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ABSTRACT We present a method for learning a function over distributions. The method is based on
generalizing nonparametric kernel regression by using the earth mover’s distance as a metric for distribution
space. The technique is applied to the problem of learning the dependence of pitcher performance in baseball
on multidimensional pitch distributions that are controlled by the pitcher. The distributions are derived from
sensor measurements that capture the physical properties of each pitch. Finding this dependence allows the
recovery of optimal pitch frequencies for individual pitchers. This application is amenable to the use of
signatures to represent the distributions and a whitening step is employed to account for the correlations
and variances of the pitch variables. Cross validation is used to optimize the kernel smoothing parameter.
A set of experiments demonstrates that the new method accurately predicts changes in pitcher performance
in response to changes in pitch distribution and also outperforms an existing technique for this application.

INDEX TERMS Baseball, earth mover’s distance, function over distributions, kernel regression, machine
learning, nonparametric, pitching, sensor data.

I. INTRODUCTION
An important use of machine learning techniques is the
recovery of a model from observed data. The development
of learning methods for the recovery of three-dimensional
shape from image data, for example, has been a topic of
recent interest in computer vision [1], [2]. Nonparametric
methods [3] are a powerful tool for model recovery and
continue to support a variety of applications [4], [5]. In this
work, we generalize nonparametric techniques that learn a
function of multiple variables to the problem of learning a
function over distributions.

The ability to quantify player skill and team performance
in professional sports has been revolutionized by the deploy-
ment of sensors that collect large amounts of data during each
game [6], [7] [8]. This has led to the use of machine learning
algorithms by teams to exploit this data to gain a competitive
advantage. Machine learning methods are particularly well
suited for baseball due to the discrete structure of the sport [9].
We will apply the learning method derived in this article to
one of the most challenging problems in baseball analytics.

Nonparametric kernel regression can be used to estimate a
function of unknown form and has been applied in a wide
range of settings [10]. Generalizing this approach to learn
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a function over distributions requires a suitable metric for
distribution space. The Wasserstein metric or Earth Mover’s
Distance (EMD) can be used to compare distributions and
has been applied to many problems in signal processing and
machine learning [11]. The EMD uses a cost function called
the ground distance to determine the minimum amount of
work that is needed to transform one distribution into the
other. The computational cost of finding the EMD can be
expensive which leads to the use of signatures to approximate
the distributions thereby enabling the use of efficient linear
programming methods [12].

We develop an algorithm that learns a function over
distributions by generalizing nonparametric kernel regres-
sion using the EMD as the distribution-space metric. The
algorithm is applied to the problem of optimizing pitch dis-
tributions in baseball. A nonparametric learning method is
appropriate for this application because the effectiveness of
a pitch distribution has a complicated dependence on the
quality, frequency, and interaction of a pitcher’s set of pitches.

We represent a collection of pitches using a multidimen-
sional distribution that is derived from sensor measurements
that capture the physical properties of each pitch. These
properties have been shown to have a strong effect on pitch
value [13]. Pitchers typically use a small number of different
pitch types which allows these distributions to be accurately
encoded using signatures. A whitening transform [14] is used
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by the EMD ground distance to account for the variances and
correlation structure of the component variables that define
the distributions. A method that is similar to leave-one-out
cross validation [15] is used to optimize the kernel smoothing
parameter. After recovering the function over pitch distribu-
tions, an efficient low-dimensional search can be used to find
the optimal frequencies for a pitcher’s various pitch types.We
show that the new model accurately predicts the dependence
of pitcher performance on changes in pitch distribution and
significantly outperforms an alternative approach based on
game theory.

II. LEARNING A FUNCTION OVER DISTRIBUTIONS
We develop a method for learning a function over distri-
butions when the underlying structure of the function is
unknown. The method is based on generalizing nonparamet-
ric kernel regression using a whitened Earth Mover’s Dis-
tance as the metric for distribution space. We will illustrate
properties of the algorithm with a set of experiments in
Section III.

A. NONPARAMETRIC KERNEL REGRESSION
Let (xi, yi) for i = 1, 2, . . . , n be a set of observations where
x is the explanatory variable and y is the response variable.
The data can be modeled by

y = f (x)+ ε (1)

where ε is an error term. Kernel regression [16], [17] is a
nonparametric method that constructs an estimate for f (x)
using the weighted average

f̂ (x) =

∑n
i=1 k(di)yi∑n
i=1 k(di)

(2)

where di = x − xi and k(·) is a kernel probability density
function that is typically maximum at zero and decreases
with |di| so that the largest weights k(di) are given to the yi
associated with the xi that are closest to x. A popular kernel
function is the zero-mean Gaussian

k(di) = g(di, σ ) =
1

√
2πσ 2

e−
1
2 (di/σ )

2
(3)

which depends on the smoothing parameter σ.

B. EARTH MOVER’s DISTANCE
Given a set of observations (Xi, yi) where each Xi is a mul-
tidimensional distribution, we can generalize equations (2)
and (3) to approximate a function over distributions by replac-
ing di with a distance Di between the distributions X and Xi

f̂ (X , σ ) =

∑n
i=1 g(Di, σ )yi∑n
i=1 g(Di, σ )

· (4)

TheWassersteinmetric which is also called the EarthMover’s
Distance (EMD) is a standard method for computing the
distance between distributions. The EMD utilizes a ground
distance between individual points to determine theminimum

amount of work that is required to transform one full distri-
bution into the other.

Formany applications [12], a distribution can be accurately
represented as a signature S defined by a set of m clusters

S = {(µ1,w1), . . . , (µm,wm)} (5)

where µi is the mean vector for cluster i and wi is the fraction
of the distribution represented by cluster i.Thus, the signature
S approximates a distribution by a set ofm point masses at the
locations µi with the weights wi where m depends on the dis-
tribution. An established algorithm [12] for finding the EMD
using signatures is based on the solution of the transportation
problem [18] for finding the minimum cost to move product
from a set of producers to a set of consumers with each having
a known demand. For the transportation problem, the ground
distance is the cost to move one unit of product from a given
producer to a given consumer. The computation of the EMD
using signatures can be formulated as a linear programming
problem for which efficient solutions [19] and software [20]
exist.

C. GROUND DISTANCE
The computation of the EMD requires the specification of a
ground distance between the µi mean vectors that define the
point masses for each distribution. The use of a Euclidean dis-
tance between mean vectors is problematic because the com-
ponent variables in the vectors can have different variances
and these variables may also have significant correlations.We
define the ground distance G(i, j) between µi and µj as the
Mahalanobis distance [14]

G(i, j) =
[
(µi − µj)6−1(µi − µj)T

] 1
2

(6)

where the covariance matrix 6 for the population of mean
vectors µi serves to correct for differences in the variances of
the vector components and also for their correlation structure.
This distance is equivalent to a Euclidean distance after a
whitening transform [14] has been applied to transform the
original variables to a new set of variables which are uncor-
related and have unit variance.

D. FINDING THE SMOOTHING PARAMETER USING CROSS
VALIDATION
The accuracy of kernel regression has a strong dependence
on the smoothing parameter σ [14]. Let (Xi, yi) for i =
1, 2, . . . , n be a set of observations that associate distributions
Xi with responses yi. For the distribution Xj we can use
equation (4) to compute

f̂ (X = Xj, σ ) =

∑
1≤i≤n
i 6=j

g(Dij, σ )yi

∑
1≤i≤n
i6=j

g(Dij, σ )
(7)

where Dij is the whitened EMD between Xi and Xj
as described in Sections II-B and II-C and the (Xj, yj)
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observation is excluded from the sums. The error in the
approximation is given by

Ej(σ ) = yj − f̂ (Xj, σ ). (8)

We define the optimal smoothing parameter σ ∗ as the value of
σ that minimizes the total absolute error in the approximation
over the observations

σ ∗ = argmin
σ

n∑
j=1

∣∣Ej(σ )∣∣ . (9)

Note that if we include the (Xj, yj) observation in the sums
in (7), then as σ approaches zero the approximation f̂ (X , σ )
approaches a sum of Dirac delta functions centered at the
observation points causing each Ej(σ ) and the sum in equa-
tion (9) to approach zero. This yields a poor approximation to
the underlying f (X ) function everywhere except at the obser-
vation points. Themethod described in this section for finding
σ ∗ is similar to leave-one-out cross validation methods that
are used for density estimation [15].

III. EXPERIMENTAL RESULTS
A. SENSOR DATA
A baseball game is defined by a set of one-on-one matchups
between a pitcher and a batter. The pitcher throws a ball which
the batter attempts to hit with a bat. Each throw is called a
pitch and each matchup consists of one or more pitches. The
pitcher’s goal is to make it difficult for the batter to make solid
contact with a pitch.

The PITCHf/x optical video and TrackMan Doppler radar
sensors [7] capture data during baseball games that can be
exploited to recover information about pitches. Our analysis
considers the estimated s, bx , and bz parameters for each pitch
as reported by Brooks Baseball (www.brooksbaseball.net).
The parameter s represents the speed of a pitch in three
dimensions and the pair (bx , bz) specifies the pitch’s hori-
zontal and vertical movement relative to a theoretical pitch
thrown at the same speed with no spin-induced move-
ment [21].

The sensor coordinate system is arranged with the origin at
home plate which is near the batter’s location with positive z
up, positive y parallel to the ground plane in the direction from
the origin to the pitcher, and positive x chosen to complete a
right-handed system. The pitcher starts the process of throw-
ing each pitch from a location that is 60.5 feet from home
plate. By convention, Brooks Baseball reports s for y = 55
feet and (bx , bz) from y = 40 feet to home plate.

Pitchers typically throw different types of pitches to make
the batter’s task more difficult. A given pitch type has
specific speed and movement characteristics. For example,
a fourseam fastball from a right-handedmajor league baseball
(MLB) pitcher will typically have a speed s above 90 miles
per hour with a negative horizontal movement bx and a
positive vertical movement bz due to backspin. A curveball
from the same pitcher will typically have a speed s of less
than 80 miles per hour with a positive bx and a negative

FIGURE 1. Chris Sale pitches in 2016.

bz due to topspin. For a left-handed pitcher, the sign of the
horizontal movement bx will reverse for these pitches. Major
League Baseball Advanced Media (MLBAM) uses measured
pitch parameters to classify the type of each pitch in real-
time. After each game, Pitch Info (www.pitchinfo.com) uses
a manual review process to improve on the accuracy of the
MLBAM classifications. As an example, Figure 1 plots the
distribution of pitches thrown by left-handed pitcher Chris
Sale in 2016 for variables that represent pitch speed (s) in
miles per hour and horizontal movement (bx) and vertical
movement (bz) in inches. Different pitch types are shown in
different colors in the figure.

B. OPTIMIZING THE PITCH DISTRIBUTION
A pitcher’s success is highly dependent on the characteristics
of his pitch distribution. A larger speed s for an individual
pitch reduces the batter’s available reaction timewhile greater
movement (bx , bz) makes it more difficult for the batter to
determine the optimal contact point. In addition, the diversity
of a pitcher’s distribution of pitches affects the batter’s ability
to anticipate the speed and movement of the next pitch.
A pitcher can benefit from having pitches with large differ-
ences in speed [22] or from having pitches with similar speed
that move in different directions [23].

The best result of a matchup for a pitcher is a strikeout
which means that the batter was unable to hit the ball success-
fully givenmultiple opportunities. A pitcher’s strikeout rate is
the fraction of his matchups that result in a strikeout. This rate
is a repeatable pitcher skill [24] and is a strong determinant of
a pitcher’s success [25]. We can use the algorithm described
in Section II to learn the dependence of pitcher strikeout
rate on the pitch distribution defined over the s, bx , and bz
variables. Since a given pitcher can throw several different
pitch types, he can adjust his pitch distribution and expected
strikeout rate by changing the frequency of each pitch type.
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Using the learned relationship between strikeout rate and
pitch distribution, we can therefore find the pitch frequencies
that optimize a pitcher’s strikeout rate. We will evaluate this
approach in the following sections.

Previous work on optimizing the pitch distribution has
been based on game theory. Using this approach, Paine [26]
has suggested that a pitcher’s optimal pitch distribution
occurs at Nash equilibrium where the pitcher’s effectiveness
is equal for each of his pitch types. This principle is used to
derive the Nash score which is a measure of how close a pitch
distribution is to Nash equilibrium. One difficulty with this
method is that it requires the use of effectiveness values for
each pitch typewhich are known to have a low reliability [27].
We will evaluate the use of the Nash score for assessing pitch
distributions in Section III-C6.

C. DATA PROCESSING
1) OVERVIEW
We built the strikeout rate model described in Section III-B
using 2016 sensor data for each MLB pitcher who threw at
least 1500 pitches during the season. This threshold ensures
the use of a reasonably large sample for generating the pitch
distributions and strikeout rates and also removes pitchers
who were used purely as relievers which often results in a dif-
ferent style of pitching. There were 108 right-handed pitchers
and 41 left-handed pitchers who threw at least 1500 pitches
in 2016.

The effectiveness of a given pitch depends on the handed-
ness (left or right) of the batter and pitcher. Thus, we sep-
arately consider the dependence of strikeout rate on pitch
distribution for each of the four possible platoon configura-
tions (RHP vs. RHB, RHP vs. LHB, LHP vs. RHB, LHP vs.
LHB). A pitcher’s strikeout rate for a platoon configuration
and year is defined as the ratio of strikeouts to the number
of batters faced after removing all matchups with a pitcher
as a batter and also removing all matchups that resulted
in a bunt or an intentional walk. Using the 2016 constant
of 4.262 batters per inning, the FIP equation [25] predicts
that an increase of 0.03 in strikeout rate leads to 0.26 fewer
runs allowed per game which is a significant improvement in
pitcher performance.

The process of learning and applying a function over distri-
butions can be summarized by the following steps. Training
data is first partitioned by platoon configuration and each
step is carried out separately for each configuration. The
training data provides a set of pitch distributions specified
by signatures Si as defined in Section II-B and associated
strikeout rates yi. The covariance matrix 6 in equation (6)
is computed for the population of mean vectors specified by
the Si signatures. The smoothing parameter σ is found using
cross validation as described in Section II-D. The learned
model can then be applied to a pitch distribution X described
by a signature S to compute the expected strikeout rate by
using equation (4). This process is summarized by Figure 2
where application of the model will be described in more
detail in Section III-C5.

FIGURE 2. Process of learning and applying a function over distributions.

2) SIGNATURE MODEL
Pitchers tend to throw a small number of distinct pitch types
which allows the pitch distribution for a pitcher for a given
year and platoon configuration to be accurately modeled
using the signature representation of equation (5) where each
pitch type corresponds to a cluster. The number of clusters m
corresponds to the number of distinct pitch types as identified
by the Pitch Info classifier where m can depend on both the
specific pitcher and the platoon configuration. For each pitch
type i, µi is the pitch parameter mean vector (si, bxi, bzi) and
wi is the fraction of pitches of that type for the pitcher and
platoon configuration.

3) COMPUTING THE EMD
The signatures are used to compute the distance between
distributions using the EMD as described in Section II-B
with the whitened ground distance defined in Section II-C.
As a two-dimensional example of this process, Figure 3 is a
scatterplot of the mean (si, bzi) values for each pitch cluster in
a signature for the right-handed pitcher versus right-handed
batter platoon configuration in 2016. We see that si and bzi
have a large positive correlation so that a pitch thrown with
a higher speed will tend to have a larger vertical movement.
The variance of the si values is also larger than the variance
of the bzi values. These effects are addressed by using the
Mahalanobis ground distance defined by equation (6).

The impact of the correlation between the two variables
can be seen by considering the orange, green, and red points
in Figure 3 which correspond to the (si, bzi) values for three
specific pitch clusters in the figure as detailed in Table 1.
The Euclidean distance of 6.10 between the green point
(Latos cutter) and the red point (Chacin four-seam) is sig-
nificantly larger than the Euclidean distance of 3.49 between
the green point (Latos cutter) and the orange point (Kennedy
changeup). Since the vector difference between the green
point and the red point is aligned with the direction of correla-
tion of the variables, however, a significant portion of the sep-
aration between these points is due to the correlation between
s and bz.On the other hand, the vector difference between the
green point and the orange point is approximately orthogonal
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FIGURE 3. Cluster means (si ,bzi ) for RHP versus RHB configuration, 2016.

TABLE 1. Three (si ,bzi ) pitch cluster means in Figure 3.

to the direction of correlation. If we compute theMahalanobis
distance using the s and bz variables shown in Table 1, the
distance of 0.81 between the green point and the red point is
now significantly less than the distance of 1.32 between the
green point and the orange point.

4) CROSS VALIDATION
The cross validation process described in Section II-D is used
to find optimized values for the smoothing parameter σ for
each platoon configuration using the total absolute error

ET (σ ) =
n∑
j=1

∣∣Ej(σ )∣∣ (10)

defined in equation (9). In cases where ET (σ ) is near its
minimum value over a range of σ, we prefer smaller values
of σ over the range since these yield more small values of
g(Di, σ ) in equation (4) and therefore more terms in the
sums that can be neglected without significantly affecting the
approximation. Thus, we select the optimal value σ ∗ of the
smoothing parameter as the smallest value of σ for which

ET (σ ) ≤ 1.001 ∗ min [ET (σ )] . (11)

The use of this equation to favor smaller values of σ has little
effect on the accuracy of the model in equation (4) but can
improve the efficiency of the computation.

Figures 4 to 7 plot ET (σ ) for each of the four platoon con-
figurations. The resulting values of σ ∗ are shown in Table 2.

FIGURE 4. ET (σ ) for RHP versus RHB configuration, 2016.

FIGURE 5. ET (σ ) for RHP versus LHB configuration, 2016.

FIGURE 6. ET (σ ) for LHP versus RHB configuration, 2016.

FIGURE 7. ET (σ ) for LHP versus LHB configuration, 2016.

For small values of σ, the g(Dij, σ ) in equation (7) are approx-
imately Dirac delta functions and f̂ (Xj, σ ) is approximately
a sum of Dirac delta functions centered at the observations
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TABLE 2. Optimized σ∗ values found using cross validation.

(Xi, yi) for i 6= j. This results in a relatively large error
Ej(σ ) for small σ in equation (8) and a relatively large
error in ET (σ ) for small σ in equation (10). As σ increases,
the approximation in equation (8) improves and the error
decreases as shown in the figures.

5) FINDING OPTIMIZED PITCH FREQUENCIES
The goal for a pitcher is to maximize his future strikeout rate.
This can be accomplished by using the estimated f̂ (X , σ ∗)
function which represents strikeout rate as a function of
the pitch distribution X . Suppose that a pitcher has a pitch
distribution X which is represented by a signature with m
pitch types as in equation (5). Each pitch type i has a pitch
parameter vector µi = (si, bxi, bzi) and a frequency wi. For
a given pitcher, the pitch parameter vector µi for each pitch
type is characteristic of his ability and typically does not
change. Each frequency wi, however, can be easily changed
by varying how often pitch type i is thrown. Thus, a pitcher
can endeavor to maximize future strikeout rate by finding the
values of wi that maximize f̂ (X , σ ∗) subject to the constraints
w1+w2+· · ·+wm = 1 andwi ≥ 0. Since the number of pitch
types m is typically small, the optimal wi values can be found
efficiently using an exhaustive search over combinations of
the frequencies wi.
We illustrate this process for left-handed pitcher Danny

Duffy for the LHP vs. LHB platoon configuration using his
2016 signature as shown in Table 3.We note that the signature
model S in equation (5) is general and can accommodate any
number of different pitch types. Individual pitchers, however,
typically are not able to throw every pitch type effectively.
As reported by Brooks Baseball, Danny Duffy only used the
five pitch types listed in Table 3 during 2016. Other pitchers
use other pitch types such as the cutter and the split which
are represented in their signatures. Figure 8 is a visualization
of f̂ (X , σ ∗) for pitch distributions X formed by varying the
frequency w1 of his fourseam and w2 of his slider. In order
to limit the plot to two dimensions, the wi for his two least
frequent pitches are set to their 2016 values so that w4 =

0.0252, w5 = 0.0069, and w3 is then constrained to w3 =

1− (w1+w2+w4+w5). The red point in the figure indicates
the location of Duffy’s 2016 signature and corresponds to
an actual strikeout rate of 0.330 and an estimated strikeout
rate using f̂ (X , σ ∗) of 0.317. We see that the model predicts
that the pitcher could improve his strikeout rate by increasing
w1 (fourseam frequency) and reducing w2 (slider frequency).
In 2017, Duffy’s w1 and w2 frequencies for this configuration
moved in the opposite direction to the point shown in black in
the figure. This resulted in a reduced strikeout rate of 0.245 in

TABLE 3. Pitch signature for LHP Danny Duffy versus LHB for 2016.

FIGURE 8. Danny Duffy f̂ (X , σ∗) for LHP versus LHB configuration, 2016.

2017 which is consistent with a reduced strikeout rate model
prediction as shown in Figure 8.

6) PREDICTING STRIKEOUT RATE CHANGES
We can examine the ability of the f̂ (X , σ ∗) model estimated
from 2016 sensor data to predict pitcher strikeout rate changes
as pitch distributions change from 2016 to out-of-sample
data in 2017. For this purpose, we considered the 72 right-
handed pitchers and 27 left-handed pitchers who threw at
least 1500 pitches in both 2016 and 2017. We define a
pitcher’s actual change in strikeout rate 1 and his predicted
change in strikeout rate 1̂ for a platoon configuration by

1 = (2017 rate)− (2016 rate) (12)

1̂ = (2017 predicted rate)− (2016 rate) (13)

where 2017 predicted strikeout rate is computed by evaluat-
ing f̂ (X , σ ∗) using equation (4) for the pitcher’s 2017 pitch
distribution with σ ∗ computed as described in Section III-C4.
Figure 9 is a scatterplot with 198 points that represent (1̂,1)
for each of the 72 right-handed and 27 left-handed pitchers
against each handedness of batter. We see that the points have
a positive correlation. In particular, for the 25 points with
strong positive predictions 1̂ > 0.03 we have 21 points
(84.0%) with a positive 1 in actual strikeout rate. For the
39 points with strong negative predictions 1̂ < −0.03 we
have 24 points (61.5%) with a negative 1 in actual strikeout
rate. Thus, the model is useful for predicting the dependence
of changes in strikeout rate on changes in pitch distribution.
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FIGURE 9. Predicting strikeout rate changes using f̂ (X , σ∗).

FIGURE 10. Predicting strikeout rate changes using Nash score changes.

For comparison, Figure 10 is a scatterplot of the actual
change in strikeout rate from 2016 to 2017 for each of the
99 pitchers versus each pitcher’s Nash score difference [26]

1N = 2016 Nash score− 2017 Nash score (14)

As described in Section III-B, a low Nash score indicates
that a pitcher is close to Nash equilibrium while a higher
Nash score indicates that a pitcher is farther from equilibrium.
Thus, for 1N positive we would expect a pitcher to improve
from 2016 to 2017 and for 1N negative we would expect
a pitcher to get worse from 2016 to 2017. In Figure 10,
however, we see that the points in the scatterplot do not
have an increasing trend and, in fact, the points have a small
negative correlation. We believe that this is due to the low
reliability for the pitch values [27] on which the Nash score
is based.

We can assess the statistical significance of the differ-
ence between the correlation coefficients of r1 = 0.320
in Figure 9 and r2 = −0.081 in Figure 10 using the Fisher
z-transformation [28]. Even if we disregard the negative sign
on r2, this method yields a zobserved test statistic of 2.01 and
a corresponding p-value of 0.044 which supports the conclu-
sion that r1 is significantly larger than r2. Thus, the function
f̂ (X , σ ∗) has value for predicting future strikeout rate and
can be used to find optimized pitch frequencies wi using the
approach described in Section III-C5.

IV. CONCLUSION
The proliferation of sensor systems at sporting events has
provided large data sets that support the generation of predic-
tivemodels usingmachine learning algorithms. Thesemodels
are playing an increasingly prominent role in the operational

activities of professional sports teams. In an industry where
the difference between success and failure is often small,
models derived from sensor data can be used to gain an edge
over the competition.

We have developed and evaluated an algorithm for learn-
ing a function over distributions. The algorithm employs
the earth mover’s distance as a metric for distribution space
within a nonparametric kernel regression scheme. We have
demonstrated the algorithm for the task of learning a pitcher’s
strikeout rate as a function of a multidimensional pitch distri-
bution that is generated from pitch trajectory measurements.
The algorithm efficiently represents the pitch distributions
using signatures and compensates for the correlation of the
trajectory variables with a whitening step. The smoothing
parameter for the regression kernel is learned using cross
validation. We have assessed the algorithm for the prediction
of strikeout rate from pitch distributions on out-of-sample
data and have demonstrated that it performs better than an
alternative algorithm based on game theory principles.

The new technique can be used for a number of applica-
tions in the areas of strategy [29], player development [30],
and player evaluation [31] in baseball as well as for play
selection [32] in football. Given the physical characteristics
of a pitcher’s different pitch types, the function can be used to
determine the frequencies for each pitch type that maximize
strikeout rate. The method can also be used to evaluate the
improvement in strikeout rate that is possible by adding a
new pitch type to a pitcher’s current collection of pitches.
By utilizing physical measurements, the algorithm allows
the direct comparison of pitchers across environments. This
enables, for example, a prediction of how a college pitcher
would perform in major league baseball after optimizing
his pitch distribution. The framework can also be applied
outside of the baseball domain. We could, for example, use
a similar approach to build a model for the dependence of a
football team’s performance on the distribution of offensive
play types, e.g. run or pass, that are used. This model could
then be utilized to determine the play distribution that a given
offense should use to maximize success.
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