θPi is then calculated as:

θPi = UPi · min(Tm) ∀τm ∈ Pi (35)

Algorithm 3 explains the hierarchical MILP model. First,
the global level scheduling is evaluated (line 3). For each par-
tition, the algorithm calculates the periodic resource through
the parameters of the tasks that belong to that partition
(lines 6-7). The output of this function is the periodic resource
for each partition (line 8). The local level scheduling is then
calculated for each partition (line 9). The function uses as an
input parameter the periodic resource of each partition and
schedules the tasks in this resource (line 13) to generate the
temporal plan. If the partition does not completely use its
credit to schedule tasks, the remaining timewill be transferred
to the next partitions (lines 14-15). As a result, the local plan
for each partition is calculated (line 16).

Algorithm 3 Hierarchical MILP Algorithm
1: INPUT: Task set with n tasks ordered by increasing

deadlines
2: OUTPUT: Scheduling plan, σ
3: procedure GLOBAL-LEVEL-SCHEDULING(τ)
4: Group tasks by partition index→ Partitions[]
5: for ρi ∈ Partitions do F Calculate the periodic

resource for each partition
6: πρi = min(Tj) ∀ taskj ∈ ρi
7: θρi =int

(
πρi ·

∑
taskj∈ρi Uj

)
8: return 0ρi (πρi , θρi) ∀ρi ∈ Partitions[];

9: procedure LOCAL-LEVEL-SCHEDULING(0(π, θ), τ ,
Partitions[])

10: for ρi ∈ Partitions do
11: Initialize plan σ
12: for τj ∈ ρi do F Application of rolling task

MILP approach
13: σ += Schedule τj in 0ρi (πρi , θρi)

14: Idle-timei = 0ρi (πρi , θρi) - σ
15: σ ∀i ∈ Partitions[]
16: return 0ρi (πρi , θρi) ∀ρi ∈ Partitions[];

For the task set defined in Table 2, the global level periodic
resource is calculated as:

UP0 =
2
5
+

4
20
= 0.60

VOLUME 8, 2020 170395

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

UP1 =
3
10
= 0.30

θP0 = 0.60 · 5 = 3

θP1 = 0.3 · 10 = 3

Therefore, the periodic resources for the partitions are
modelled as: 0ρ0 = (3, 5) and 0ρ1 = (3, 10), assuming
integer numbers for all parameters. The global scheduling
plan is depicted in Fig. 4.

FIGURE 4. Periodic server in the global level.

We followed the same approach for a small instance of the
problem presented in Table 2. As shown in Fig. 5, the plan
is schedulable as all the tasks at different activations are
completed before their deadlines. Moreover, the obtained
schedule is very efficient in terms of the context switch.

FIGURE 5. Rolling task MILP in the local level.

D. SELECTION OF THE WEIGHTS IN THE MULTIOBJECTIVE
FUNCTION
Amethod to select the weightsK1 andK2 in order to optimize
both objectives is presented in [26] using a goal program-
ming objective method. The procedure consists of solving the
MILP problem twice, once for each objective and then obtain
a function that closely approximates both optimal values. For
this purpose, the task set defined in Table 2 is used and the
target values are obtained:

TABLE 3. Target values for single objectives.

We thenminimize the percentage deviations from the target
values to optimize the response time and context switch,
simultaneously (Equation (36)):

min K1

∑
∀(i,j)

∑
∀t

sijt − 12
12

+ K2

∑
∀(i,j)

1
Di

WCRTi − 3.1
3.1

(36)

Depending on each objective’s relative importance, the value
of K1 and K2 might vary in the range of [0, 1] such that K1+

K2 = 1 (Fig. 6). It is the decision maker’s responsibility to
choose the weights that best fit the requirements.

FIGURE 6. Optimal solutions for minimizing the weighted sum of
percentage variations of the objectives, with different values
for K1 and K2.

V. EXPERIMENTAL EVALUATION
This section evaluates both the quality of generated sched-
ules and the required time for obtaining them. The assessed
MILP models are:
• Simple (GS) presented in Section IV-A1.
• Simple with start solution (GS2) presented in
Section IV-A2.

• Rolling task (GR) presented in Section IV-B.
As far as weights K1 and K2 is concerned, we have consid-

ered K1 = 1 and K2 = 1 for GR, GS and GS2. These weights
are set in this way in order to provide a balanced solution in
which context switch and WCRT are reduced equally. The
relation between the response time of a task and its deadline
is always less than or equal to one (a task cannot end after
its deadline). Therefore, the weight of the context switch
is usually slightly greater than the weight of the response
time. Finally, we evaluate the preemptive versions of all
MILP models.

A. EXPERIMENTAL CONDITIONS
The simulation scenario developed for this work is depicted
in Fig. 7. It is divided into three steps:
• Generation of the load (see Section V-A1).
• Execution ofMILP approaches andDM (see Section IV).
• Validation (see Section V-A2).
The automatic load generator generates a task set and

the associated parameters with the process described in
Section V-A1. This task set is the input for the 3 MILP
approaches and the DM scheduler that generates the corre-
sponding scheduling plans. If the obtained plans are then
valid, their performance parameters will be stored. This

170396 VOLUME 8, 2020

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

FIGURE 7. Experimental evaluation overview.

sequence is repeated to complete a sufficient number of sim-
ulations.

We use Gurobi optimizer [30], from Gurobi Optimization,
Inc., which is a powerful optimizer designed from scratch
to run in multi-core and with capability to run in parallel
mode. It has achieved performance improvement with each
version and provides a Python interface. Version 9.0 [30] is
selected for solving our proposed MILP formulations. All
MILP approaches described in previous sections are executed
on an Intel Core i7 CPU with 16GB of RAM.

1) LOAD GENERATOR
The load is generated using a synthetic task generator. Given
the system utilization value and a number of tasks for each
set, the utilization is shared among the tasks using the UUni-
Fast discard algorithm [31]. Computation times are gener-
ated randomly in [2,10] and periods are deduced from the
system utilization. We restricted the hyperperiod to be no
larger than 5000, so we discard the sets that exceed this limit,
repeating the generation again until enough feasible instances
are found.

2) VALIDATION OF THE RESULTS
The validation consists of two steps. Firstly, we must check
feasibility to ensure all deadlines are met. Secondly, several
performance parameters are obtained to compare different
methods. Specifically, these are the parameters obtained for
each set:
• Response times: We calculate best and worst case
response times as defined in Section III-A. In order to
evaluate WCRT and BCRT of the task set, they will
be calculated as the average between WCRTi/Di and
BCRTi/Di for all tasks in the set, respectively.

• Number of context switches (CC): This parameter is
computed by counting the number of times tasks are
preempted by others.

• Solution time: For MILP approaches, we calculate the
time spent to obtain a solution. As simple MILP models
are too computationally-intensive for some task sets,
the solver is limited to a certain time limit of solution
time. After this time, the solution is stored.
To pick the best time limit, we vary the GS algorithm
time limits to between 100 and 3000 s to solve different

instances of the problem. We then plot the percentage
of the cases that have been solved to optimality (opti-
mality gap <= 0.001) vs. the time limit. As depicted
in Figure 8, up to 500 s, the percentage of optimal
cases increases significantly. However, the improvement
is negligible after that. Therefore, we conclude that 500 s
is the right choice for the time limit.

FIGURE 8. Experiment to select the timelimit parameter.

• Optimality gap: If the previously chosen time limit is
reached, the solution is not optimal. Therefore, the dis-
tance to the optimal solution should be analyzed. This
distance is called the gap hereafter. It is the distance
between the estimated lower bound (for minimization
problem) and the best feasible solution that has been
found so far. As looking for proven optimal solutions
takes a long time to compute, a common practice is to
look for a solution that guarantees not worse than x%
(gap) from the optimal solution. A significant advantage
is that most of the gap is often reduced quite early.

• Control action interval (CAI): It is the percentage vari-
ation of the control action delivery of a task relative to
its period [7]. This parameter allows us to compare the
performances of a control system. The CAI of a task i is
calculated as:

CAIi(%) =
WCRTi − BCRTi

Ti
· 100 (37)

B. EXPERIMENTAL RESULTS
This subsection evaluates the performance of the proposed
MILP approaches and the scheduling policy DM using the
performance parameters (i.e., quality of the solution and com-
putation intensity) that are obtained in the evaluation process.

1) COMPARISON OF ILP APPROACHES
a: SOLUTION TIME
The results show that both the simple model and the simple
model with a warm start take a long time to run. In fact,
the median of all the simulations with GS and GS2 approx-
imates the time limit (500 seconds), as depicted in Fig. 9.
When the time limit is usually reached, only good solutions

VOLUME 8, 2020 170397

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

FIGURE 9. Solution times depending on the utilizations and the number
of tasks of the sets.

are found and not the optimal solution. In the case of a
rolling approach, promising results are achieved. GR needs
five times less solution time than GS and GS2.

In terms of solution time and computation intensity, it is
clear that the best approach is GR. In Fig.10, we can see the
relationship between utilization, the number of tasks, and the
solution time for GR.As shown in Section IV-A3, the solution
time increases with the number of tasks and utilization.

We then compare the rest of the performance parameters
to check if it is worth spending computation time to obtain
more significant results.

b: GAP
This subsection studies the GS and GS2 optimality gaps as
they could not find the optimal solution in the selected time
limit. As observed in Fig. 11, the optimality gap is strikingly
similar in GS and GS2. Therefore, providing a first solution
(warm start) did not improve the solution time nor the solution
quality. It is further observed that the gap increases with the
number of tasks in the system, which is in line with the results
in the previous section.

FIGURE 10. Influence of the number of tasks and system utilization in the
solution time of the GR algorithm.

FIGURE 11. Influence of the number of tasks in the percentage of
optimality gap.

c: WORST CASE RESPONSE TIME
Regarding theWCRT, we can see in Fig. 12 that DM achieves
the best result. This is expected as DM schedules tasks
with shorter deadlines first. But regarding MILP approaches,
GR achieves better results than GS or GS2. This is because
GR obtains an optimal solution while GS and GS2 reach the
time limit without finding an optimal solution in the major
part of the task sets.

d: CONTEXT SWITCHES
Regarding the number of context switches, as depicted
in Fig. 13, GS and GS2 approaches produced fewer context
switches than GR and DM. It should be noted that GS and
GS2 coincide in this figure.

It is clear that, as far as CC is concerned, DMwill obtain the
worst results, since it is not a scheduling algorithm focused
on reducing CC. Regarding GS, GS2 and GR, all have CC
minimization as objective. However, the differences between
GR and GS or GS2 are related to the way in which GR
performs the optimization. As GR optimizes by following a
rolling task approach, it means that tasks are scheduled in
lower deadline order. This is very similar to DM and this

170398 VOLUME 8, 2020

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

FIGURE 12. Influence of the system utilization in the worst case response
times.

is why GR achieves worse results in terms of CC than GS
and GS2. Nonetheless, as GR has CC minimization in its
objective, it achieves better results than DM.

As a reminder, the authors consider reducing the response
time and the number of context switches as the main objec-
tives of the problem. DM is the approach that generates a
plan with the shortest response times and, in contrast, more
context switches. GS is completely the opposite. This is due
to the weights of the objectives in the multiobjective function.
Depending on these coefficients, the results may change,
as explained later in Section V-B2.

e: BEST CASE RESPONSE TIME
In the case of the best case response time, GS is the approach
with the shortest BCRT than other approaches. The ratio
between BCRT and deadlines increases with the number of
tasks and system utilizations, as seen in Fig. 14.

f: CONTROL ACTIVATION INTERVAL
Finally, regarding to the percentage of CAI, DM is
the approach that implies a better system performance,
as observed in Fig. 15. This may be logical since GR and GS
do not explicitly use a criterion to minimize CAI.

As a conclusion, we consider that GR the best approach
in terms of time and performance and it will be studied in
depth hereafter. Moreover, through an in-depth study, the GR
approach is extended and applied to different objectives. This
leads us to the next section, where we will investigate the
effect of varying the constants K1 and K2.

2) INFLUENCE OF THE WEIGHTS OF THE OBJECTIVES IN THE
OBJECTIVE FUNCTION
As stated in Section IV-A, the objective function covers the
total number of context switches, s, and the total response
time, w, for all tasks.
By changing the weights K1 and K2, we can derive as

many versions of GR as we want, depending on the system
requirements. For example, a particular case of GR is GR2,

FIGURE 13. Impact of the system utilization and number of tasks in the
context switches.

which corresponds to the GR approach with a single objec-
tive: to reduce the response time of the system. Therefore,
the context switch is removed from the objective function,
i.e., K1 = 0 and K2 = 1 in Equation (2).
In this subsection, GR and GR2 approaches are compared,

and DM is used as a reference in the evaluation of the results.
For this purpose, simulations with hyperperiods in

[0, 3500] are made and the solution time is limited to 1800 s.
Furthermore, utilization factors are defined in range [0.1, 0.8]
and the number of tasks in [2, 10] per set.

As seen in Fig. 16, the solution time grows exponentially
for GR and more slowly for GR2 as the objective function
has been simplified. Reducing the number of objectives in
the objective function significantly reduces the solution time.
Looking into Fig. 17, we can conclude that the GR2 approach
is the most similar approach to the DM approach in terms
of system performance. Although GR slightly reduces the
number of context switches and BCRT compared to GR2 and
DM, it implies worse performance in WCRT and CAI. It is
possible to conclude that regardingWCRT, the GR2 approach
reduces the response times even below the DM approach, and
this is a favorable result.

VOLUME 8, 2020 170399

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

FIGURE 14. Influence of the system utilization and number of tasks in the
best case response times.

As discussed, the system’s performance parameters change
when the objective function varies i.e., considering differ-
ent terms in the objective function or changing the weights
associated with each objective. Obviously, the weights of the
objective function should be customized for the needs of the
problem. For example, in control applications, it is desir-
able to minimize the computational delay in the controller,
as well as the sampling jitter and the control jitter [32]. The
implementation of the minimization of computational delay
is explained in the next subsection.

C. REDUCING CONTROL ACTIVATION INTERVAL
A variant form of the GR algorithm, GR3, is defined here
with the CAI and response time in the objective function,
i.e., Equation (38). The first part and the second parts of the
equation minimize the CAI and the task’s overall response
time, respectively.

min Obj =
1
Ti
(WCRTi − BCRTi)+

∑
∀j∈Ni

1
Di
wij (38)

FIGURE 15. Impact of the system utilization and number of tasks in the
control activation interval.

FIGURE 16. Solution time in GR and GR2 approaches depending on the
system hyperperiod.

In this subsection, GR, GR2 and GR3 approaches are
compared, and DM is used as a reference in the evaluation of
the results. Table 4 resumes the objective of each approach.

As seen in Fig. 18, minimizing the CAI results in the
best results among all approaches. GR3 approach provides

170400 VOLUME 8, 2020

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

FIGURE 17. Performance parameters in GR and GR2 approaches
depending on the system utilization.

slightly better results than GR2 in terms of CAI and both,
GR2 and GR3 improve the system’s performance compared
with the DM approach. This is a promising result of the work.

TABLE 4. Summary table of rolling task approaches.

FIGURE 18. CAI for different approaches depending on the number of
tasks of the system.

D. EVALUATION OF HIERARCHICAL MILP MODEL FOR
PARTITIONED SYSTEMS
For the evaluation of partitioned systems, the proposed hier-
archical MILP model has been applied to a real design case
from the avionics domain [33], described in Table 5.

TABLE 5. Real design case from the avionics domain.

Firstly, the global level periodic resource is calculated as:

UP0 =
1
25
+

3
50
= 0.10

UP1 =
2
50
= 0.04

UP2 =
1
50
= 0.02

UP3 =
1
25
+

1
50
+

2
100
+

2
100
= 0.105

UP4 =
1
50
+

1
50
= 0.04

θP0 = 0.10 · 25 = 2.5

θP1 = 0.04 · 50 = 2

VOLUME 8, 2020 170401

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

FIGURE 19. Periodic server in the global level for real design case
described in Table 5.

FIGURE 20. Rolling task MILP in the local level for real design case
described in Table 5.

FIGURE 21. DM algorithm for real design case described in Table 5.

θP2 = 0.02 · 50 = 1

θP3 = 0.105 · 25 = 2.625

θP4 = 0.04 · 50 = 2

Therefore, the periodic resources for the partitions are
modelled as: 0ρ0 = (3, 25), 0ρ1 = (2, 50), 0ρ2 = (1, 50),
0ρ3 = (3, 25) and 0ρ4 = (2, 50), assuming integer numbers
for all parameters. The global scheduling plan that fulfills
with this periodic resources is depicted in Fig. 19. Note that
because of space limitations, the scheduling plan is limited to
130 units of time instead of all the hyperperiod.

Fig. 20 shows the local scheduling plan according to the
rolling MILP approach.

Now, we are going to compare this approach with flat
scheduling with DM algorithm [29]. Fig. 21 depicts the
scheduling plan for the case defined in Table 5 following DM
algorithm.

If the executions of the tasks that belong to the same
partition are grouped, the execution in the global level is
depicted in Fig.22:

Looking at Figs. 19 and 22, it is obvious that at the global
level, hierarchical allocation achieves fewer context switches
than flat scheduling. In fact, it is reduced by 35%. This
reduction is due to the fact that in the case of flat scheduling,
tasks are scheduled independently of the partition to which
they belong. The exact reduction will depend on how the
credit θ and the period π in the global level are selected.
The criteria to select these values are out of the scope of
this article, but there are several resource-partitioned mod-
els such as the regularity-based resource partitioning (RRP)
model [34], the periodic model [35], and the explicit deadline
periodic model [36] that can be used to calculate θ and π .

FIGURE 22. Periodic server in the global level for real design case
described in Table 5.

This evaluation concludes that the hierarchical MILP model
can successfully schedule both levels with better results
regarding context switches. This is especially important in
partitioned systems where there are two types of context
switches: between partitions (global level) and between tasks
inside a partition (local level).

VI. CONCLUSION
We have explored different MILP techniques to schedule
uniprocessor hard real-time systems. Our goal was to demon-
strate that the MILP technique is an excellent alternative to
heuristic scheduling algorithms, even in uniprocessor sys-
tems.We have proposed aMILP technique that achieves good
performance in solution times and obtains better schedules
than heuristics in terms of response times and jitter and
generally in any desired performance parameter due to the
possibility of customizing the optimization criteria. We have
also proposed an MILP formulation for scheduling parti-
tioned systems, considering them as two-level hierarchical
systems. Further work involves evolving the approaches into
more complex models and architectures, especially multicore
architectures with more realistic models such as tasks with
precedence relations, mixed-criticality systems, and power
consumption reduction.

REFERENCES
[1] A. Burns and R. I. Davis, ‘‘A survey of research into mixed criticality

systems,’’ ACM Comput. Surv., vol. 50, no. 6, pp. 1–37, Jan. 2018.
[2] Avionics Application Software Standard Interface (ARINC-653). Part 1—

Required Services, Airlines Electron. Eng. Committee, Annapolis, MD,
USA, Mar. 2006.

[3] T. P. Baker and A. Shaw, ‘‘The cyclic executive model and Ada,’’ in Proc.
Real-Time Syst. Symp., Dec. 1988, pp. 120–129.

[4] C. D. Locke, ‘‘Software architecture for hard real-time applications: Cyclic
executives vs. Fixed priority executives,’’ Real-Time Syst., vol. 4, no. 1,
pp. 37–53, Mar. 1992.

[5] K. Jeffay, ‘‘Scheduling sporadic tasks with shared resources in hard-real-
time systems,’’ in Proc. Real-Time Syst. Symp., Dec. 1992, pp. 89–99.

[6] H. J. Rivera-Verduzco and R. J. Bril, ‘‘Best-case response times of real-
time tasks under fixed-priority scheduling with preemption thresholds,’’
in Proc. 25th Int. Conf. Real-Time Netw. Syst. New York, NY, USA:
Association Computing Machinery, Oct. 2017, pp. 307–346.

[7] A. Crespo, I. Ripoll, and P. Albertos, ‘‘Reducing delays in Rt con-
trol: The control action interval,’’ IFAC Proc. Volumes, vol. 32, no. 2,
pp. 8527–8532, 1999.

[8] J. Zamorano, A. Alonso, and J. A. de la Puente, ‘‘Building safety-critical
real-time systems with reusable cyclic executives,’’ Control Eng. Pract.,
vol. 5, no. 7, pp. 999–1005, Jul. 1997.

[9] T. Henties, J. J. Hunt, D. Locke, K. Nilsen, M. Schoeberl, and J. Vitek,
‘‘Java for safety-critical applications,’’ in 2nd Int. Workshop Certification
Saf.-Crit. Softw. Controlled Syst. (SafeCert), Jan. 2009.

[10] S. Baruah, ‘‘Feasibility analysis of preemptive real-time systems upon
heterogeneous multiprocessor platforms,’’ in Proc. 25th IEEE Int. Real-
Time Syst. Symp., Dec. 2004, pp. 37–46.

[11] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava,
‘‘Power optimization of variable-voltage core-based systems,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 12,
pp. 1702–1714, Dec. 1999.

170402 VOLUME 8, 2020

A. Guasque et al.: Integer Programming Techniques for Static Scheduling of Hard Real-Time Systems

[12] V. A. Nguyen, D. Hardy, and I. Puaut, ‘‘Cache-conscious off-line real-time
scheduling for multi-core platforms: Algorithms and implementation,’’
Real-Time Syst., vol. 55, no. 4, pp. 810–849, Oct. 2019.

[13] Y. Sun and M. D. Natale, ‘‘Weakly hard schedulability analysis for fixed
priority scheduling of periodic real-time tasks,’’ ACM Trans. Embedded
Comput. Syst., vol. 16, no. 5, pp. 1–19, Oct. 2017.

[14] T. Fleming and A. Burns, ‘‘Investigating mixed criticality cyclic executive
schedule generation,’’ in Proc. Workshop Mixed Criticality (WMC), 2015,
pp. 42–47.

[15] J. Kim, H. Oh, H. Ha, S.-H. Kang, J. Choi, and S. Ha, ‘‘An ILP-basedworst-
case performance analysis technique for distributed real-time embedded
systems,’’ in Proc. Real-Time Syst. Symp., Dec. 2012, pp. 363–372.

[16] L. Mangeruca, M. Baleani, A. Ferrari, and A. Sangiovanni-Vincentelli,
‘‘Uniprocessor scheduling under precedence constraints for embedded
systems design,’’ ACM Trans. Embedded Comput. Syst., vol. 7, no. 1,
pp. 1–30, Dec. 2007.

[17] B. Lisper and P. Mellgren, ‘‘Response-time calculation and priority
assignment with integer programming methods,’’ in Proc. Work–Progress
Ind. Sessions, 13th Euromicro Conf. Real-Time Syst., E. Tovar and
C. Norström, Eds. Jun. 2001, pp. 13–16. [Online]. Available: http://www.
es.mdh.se/publications/282-

[18] H. Zeng and M. Di Natale, ‘‘An efficient formulation of the real-time
feasibility region for design optimization,’’ IEEE Trans. Comput., vol. 62,
no. 4, pp. 644–661, Apr. 2013.

[19] R. Devaraj, A. Sarkar, and S. Biswas, ‘‘Real-time scheduling of non-
preemptive sporadic tasks on uniprocessor systems using supervisory
control of timed DES,’’ in Proc. Amer. Control Conf. (ACC), May 2017,
pp. 3212–3217.

[20] R. Devaraj, A. Sarkar, and S. Biswas, ‘‘Exact task completion time aware
real-time scheduling based on supervisory control theory of timed DES,’’
in Proc. Eur. Control Conf. (ECC), Jun. 2018, pp. 1908–1913.

[21] P. K. Harter, ‘‘Response times in level-structured systems,’’ ACM Trans.
Comput. Syst., vol. 5, no. 3, pp. 232–248, Aug. 1987.

[22] M. Joseph and P. Pandya, ‘‘Finding response times in a real-time system,’’
Comput. J., vol. 29, no. 5, pp. 390–395, 1986.

[23] A. A. Paul and B. A. S. Pillai, ‘‘Reducing the number of context switches
in real time systems,’’ in Proc. Int. Conf. Process Autom., Control Comput.,
Jul. 2011, pp. 1–6.

[24] P. R. Nuth andW. J. Dally, ‘‘A mechanism for efficient context switching,’’
in Proc. IEEE Int. Conf. Comput. Design, VLSI Comput. Processors,
Oct. 1991, pp. 301–304.

[25] S. K. Baruah, R. R. Howell, and L. E. Rosier, ‘‘Feasibility problems for
recurring tasks on one processor,’’ Theor. Comput. Sci., vol. 118, no. 1,
pp. 3–20, Sep. 1993.

[26] M. F. Tompkins, ‘‘Optimization techniques for task allocation and schedul-
ing in distributed multi-agent operations,’’ Ph.D. dissertation, Dept. Elect.
Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA,
2003.

[27] G. Ausiello, V. Bonifaci, and B. Escoffier, ‘‘Complexity and approximation
in reoptimization,’’ in Computability in Context. 2011, pp. 101–129.
[Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/
9781848162778_0004, doi: 10.1142/9781848162778_0004.

[28] J. Y.-T. Leung and J. Whitehead, ‘‘On the complexity of fixed-priority
scheduling of periodic, real-time tasks,’’ Perform. Eval., vol. 2, no. 4,
pp. 237–250, Dec. 1982.

[29] A. Crespo, A. Alonso, M. Marcos, J. A. de la Puente, and P. Balbastre,
‘‘Mixed criticality in control systems,’’ IFAC Proc. Volumes, vol. 47, no. 3,
pp. 12261–12271, 2014.

[30] Gurobi Optimizer Reference Manual, Gurobi Optimization, Houston, TX,
USA, 2019.

[31] R. I. Davis and A. Burns, ‘‘Priority assignment for global fixed priority
pre-emptive scheduling inmultiprocessor real-time systems,’’ inProc. 30th
IEEE Real-Time Syst. Symp., Dec. 2009, pp. 398–409.

[32] A. Cervin, ‘‘Improved scheduling of control tasks,’’ in Proc. 11th Euromi-
cro Conf. Real-Time Syst. (Euromicro), Jun. 1999, pp. 4–10.

[33] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal, ‘‘A compositional frame-
work for avionics (ARINC-653) systems,’’ Dept. Comput. Inf. Sci., Univ.
Pennsylvania, Philadelphia, PA, USA, Tech. Rep. MS-CIS-09-04, 2009.

[34] A. K. Mok and X. Alex, ‘‘Towards compositionality in real-time resource
partitioning based on regularity bounds,’’ in Proc. 22nd IEEE Real-Time
Syst. Symp. (RTSS), Dec. 2001, pp. 129–138.

[35] I. Shin and I. Lee, ‘‘Periodic resource model for compositional real-time
guarantees,’’ in Proc. Int. Symp. Syst.-on-Chip, Dec. 2003, pp. 2–13.

[36] A. Easwaran, M. Anand, and I. Lee, ‘‘Compositional analysis framework
using EDP resource models,’’ in Proc. 28th IEEE Int. Real-Time Syst.
Symp. (RTSS), Dec. 2007, pp. 129–138.

ANA GUASQUE was born in Valencia, Spain,
in 1987. She received the B.S. degree in indus-
trial engineering, the M.S. degree in automation
and industrial computing, and the Ph.D. degree
in industrial engineering from the Universitat
Politècnica de València (UPV), in 2013, 2015, and
2019, respectively.

She is currently working as a Researcher with
UPV. Her main research interests include real-time
operating systems, scheduling, and optimization
algorithms and real-time control.

HOSSEIN TOHIDI was born in Tehran, Iran,
in 1985. He received the B.S. degree in indus-
trial engineering from the Iran University of Sci-
ence and Technology, Tehran, in 2008, the M.S.
degree in operations research from the University
of Tehran, Tehran, in 2013, and the M.S. degree
in engineering management from the University
of Minnesota Duluth, Duluth, MN, USA, in 2016.
He is currently pursuing the Ph.D. degree in indus-
trial and systems engineering with North Carolina

State University, Raleigh, NC, USA.
His research interests include stochastic optimization, large-scale opti-

mization, network optimization, reinforcement learning, and machine
learning.

PATRICIA BALBASTRE received the degree
in electronic engineering from the Universitat
Politècnica de València (UPV), in 1998, and the
Ph.D. degree in computer science, in 2002. She
is currently an Associate Professor of Computer
Engineering with UPV. Her main research inter-
ests include real-time operating systems, dynamic
scheduling algorithms, and real-time control.

JOSÉ MARÍA ACEITUNO was born in Valen-
cia, Spain, in 1982. He received the B.S. degree
in computer management from the University of
Castellón, in 2012, and theM.S. degree in artificial
intelligence from the Universitat Politècnica de
València (UPV), in 2016, where he is currently
pursuing the Ph.D. degree in distributed systems.

From 2016 to 2019, he was a Teacher of
High-Level Web Applications and Multiplatforms
at ILERNA Online, Spain.

JOSÉ SIMÓ received the M.S. degree in indus-
trial engineering and the Ph.D. degree in computer
science from the Universitat Politècnica de Valèn-
cia (UPV), Spain, in 1990 and 1997, respectively.
Since 1990, he has been involved in several Span-
ish and European research projects mainly related
to real-time and embedded systems and industrial
collaborations. He is currently a Professor with the
Department of Computer Engineering, UPV. His
current research interests include the development

of real-time embedded systems, autonomous systems, and robotics.

ALFONS CRESPO received the Ph.D. degree in
computer science from the Universitat Politècnica
de València (UPV), in 1984. He is currently a
Professor with the Department of Computer Engi-
neering, UPV. He became an Associate Professor,
in 1986, and a Full Professor, in 1991. He leads
the Industrial Informatics Group and has also led
several European and Spanish research projects.
He has published more than 60 papers in spe-
cialized journals and conferences in the area of

real-time systems. Hismain research interest includes aspects of the real-time
systems, including scheduling, hardware support, and scheduling and control
integration.

VOLUME 8, 2020 170403

http://dx.doi.org/10.1142/9781848162778_0004

