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ABSTRACT Numerous multi-agent models have been proposed for various economic phenomena, espe-
cially for the bankruptcy contagion phenomenon, which is a seriously destructive occurrence that begins
with the bankruptcy of a small group of individuals and spreads to a large scale like an infectious disease.
However, almost none of these bankruptcy models can be applied in plural environments or consider the
difficulty of implementation. Furthermore, cash flow between firms, which is a highly influential factor in
bankruptcy contagion situations, is considered in few such models. To address these shortcomings, in this
article, a new relationship, called the cash flow relationship, is first presented based on several relationships
related to cash flows. A graphical structure called a cash flow graph is then presented to record cash flow
relations between financial institutions and provide a discussion of the nature of the cash flow is then
presented. Next, a multi-agent bankruptcy contagion model based on the cash flow graph is introduced.
Finally, inferences are drawn from the proposed model and experiments conducted to explore the bankruptcy
contagion phenomenon and confirm these inferences. This proposed model can be applied in multiple
environments related to cash flows to successfully address the limitations of the existing multi-agent models
for bankruptcy contagion.

INDEX TERMS Agent decision-making, bankruptcy diffusion, structured decision-making, social network.

I. INTRODUCTION
According to the opinion put forward by Farmer and
Foley [1] in Nature in 2009, agent-based models are more
promising than empirical statistical models and conven-
tional equilibrium models for modeling complex economic
phenomena. Since then, numerous researchers have given
attention to modeling various economic phenomena using
multi-agent systems. As an important and complex economic
phenomenon, the bankruptcy contagion phenomenon has
obviously attracted considerable attention from researchers.

A multi-agent system is a computerized system for repre-
senting multiple interactions among intelligent agents within
an environment. These agents have autonomy and social-
ity [2]. Because of their autonomy, the agents can behave
autonomously, according to their own beliefs, desires, and
intentions. As a result, autonomy can make agents in the
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same system exhibit different behavior patterns. Because of
their sociality, the agents can communicate, coordinate, and
cooperate with each other to achieve a common goal. Thus,
a simple definition of a multi-agent system is a system that
contains multiple agents communicating, coordinating, and
cooperatingwith each other to achieve one goal. Based on this
definition, a complete multi-agent system can be considered
to consist of three components: agents, relations, and inter-
action protocols. The multi-agent-based model proposed for
bankruptcy contagions in this article is presented in terms of
aspects of each of these three components.

The bankruptcy contagion phenomenon is similar to the
concept of dominoes, in which the bankruptcy of a few
financial institutions brings about a large number of bankrupt-
cies in a financial network. As a complicated economic
phenomenon, bankruptcy contagion scenarios have been
explored by researchers for many years, but no great progress
in modeling the bankruptcy contagion phenomenon has
yet been achieved. In previous studies, actual bankruptcy
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propagation has always been found to be so complicated that
some simplifications had to be made to attempt to model the
bankruptcy contagion phenomenon. For example, researchers
have usually only considered one type of relation in such
studies or have constructed simplified models that have only
addressed some specific factors in bankruptcy contagion.
The main reason for these simplifications is that it is very
difficult to consider numerous factors involved in bankruptcy
contagions using conventional equilibrium models.

Multi-agent models offer a very different approach. From
a multi-agent perspective, a bankruptcy contagion can be
viewed as a complex interactive process that occurs within
a group of agents who have particular relations to each
other. We can design agents to model financial institutions
involved in bankruptcy propagation and then simulate an
actual bankruptcy contagion process using these modeled
agents. This method provides a simpler, more accurate, and
more adaptive means of constructing a bankruptcy conta-
gion model than is possible using conventional equilibrium
modeling. Therefore, numerous researchers have investi-
gated modeling of the bankruptcy contagion phenomenon via
multi-agent models in recent years.

Many researchers have explored bankruptcy contagions via
multi-agent models, but their studies have possessed some
shortcomings. First, in most previous studies on this subject,
researchers have not considered the difficulty of implement-
ing such a model, which is not an easy task, especially for
domain experts who are not familiar with coding. Second,
to the best of our knowledge, each of the previous research
efforts on multi-agent modeling of bankruptcy contagion
has been focused on one particular relationship, such as the
supply relationship, debt relationship, or parent–subsidiary
relationship, for simplicity. Third, the previously developed
models have placed little if any emphasis on the cash flows
between financial institutions, which play an important role
in bankruptcy contagions.

To address the shortcomings of previous modeling efforts,
we studied the common features among various relationships
that should be considered in modeling the bankruptcy con-
tagion phenomenon within a multi-agent system. The main
contributions of this study are as follows:

1) We modeled the bankruptcy contagion phenomenon
within the framework of a multi-agent system. In this
way, the model could be divided into several simpler
components, reducing the difficulty of coding.

2) We derived a more general relationship, referred to as
the cash flow relationship, from several common rela-
tionships between firms, such as the supply relationship
and debt relationship. The cash flow relationship can
represent all the relationships related to the cash flows
between financial institutions. Based on this relation-
ship, we propose a bankruptcy contagion model that
can be applied to multiple relationships.

3) The liquidity of financial institutions and the cash flows
between them are significant factors in the bankruptcy
of any one institution or a bankruptcy contagion.

We therefore considered the effects of the amounts of
cash flows and liquidity in our model and explored how
they affect the bankruptcy contagion process.

The remainder of this article is organized as follows.
An overview of the related literature is presented in Section II.
Section III proposes the methodological process, which con-
sists in a succession of models, to normalize the develop-
ment procedure. In Section IV, we define the cash flow
relationship that forms the basis of our model and show
how cash flow relations between agents can be represented
graphically. Section V presents our multi-agent bankruptcy
contagionmodel, based on the cash flow graph. In Section VI,
we present the results of a series of simulation experiments
conducted to explore the processes of bankruptcy contagions.
Some advantages and limitations of the model developed in
this study are discussed in Section VII.

II. RELATED WORK
A. DIFFUSION IN FINANCE
Diffusion in finance has received considerable attention in
the field of economics [3]–[5]. Kiyotaki and Moore [6] first
proposed in theory that a trade credit chain will form a
channel of liquidity shock and, based on the ‘‘lost decade’’
of Japan in the 1990s, noted that financial contagion can
spread through the effect of balance sheets. Researchers
have therefore been concerned with verifying the trade credit
chain as a potential and important transmission mecha-
nism of enterprise bankruptcy infection and, more broadly,
examining how a financial contagion phenomenon in trade
credit chain increases ‘‘bankruptcy’’—a remarkable effect.
For example, Raddatz [7] verified that a trade credit chain
increases the relevance of the output between two enterprises
using data describing the relationship between the input and
output for 378 manufacturing enterprises in 43 countries.
Acemoglu et al. [8] proposed that the severe effects produced
by bankruptcy would not only spread through direct trade
relationships, but also increase downstream through indirect
trade relationships. This type of phenomenon is widespread
in various industries. Jacobson and von Schedvin [9] ana-
lyzed a set of Swedish enterprise data collected during
2007–2011 that included information on bankruptcies and
related trade credit chains, verifying the transmission mech-
anism of bankruptcy in trade credit chains.

Other researchers have focused on examining concrete
cases in financial markets and on larger scales. For example,
Morales and Andreosso-O’Callaghan [10] used several types
of econometric models to analyze the effects of contagions in
the global economy. Ahmad et al. [11] investigated the effects
of financial and marketing diffusion in several countries in
southern Europe and the United States, Britain, and Japan to
the stock markets of the BRIICKS countries (Brazil, Russia,
India, Indonesia, China, South Korea, and South Africa).
They also analyzed the degree of influence of the effects of
contagions on different countries.

There have beenmany similar studies and published papers
in the areas of economics and finance. Much of this research
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has been empirical and has been focused on specific issues
or specific phenomena through analyses of real data and
attempts to identify the underlying reasons for the observed
phenomena to provide guidance for economic policymak-
ers [12]–[17]. The main purpose of this type of research is
to predict future financial situations by analyzing existing
financial data. The results of this type of research mainly
depend on the authenticity and validity of the data used and
the rationality of the analysis employed.

B. APPLICATION OF MULTI-AGENT TECHNOLOGY IN
FINANCIAL AND ECONOMIC RESEARCH
Because of the advantages of multi-agent modeling in ana-
lyzing complex, large-scale social systems, researchers have
begun to apply it to financial and economic research in
recent years [1], [18]–[20]. For example, Hernes et al. [21]
proposed a multi-agent model for an early warning system
for economic crises. This model can assess the possibility
of an economic crisis in advance and remind users to take
preventive action. Admittedly, it is difficult to grasp the
dynamics of the financial market, which has led to ineffi-
ciency in many financial market rules proposed in the past.
However, agent-based modeling offers a more convenient
way of understanding and analyzing the dynamics of financial
markets. For example, Bae et al. [12] developed a financial
market model based on agents that includes consideration of
debt and can improve the ability to analyze the capital struc-
ture of an agent dynamically, which makes this model well
suited to analyzing the actual conditions of capital markets.
Zhang et al. [23] designed a multi-agent-based system that
was integrated with an agent-oriented approach and ontology
to achieve a common understanding of a problem domain
by focusing on the valuation effects of bankruptcy filings
through inter-firm linkage.

Grilli et al. [24] studied macroeconomic stability and the
interconnection among banks by constructing an agent-based
model. Their study considered the complex characteristics
of the credit market in detail and described the interaction
and evolution of the credit market in the form of a network.
Georg [25] proposed a dynamic multi-agent model of a bank-
ing system with a central bank and studied the effects of
the interaction network structure between bank agents on
financial contagions and common shocks.

Another common research direction has involved using
methods based on agent mechanisms to study and analyze
the behavior and mechanisms of economic markets, such as
auctionmechanisms, negotiationmechanisms, and so on. The
greatest challenge in this research approach is the determi-
nation of the optimal mechanism design [26]: when a seller
agent has one or several items to sell and presumably knows
little about valuation of the goods by the buyer agent, how
should the goods be sold and distributed to maximize the
revenue of the seller agent [27], [28]? Studies in this vein
have recently been focused on crowd-sourcing markets. For
instance, Karger et al. [29] used agents to simulate the behav-
ior of individuals in a crowd-sourcingmarket and proposed an

approximate algorithm based on the low-rank matrix to deter-
mine task assignments and extract solutions. This method
can achieve satisfactory reliability at low cost and outweighs
the formerly proposed ‘‘majority voting’’ rule. Taking this
approach a step further, Tran-Thanh et al. [30] proposed
an agent-based budget allocation algorithm that can allocate
funds among different tasks to obtain a relatively lower error
rate and better performance than the methods proposed by
Karger et al. [29].

In summary, applications of agent technology in financial
and economic research have mainly fallen into two cate-
gories: 1) modeling an economic or financial body in terms
of agents and setting up an agent system to simulate and
analyze the economic or financial behavior of a large-scale
social systems [1], [31], [32]; or 2) using an agent mechanism
or game theory to analyze and design an economic market
mechanism [33]–[35]. Overall, the research in this area has
mainly been based on using agents to represent specific
economic and financial behavior or create examples to model
and analyze.

C. AGENT-BASED INFORMATION DIFFUSION
There is a close relationship between multi-agent interac-
tion and the diffusion of information [36], [37]. The main
body of propagation can be modeled using interactive agents,
the medium can be modeled as an interactive environment in
the multi-agent system, the contents of the propagation can
be modeled as a negotiation object in the multi-agent system,
and the propagation model can be modeled as the interaction
protocol and decision-making mechanism in the multi-agent
system. In recent years, many research studies on agent-based
information diffusion have been presented [38]–[41], particu-
larly at the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS).

Korkmaz et al. [42] used multi-agent game theory model
to analyze the type of information diffusion that occurs on
social communication platforms such as Facebook, which
exploits the unique classical threshold propagationmodel and
general knowledge mechanism to study the dynamic charac-
teristics of cluster behavior. Small and Mason [43] used the
Iterated Local Transitivity (ILT) model to study decision-
making in competitive information diffusion and explored
how two competing agents achieve Nash equilibrium in
information diffusion.

The disease infection model is a very common model
in information diffusion. Mao [44] used agent simulation
to study three types of transmission process: the spread of
disease, spread of information about a disease, and prevention
of the spread of disease in an urban area of onemillion people.
The model employs methods based on individuals, network
models, behavioral theory, and stochastic processes and can
effectively simulate real propagation processes and provide
advice for use in disease control.

Gong andXu [45] combined a complex networkmodel and
a multi-agent model to study multi-agent information prop-
agation in a scale-free network environment and identified
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delayed propagation characteristics of different propagation
processes in scale-free networks. López-Pintado [46] used
an agent threshold propagation model of random network
connections in different connection distributions to determine
its propagation thresholds.

In summary, the related research has mainly involved
modeling the main body of propagation as an agent and
then, based on classical communication mechanisms (e.g.,
a threshold model or infectious disease model), modeling and
analyzing the features and rules of the specific information
diffusion process [47], [48]. In addition, agent game theory
has been used to analyze the main body in the propagation
process of interaction and to study the effects of different
networks on the propagation process [49]–[51].

III. METHODOLOGICAL PROCESS
In this section, we describe in detail the process of our model
framework based on structured multi-agent. Through this
process, we aim to develop the structured multi-agent-based
model for analyzing the bankruptcy contagion phenomenon,
by utilizing domain knowledge and construct technology.
The whole development is composed of the following steps,
as depicted in Fig. 1.

1) Identification of conceptual model: Analysis of the
knowledge involved in various relations between com-
panies to model into a cash flow graph, and definition
of the concepts of structured analysis of the graph.

2) Definition of operational model: Identification of
multi-agent systems development theories to define the
appropriate model base on the cash flow graph, and
determination of the interaction rules.

3) Design of simulation experiments: Development of
some experiments to explore the bankruptcy contagion
phenomenon and confirm the inferences drawn before.

FIGURE 1. The methodology of the modeling process.

IV. DEFINITION AND NATURE OF CASH FLOW GRAPH
It is well known that the relationships between companies
are important routes for bankruptcy contagions. It is therefore
logical to consider the relations between companies in studies
of bankruptcy contagions. In previous studies, researchers
have presumed that one type of relation, e.g., supply relations
or debt relations, exists between companies. Considering only
one type of relation offers the advantage of simplicity, but we
think that a more general relationship exists between com-
panies. Given the fact that supply relations, debt relations,
and other type of financial relations all involve cash flows,
we chose to use cash flow relations between companies as a
proxy for all of the relationships of other types that involve

cash flows. Cash flow relationships can be represented
graphically in what we refer to as a cash flow graph.

A. CASH FLOW GRAPH
A cash flow describes the transmission of cash from one com-
pany to another. All of the behaviors related to cash between
companies can be expressed by cash flows. For example, a sit-
uation in which company A supplies products to company B
can be viewed as a cash flow from company B to company A.
We think that cash flow relationships are more essential than
supply relationships or debt relationships to describe finan-
cial relations between companies. Thus, it is vital to consider
cash flow relations in modeling the bankruptcy contagion
phenomenon within a group of companies. To express the
notion of cash flows explicitly, a supply chain can be taken
as an example, as described below.

If we use nodes to represent companies and directed edges
to represent supply relations between companies, then a
supply chain network can be described by a directed graph
G =< A,R >. A indicates a group of companies, which
can be modeled as agents later, and R indicates the supply
relations within the group of companies.

Figure 2 is a directed graph that shows a simple supply
chain network. In the figure, nodes a, b, c, d , and e represent
companies, and the value of a directed edge represents a sup-
ply relation indicating the amount of periodic trading of cash
between two companies. For example, in Fig. 2, the value of
edge< a, b > is 15, denoted as Vab = 15, which can be inter-
preted as a periodic process of company a suppling 15 units
of goods to company b in each cycle. However, if we think
about it inversely, it also can be interpreted as company b
providing 15 units of cash to company a in each cycle. Based
on this example, we can see that a cash flow graph can be
obtained by simply reversing the edges in the supply chain
graph. A definition of a cash flow graph is provided below.

FIGURE 2. Simple supply chain network graph that illustrates the
structure of a supply chain network.

Definition 1 (Cash Flow Graph): For graphG =< A,R >,
∀ < i, j >∈ R, the value of edge < i, j > is Vij = k , which
indicates that there are k units of cash transmitted from i to j.
Graph G is a cash flow graph.
Figure 3 is a cash flow graph corresponding to Fig. 2.

The directed edges in the graph indicate cash flows between

FIGURE 3. Simple cash flow graph corresponding to the supply chain
network graph in Fig. 2.
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companies, and the value on each edge represents the amount
of cash flow during a given period between two companies.
As an example, edge < d, b > in Fig. 3 indicates there are
10 units of cash flow that occur periodically from d to b.
Given the notion of the cash flow graph, we describe some
aspects of such a graph in the next section.

B. NATURE OF A CASH FLOW
Jiang et al. [52] presented an analysis of interaction structures
via graph theory. Similarly, in this section, we discuss the
nature of cash flow graphs via graph theory. First, it is neces-
sary to define some concepts related to cash flow graphs.
Definition 2 (Cash Dependence Structure): For cash flow

graph G =< A,R >,∀a ∈ A, the cash dependence structure
of a is the set of all of the incoming edges of a in G, which is
denoted as IRa. The set IRa can be formulated as follows:

IRa = {< k, a > |k, a ∈ A∧ < k, a >∈ R} (1)

In Fig. 3, nodes a, b, c, d , and e represent compa-
nies, and their respective cash dependence structures are
IRa = {< b, a >,< c, a >}, IRb = {< d, b >,< e, b >},
IRc = {< d, c >,< e, c >}, IRd = ∅, and IRe = ∅.
Definition 3 (Cash Deciding Structure): For cash flow

graph G =< A,R >,∀a ∈ A, the cash deciding structure
of a is the set of all of the outgoing edges of a in G, which is
denoted as ORa. Similarly, the set ORa can be formulated as
follows:

ORa = {< a, k > |k, a ∈ A∧ < a, k >∈ R} (2)

In Fig. 3, we have the following cash deciding structures:
ORa = ∅, ORb = {< b, a >}, ORc = {< c, a >}, ORd =
{< d, b >,< d, c >}, and ORe = {< e, b >,< e, c >}.
Definition 4 (Cash Source Set): For cash flow graph

G =< A,R >,∀a ∈ A, the cash source set of a is the set
of all of the nodes connected by the incoming edges of a
in G, i.e., the set of all of the nodes linked by the edges in
IRa excluding a. The cash source set of a is denoted as Ia and
can be formulated as follows:

Ia = {k|k, a ∈ A∧ < k, a >∈ IRa}

= {k|k, a ∈ A∧ < k, a >∈ R} (3)

There are five cash source sets in Fig. 3: Ia = {b, c},
Ib = {d, e}, Ic = {d, e}, Id = ∅, and Ie = ∅.
Definition 5 (Cash Sink Set): For cash flow graph

G =< A,R >,∀a ∈ A, the cash sink set of a is the set of
all of the nodes connected by the outgoing edges of a in G,
i.e., the set of all of the nodes linked by the edges in ORa
excluding a itself. The cash sink set of a is denoted as Oa and
can be formulated as follows:

Oa = {k|k, a ∈ A∧ < a, k >∈ ORa}

= {k|k, a ∈ A∧ < a, k >∈ R} (4)

In Fig. 3, there are five cash sink sets: Oa = ∅,Ob = {a},
Oc = {a}, Od = {b, c}, and Oe = {b, c}.

Definition 6 (Interaction Circumstance): For cash flow
graph G =< A,R >,∀a ∈ A, the interaction circumstance
of a is the set of all of the directed edges of a in G, namely,
the union of IRa and ORa. Sa is used to denote the interaction
circumstance of a, and Sa can be formulated as follows:

Sa = IRa ∪ ORa = {< k, a > |k, a ∈ A∧ < k, a >∈ R}

∪{< a, k > |k, a ∈ A∧ < a, k >∈ R} (5)

According to the definition stated above, the interaction
circumstances of nodes a, b, c, d , and e in Fig. 3 can be listed
as follows: Sa = {< b, a >,< c, a >}, Sb = {< d, b >,
< e, b >,< b, a >}, Sc = {< d, c >,< e, c >,< c, a >},
Sd = {< d, b >,< d, c >}, and Se = {< e, b >,< e, c >}.
Definition 7 (Isomorphic): For cash flow graph

G =< A,R >,∀a ∈A, if ∃b ∈ A, which meets the following
conditions: Ia = Ib, and Oa = Ob. We can then say that a is
isomorphic with b or that b is isomorphic with a.
In Fig. 3, nodes b and c are isomorphic with each other.
From the above seven definitions, presuming that the cash

flow graph is a directed acyclic graph (DAG), we can draw
the following inferences. Again, based on Definition 7, if ai
and aj are isomorphic with each other, then ai and aj must
share very similar interaction circumstances.
Inference 1: Cash flow graph G =< A,R > is a DAG.
∀a ∈ A, there exists such an inference: Ia ∩Oa = ∅. Namely,
b ∈ Ia ⇒ b /∈ Oa and b ∈ Oa ⇒ b /∈ Ia.

Proof:
Assume that ∃b ∈ A, and b ∈ Ia ∩ Oa.
Then, according to the following deductive process:
b ∈ Ia ⇒< b, a >∈ R, and b ∈ Oa ⇒< a, b >∈ R,
the edges < b, a >, and < a, b > form a cycle, which is
contradictory with the fact that the graph G is a DAG.

So Ia ∩ Oa = ∅; Inference 1 has been proven.

In addition, considering the definition of isomorphism,
we find that if a is isomorphic with b, then they have similar
significances in the graph. Specifically, we can draw another
inference as follows.
Inference 2: There is a cash flow graph G =< A,R >.
∀a, b ∈ A, if a is isomorphic with b, then < k, a >∈ Sa ⇔
< k, b >∈ Sb, and < a, k >∈ Sa ⇔< b, k >∈ Sb.

Proof:
Prove < k, a >∈ Sa ⇔< k, b >∈ Sb.
a is isomorphic with b, so we have Ia = Ib.

1. To prove < k, a >∈ Sa ⇔< k, b >∈ Sb, that is,
< k, a >∈ Sa ⇒ k ∈ Ia ⇒ k ∈ Ib ⇒< k, b >∈ Sb;
2. To prove < k, b >∈ Sb ⇔< k, a >∈ Sa.
< k, b >∈ Sb ⇒ k ∈ Ib ⇒ k ∈ Ia ⇒< k, a >∈ Sa.
Then, we have < k, a >∈ Sa ⇔< k, b >∈ Sb.

The process of the other proof (< a, k >∈ Sa ⇔<
b, k >∈ Sb) is the same as above.

Inference 2 has been proven.
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V. MULTI-AGENT BANKRUPTCY CONTAGION MODEL
BASED ON A CASH FLOW GRAPH
In this section, we propose a multi-agent model for the
bankruptcy contagion phenomenon based on cash flow
graphs. A multi-agent model consists of agent models and
interactive rules between agents. First, we need an agent
model to simulate the behavior of a company in a bankruptcy
contagion situation. We can use various agent models to sim-
ulate different behaviors of companies. Second, we should
predefine the interactive rules between agents in a simulation
case. These rules let agents know with whom and what they
can talk. Finally, we can construct a simulation case by com-
bining agents according to the cash flow graph and presetting
the parameters of the agents.

In the following sections, we first explore the influences
of a single bankruptcy event. Then, we introduce the agent
modeling for the company. Third, we predefine the interac-
tive rules among agents. Finally, we present some inferences
drawn from the results obtained with our model.

A. INFLUENCES OF A SINGLE BANKRUPTCY EVENT
Before trying to construct an agent model for companies in
bankruptcy propagation, we must establish how a company
will react to bankruptcy events. We first discuss what effects
the surrounding companies will experiences when a company
is bankrupt.

For company b in a cash flow graph, there are two types
of relative locations of the surrounding companies. In Fig. 4,
companies a and c illustrate the two types of locations rela-
tive to company b. According to the definitions proposed in
Section IV, company a is a cash sink set of company b (Ob)
and company c is a cash source set of company b (Ib). The
union of Ob and Ib is the set of all companies surrounding
company b. The question we want to answer in this section
can be expressed as follows. For any company b, a company
a in Ob and company c in Ib exist, as Fig. 4 shows. We seek
to determine what effects company a and c will experience
when company b is bankrupt.

• With respect to company c: company c is one element of
the cash source set of company b, namely, c ∈ Ib, and
Vcb = Y . When company b is bankrupt, company c does
not need to provide cash to b any more. This situation
sounds advantageous for company c, but if we consider it
from a realistic perspective, we find that it means that the
normal trading activities of company c will be affected

FIGURE 4. Two types of surrounding companies (a, c) with different
locations relative to b.

by the bankruptcy of company b. The cash situation of
company c will then experience a negative impact.
Suppose that there is a reverse influence factor α and
that 0 < α < 1. When company b is bankrupt at time t ,
company c will suffer a reduction in cash at time t + 1.
We use 1Cc to denote the amplitude of the reduction
and C t

c to denote the cash of company c at time t . Their
formulas are as follows:

1Cc = Vcb · α (6)

C t+1
c = C t

c −1Cc = C t
c − Vcb · α (7)

Equation (6) describes how much company c suffers
when company b is bankrupt, and Eq. (7) shows the
process of the cash of company c decreasing.

• With respect to company a: company a is one element of
the cash sink set of company b, namely, a ∈ Ob. Once
company b is bankrupt, company a will face a lack of
X units of cash per period. Assuming that this lack will
be fully reflected in the cash reduction of the company,
the cash of company a will suffer a reduction because of
the bankruptcy of company b.
As a member of the cash sink set of company b, the con-
sequence that company a suffers can be computed using
the following formulas:

1Ca = Vba (8)

C t+1
a = C t

a −1Ca = C t
a − Vba (9)

Equation (9) is similar to Eq. (7); they express the
cash-decreasing behaviors of companies a and c, respec-
tively. We have thus analyzed the effects that the sur-
rounding companies will experience when company b is
bankrupt.

In summary, company b will have negative effects on its
surrounding companies when it goes bankrupt. These nega-
tive effects are manifested as cash reductions for the other
companies. We also need to clarify the bankruptcy conditions
of the companies.

It is common that a company will become bankrupt when
its cash is reduced to a particular extent. Here, we refer to
this particular extent as the bankruptcy threshold, denoted by
an upper letter, U . The following hypothesis applies to the
bankruptcy threshold U .
Hypothesis 1: Company x is bankrupt when its amount of

cash is less than U , namely Cx < U ; otherwise, company x
is in a healthy state.

When a company experiences some losses in cash but
is still in a healthy state, the company has the ability to
recover from the effects of bankruptcy. Its recovery ability
is represented by emergent behaviors of the company, such
as sales, staff reduction and borrowing of money. We need to
determine the extent to which recovery is possible, which can
be formalized as described below.
Hypothesis 2: For any company x, at each cycle,

if the cash of company x is not less than U but is less
than the original cash of company x (Cx_orin), namely,
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(Cx ≥ U )∧ (Cx < Cx_orin), then the cash of x will recover
autonomously. Its increment formula is as follows:

C t+1
x =

{
C t
x +

(
Cx_orin − C t

x
)
/θ,

(
Cx_orin − C t

x
)
> T

C t
x + T ,

(
Cx_orin − C t

x
)
≤ T

(10)

In this equation, parameter θ will influence the recov-
ery speed of Cx . The smaller the value of θ , the faster the
recovery. The parameter T is a constant for company x,
referring to the minimal value of recovery in each cycle.

B. AGENT MODELING OF COMPANIES
Given the great similarity between the diffusion process and
a multi-agent system, we can view the bankruptcy contagion
phenomenon as the complex interactive behaviors of a group
of agents, if we use agents to simulate real companies. In this
section, we focus on how to model an agent for a company in
a bankruptcy contagion.

Basole and Bellamy [53] proposed a bankruptcy contagion
model that considers the network visibility, health state, and
surrounding states. Learning form this model, we put forward
a simplified agentmodel here. Given the hypotheses proposed
in Section V.A, we can use a triplet< C,R,G > to represent
the agent model:
• C , which represents the current cash of the agent,
is an inherent state value. When C < U , the agent
is bankrupt; otherwise, the agent is in a healthy state.
Every agent has an initial amount of cash, which can
be the same amount that another agent has or a differ-
ent amount. As long the agent does not encounter any
bankruptcy event, the cash of the agent stays the same
all the time.

• R, which represents the reactive rules to bankruptcy
events of an agent, is a series of reactive behaviors
corresponding to bankruptcy events in the outside world.
Agents will perform the following actions sequentially.
� For every bankruptcy event, the agent will diminish

its cash according to its location relative to the
source of the bankruptcy event. For the two types of
relative locations, Eqs. (6)-(9) are used to compute
the influences.

� The agent detects its own current cash and checks
whether the current cash is smaller than U. If so,
then the state of the agent is changed to a bankrupt
state; otherwise, the agent is kept in a healthy state.

• G, which represents a set of handling rules when an
agent is bankrupt, is a series of actions. In our model,
when the state of an agent is changed to a bankrupt state,
it will take the following actions in sequence.
� The agent will send a bankruptcy message to every

agent in its cash source set and cash sink set.
� The agent will remove the corresponding node and

its interaction circumstance from the cash flow
graph.

The above triplet is a literal description of our agent model
of companies in bankruptcy propagations. We next discuss

agent structures from the perspective of software engineering.
Referring to the idea of componentization in agent model-
ing [54], we have the structure design shown in Fig. 5.

FIGURE 5. Structure of our agent model, based on the idea of
componentization. An agent has three components in total,
in addition to the sensor and effector.

Figure 5 shows the complete working process of an agent.
When a bankruptcy event occurs around the agent, the sen-
sor of the agent receives the bankruptcy event and delivers
the message to the ‘‘Bankruptcy React’’ component. The
‘‘Bankruptcy React’’ component computes the exact influ-
ence value according to the bankruptcy message and deliv-
ers the result to the ‘‘Cash’’ component. Next, the ‘‘Cash’’
component diminishes the result from the current cash of the
agent. Afterward, the ‘‘Bankruptcy Detect’’ component runs
automatically. It checks whether the current cash of the agent
is less than U to determine whether the agent is bankrupt.
Then, the ‘‘BankruptcyDetect’’ component delivers the result
to the effector. Finally, the effector takes actions according
to the result received from the ‘‘Bankruptcy Detect’’ compo-
nent, namely, the current health state of the agent. If the agent
is in a bankrupt state, the effector will perform corresponding
bankruptcy actions; otherwise, the effector will not take any
action. The concrete responsibilities of each component are
described below.

The ‘‘Bankruptcy React’’ component is responsible for
reacting to the bankruptcy event and handling it. In ourmodel,
the component computes the exact value of influence of a
bankruptcy event. The exact procedures are shown in Fig. 6.

The ‘‘Cash’’ component has an attribute that refers to
the current cash of the agent. The ‘‘Cash’’ component has
the following two responsibilities directly related to cash:
(1) the actual operation of the current cash of the agent, such
as addition, subtraction, reading, or writing of the current
cash and (2) the automatic recovery of the cash at each
cycle, which conforms to the particular rule of Hypothesis 2.
Equation (10) is a formula expressing this rule. Figure 7 is a
flowchart of the automatic recovery function, demonstrating
the process flow of the ‘‘Cash’’ component in the automatic
recovery function.

The ‘‘Bankruptcy Detect’’ component is responsible for
judgingwhether the agent is bankrupt at the end of each cycle,
so the ‘‘Bankruptcy Detect’’ component will run at each
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FIGURE 6. Flowchart of the ‘‘Bankruptcy React’’ component, describing
the process flow of the component.

FIGURE 7. Flowchart of the automatic recovery function in the ‘‘Cash’’
component.

FIGURE 8. Flowchart of the bankruptcy detecting function in the
‘‘Bankruptcy Detect’’ component.

cycle and may modify the state of the agent according to the
current cash situation. Referring to Hypothesis 1 mentioned
in Section V.A, the component needs to compare the current
cash with the bankruptcy threshold U to determine whether
the agent is bankrupt. Figure 8 is a flowchart of the process
flow of the bankruptcy detection function in the component.

C. INTERACTION RULES OF AGENTS
After elaborating an agent model, the only step remaining
is to predefine a set of interactive rules for agents. In this
section, we describe a complete multi-agent system based on
the cash flow graph. At the end of this section, we present a
simple example of bankruptcy propagation using our model.

From a multi-agent perspective, the bankruptcy propaga-
tion phenomenon can be understood as a consequence of the
interactions within a group of agents. The interaction process
determines the final result of bankruptcy propagation, i.e., the
interactive rules affect how bankruptcy propagation occurs.

In ourmodel, we suppose that a bankruptcymessage can be
diffused only bymeans of particular relations between agents.

The bankruptcy message must be transferred according the
cash flow relation, regardless of what order it is in. If we use
a cash flow graph to record the cash flow relations between
agents, as mentioned before, then the rules of the interactions
between agents in our multi-agent model can be described
as follows: when an agent is bankrupt, the agent can deliver
its bankruptcy messages to agents in its cash source set or
cash sink set only by way of directed edges connected to
itself, regardless of the directions of the edges. In another
formalized expression, the rules of the interactions between
agents can be predefined as described below:
Use a cash flow graph G =< A,R > to represent the

cash flow relations between agents. Then, ∀ agent x ∈ A, if
there is a bankruptcy event occurring in agent x, agent x can
only transfer its bankruptcy messages along directed edge
< x, d > in forward order or directed edge < u, x > in
reverse order. Among them, d and u are an agents in set A,
whereas the directed edges < x, d > and < u, x > are in
set R.

The agent model mentioned in Section V.B can tell us what
an agent should do in bankruptcy propagation. The interactive
rules discussed in this section tell us to whom an agent should
deliver its message. We are thus able to obtain a complete
multi-agent model for bankruptcy propagations. To clarify
our bankruptcy propagation model further, a simple example
of bankruptcy propagation is given as follows.

Figure 9 shows a bankruptcy event occurring for agent x
at time 0. We initially set the state of agent x to bankrupt to
initiate the bankruptcy propagation.

FIGURE 9. Simple example of bankruptcy propagation using our model.

The first diffusion process occurs during period 1.
Agentsm, z, y, and k will receive a bankruptcy message from
agent x, and the current cash of each of themwill be decreased
simultaneously. On the one hand, as elements in the cash sink
set of agent x, the reduction values of the current cash of
agents m and z are Vxm = 5 and Vxz = 10, respectively.
At this point, the current cash of agents m and z is still
greater than bankruptcy threshold U , so neither of them will
be bankrupt. On the other hand, as elements of the cash
source set of agent x, the current cash of agents y and k is
reduced by Vyx · α = 10α and Vkx · α = 10α, respectively.
At this point, the current cash of agent y is greater than U
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as well, so agent y is still in a healthy state, whereas the
current cash of agent k is less than U , which results in the
occurrence of a bankruptcy event for agent k at time 1. This
event is the second propagation of bankruptcy. Because of the
bankruptcy of agent k , agent k will execute its bankruptcy
actions next. Because agent x was already bankrupt, agent k
can only diffuse its bankruptcy message along directed edges
< k, y > and < j, k >.
At time 2, agents y and j receive the bankruptcy message

from agent k , resulting in reductions in their current cash.
Simultaneously, all the agents in a healthy state recover auto-
matically. The exact value of the recovery can be computed
by Eq. (10), given the values of θ and T . As one element in
the cash sink set of agent k , the current cash of agent y is
reduced by Vky = 5. At this point, the current cash of agent y
is still greater than U , so agent y is not bankrupt. On the
other hand, as one element in the cash source set of agent k ,
the current cash of agent j is reduced by Vjk · α = 20α.
At the same moment, the current cash of agent j is greater
than bankruptcy threshold U as well. Consequently, agent j
remains in a healthy state. Because no other bankruptcy
event occurs, the total process of bankruptcy propagation is
terminated.

D. INFERENCES BASED ON OUR MULTI-AGENT
BANKRUPTCY CONTAGION MODEL
Now we have a complete multi-agent model for bankruptcy
propagation. Furthermore, we can simulate bankruptcy prop-
agation by implementing this model. Even without imple-
menting the model, we can draw the following inferences
based on the proposed model and the nature of the cash flow
graph.

• In the bankruptcy propagation process, the more sources
of bankruptcy propagation, the larger the influence scale
of bankruptcy propagation. In our proposed model, for
any agent a, the scope that agent a can influence contains
all the agents involved in the interaction circumstance
of agent a, i.e., all the nodes connected with agent a in
the cash flow graph. So, the more diffusion sources of
bankruptcy, the larger the sphere of influence of the first
bankruptcy propagation process. Obviously, this charac-
teristic will increase the scale of bankruptcy propagation
influences. On the other hand, the bankruptcy probabil-
ity of an agent, as well the number of diffusion sources,
will become greater because an agent may encounter
multiple bankruptcy events at one time. This behavior
can also increase the scale of bankruptcy propagation
effects.

• The influence scale of bankruptcy propagations
becomes larger when the value of parameter α increases.
In our model, for any agent x, ∃ agent i ∈ Ox , and the
value of edge< x, i > is denoted as Vxi. Then, if agent i
is bankruptcy, the value describing the influence agent x
suffers is 1Cx = Vxi · α. From this formula, we can
see that the bankruptcy possibility of agent x increases

as the value of the parameter α increases. Consequently,
the final influence scale of bankruptcy propagation will
become larger.

• For any agent a, the greater the initial cash of agent a,
the lower the probability of bankruptcy of agent a. In our
model, the effect of influence when agent a receives a
bankruptcy message is a reduction in the current cash of
agent a. It is more difficult tomake the current cash reach
a level lower than the bankruptcy threshold U when the
initial cash of agent a is higher. This is the same as the
normal phenomenon of a more solid company with more
assets being less likely to go bankrupt.

• The greater the value of parameter t is, the larger the final
influence scale of the bankruptcy propagation is. From
Eq. (9), in which the parameter t appears, we find that
the recovery speed of cash increases when the value of
the parameter t increases. A faster recovery speed will
contribute to reducing the bankruptcy probability of an
agent. As a consequence, the final influence scale of the
bankruptcy propagation will become smaller.

• The final influence scale of bankruptcy propagation
becomes larger as the value of the parameter k increases.
From Eq. (9), in which the parameter k appears, we find
that the parameter k can affect the recovery speed of
an agent. The smaller the value of the parameter k is,
the greater the recovery speed is. As with the param-
eter t , when the value of the parameter k decreases,
the recovery speed of the current cash increases, which
leads to a smaller influence scale of the bankruptcy
propagation. In contrast, the final influence scale of a
bankruptcy propagation will get larger when the value
of the parameter k increases.

The above five inferences were all deduced from ourmodel
and hypotheses mentioned before through some simple rea-
soning processes, but without the verifications of facts or
experiments. Such verifications were beyond the scope of this
study, but we will conduct some experiments to verify these
inferences in our future research efforts.

VI. CASE STUDY AND EXPERIMENTS
In this section, we describe the implementation of the multi-
agent-based bankruptcy contagion model proposed above
in the Java language, using JDK1.6. A series of simula-
tion experiments considering 500 agents were conducted to
analyze the bankruptcy contagion process using the model
implemented as described.

Because of the difficulty of obtaining statistics on financial
interactions and supply relationships between firms, we had
to make some simplifications to perform the simulation
experiments. First, by considering the rules resulting from the
financial statistics in the 2014 Annual Reports of the Beiqi
Foton Motor Co., Ltd.,1 the Gujing Group Co., Ltd.,2 and

1http://static.sse.com.cn/disclosure/listedinfo/announcement/c/
2015-08-31/600166_2015_z.pdf

2http://disclosure.szse.cn/finalpage/2015-04-29/1200934004.PDF
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the Quanchai Engine Co., Ltd,3 we constructed the cash flow
graph. The model parameters were set as follows. For any
Agent a:
• The bankruptcy threshold Ua = 0.3 Corin, where Corin
is the original cash of agent a;

• The reverse influence factor αa = 0.5;
• The minimal recovery value at each cycle ta = 2;
• The recovery speed of cash ka = 10.
In addition, the following three indicators were used to

measure different contagions in our simulation experiments:
• BARend , the final bankruptcy ratio in a simulation. In a
bankruptcy contagion simulation, the bankruptcy ratio at
time t can be calculated using the following formula:

BARt = NBt/NA (11)

where NBt indicates the number of bankruptcy agents at
time t and NA is the total number of agents, which was
500 in the simulation described here. Thus, BARend can
be calculated as BARend = NBend /500, where ‘‘end’’ is
used to represent the end time of the simulation.

• 1BAR, the bankruptcy ratio increment from the start
time of the simulation. This quantity is a supplementary
indicator related to the indicator BARend , which is useful
in situations with high initial bankruptcy ratios. 1BAR
can be calculated via the formula below:

1BAR = BARend − BARstart (12)

where ‘‘start’’ represents the start time of a simulation,
namely, time 0, and BARstart is the initial bankruptcy
ratio preset for the simulation.

• FOBtarget , the bankruptcy frequency of the target agent,
is a statistical indicator whose values are determined
from the results of m simulations. To determine this
value, we first select an agent as the observation target.
Then, the simulation is performed m times in total. If in
these simulations, the target agent becomes bankrupt n
times in total, then we obtain FOBtarget = n/m.

A. EFFECTS OF DIFFERENT INITIAL BANKRUPTCY RATIOS
The initial bankruptcy ratio is the ratio of the agents we
preset to bankruptcy for the purpose of simulating bankruptcy
contagions. Figure 10 shows the simulation results for the
indicator1BAR with increasing initial bankruptcy ratio from
0 to 1 in increments of 0.01. Four groups of simulation results
with different bankruptcy threshold conditions are presented
together in Fig. 10:
• u = 0.1c. In these simulations, for any agent a, its
bankruptcy threshold Ua is set to (0.1 Corin), that is,
Ua = 0.1 Corin;

• u = 0.3c. In these simulations, for any agent a, its
bankruptcy threshold Ua = 0.3 Corin;

• u = 0.5c. In these simulations, for any agent a, namely,
Ua = 0.5 Corin;

3http://static.sse.com.cn/disclosure/listedinfo/announcement/c/
2015-03-19/600218_2014_n.pdf

FIGURE 10. Effects of the initial bankruptcy ratio under different
bankruptcy threshold conditions.

• u = 0.7c. In these simulations, for any agent a,Ua =
0.7 Corin.

The four curves in Fig. 10 share a common variation trend.
Based on this trend, the curves can each be divided into two
parts.
• In the first part, as the initial bankruptcy ratio increases,
1BAR increases first and then decreases after the peak;

• In the second part, 1BAR decreases linearly with
decreasing initial bankruptcy ratio, which can be fitted
to the function y = 1 − x. Because 1BAR = BARend−
BARstart = BARend − x, in the second part, BARend

is always 1, which means that all the agents in the
simulation are bankrupt. This phenomenon can only be
observed in the experimental environment because of
the limit on the number of agents considered, so we can
ignore the second part of the curves.

The above common trend of the curves indicates that in
a real bankruptcy contagion environment, which would have
no limit on the number of individuals involved, the influence
scale of a bankruptcy contagion will always increase as the
initial bankruptcy ratio increases.

On the other hand, in comparing the four curves and con-
centrating on their differences, we find that, under the same
conditions, the lower the bankruptcy thresholdU , the smaller
the corresponding value of the indicator 1BAR, indicating a
smaller influence scale of the bankruptcy contagion.

Moreover, the trend of the four curves in Fig. 10 is very
similar to the classical SIR (Susceptible-Infected-Removed)
propagation mechanism. In SIR model, we use s, i, r to
represent the amount of three groups of persons, that is,
S (Susceptible), I (Infected), and R (Removed). Then the
derivative of s (i.e., s’) is shown as s′ = −s· i. Assume the
total number of persons isN , then we have s = N− i−r . Take
it to the above formula, got: s′ = i2−N ·i−r ·i. From the above
formula, we can see that, as i increases, s’ will first decrease
from 0 and then increase to 0. Therefore, as i increases,
the decrease in the number of susceptible people (s) per unit
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time will first increase and then decrease, just like the curves’
changing trend shown in Fig. 10.

B. EFFECTS OF THE REVERSE INFLUENCE FACTOR
The reverse influence factorα indicates the decay factor of the
bankruptcy influence in a reverse direction. Figure 11 shows
the simulation results obtained by increasing the value of α
step by step. There are four groups of results with different
bankruptcy threshold parameters in the figure.

FIGURE 11. Effects of the reverse influence factor α under different
bankruptcy threshold conditions.

The four curves all share a common variation trend: as
the reverse influence factor α increases, the indicator BARend

increases, which indicates a larger influence scale of the
bankruptcy contagion. This result is consistent with our
expectation.

As Fig. 11 shows, with an increase in the bankruptcy
threshold, which means that it is easier to bankrupt an agent,
the effects of the influence factor α becomemore remarkable.
This characteristic indicates that only when the bankruptcy
threshold is relatively large can the reverse influence factor α
have a significant effect on a bankruptcy contagion.

C. EFFECTS OF THE ORIGINAL CASH OF AGENTS
It is common sense that a firm with more liquid cash will
be more difficult to bankrupt in a bankruptcy contagion sit-
uation, i.e., it will be more able to resist the effects of the
bankruptcy contagion. In the next experiment, we selected a
target agent and set various different values for its original
cash. The indicator FOBtarget was used to measure the degree
of difficulty of bankrupting the target agent.

Figure 12 shows the simulation results. We can see from
the figure that the trends of the curves are consistent with
common sense, except for the results when the bankruptcy
threshold is U = 0.7 Corin.
The common trend shown is that as the original cash

increases, the indicator FOBtarget decreases continuously
until it reaches 0. Thus, an increase in liquid cashwill enhance
the ability of an agent to resist the impacts of bankruptcy.

FIGURE 12. Effects of the original cash under different bankruptcy
threshold conditions.

Second, we focus on the curve for u = 0.7c, which means
that the bankruptcy threshold parameter isU = 0.7Corin. This
is a horizontal straight line that can be modeled as y = 1,
which means that the target agent will definitely go bankrupt
under the condition of such a high bankruptcy threshold.
Thus, in a situation with high bankruptcy threshold, having
more liquid cash does little to assist an agent in resisting the
impacts of bankruptcy contagions.

D. EFFECTS OF MINIMAL RECOVERY OF THE AGENT
Usually, a firm that suffers from the influence of a bankruptcy
event but does not go fully bankrupt will recover from this
disaster by itself. That is, a firm always has a self-recovery
ability. In our model, we use two parameters to control the
strength of the self-recovery abilities of agents: the minimal
recovery value t and recovery speed k of an agent. The
minimal recovery value of an agent is the minimal value of
cash that an agent can recover in a time step. Fig. 13 shows
the effects of different minimal recovery values on the

FIGURE 13. Effects of t under different bankruptcy threshold conditions.
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indicator BARend , which indicate the influence scale of a
bankruptcy contagion simulation.

From the figure, we can see that, in general, the greater t ,
the smaller BARend . Thus, a larger t can help prevent
bankruptcy. On the other hand, in Fig. 13, the curves all
exhibit little change, except the green curve for u = 0.7c,
which corresponds to a bankruptcy threshold of U =

0.7 Corin. These results show that changes in t do not signif-
icantly affect the progress of bankruptcy contagions, unless
the bankruptcy threshold is very high.

E. EFFECTS OF THE CASH RECOVERY SPEED OF THE
AGENT
In our model, k is a positive parameter that describes the
recovery speed of an agent. The smaller k , the faster the
recovery, and the greater power of self-recovery of an agent.
Fig. 14 demonstrates the effects of the agent recovery speed
on the indicator BARend . We can see effects similar to those
for the minimal recovery value of the agent.

FIGURE 14. Effects of k under different bankruptcy threshold conditions.

All of the curves are almost straight lines except the green
curve for u = 0.7c, which corresponds to a bankruptcy
threshold ofU = 0.7Corin. Thus, k only has a slight effect on
the bankruptcy contagions unless the bankruptcy threshold is
very high. In other words, the self-recovery ability of an agent
has little effect on preventing bankruptcy in general.

We observe the common trend of the curves and conclude
that with increasing k , BARend increases as well, indicating a
greater scale of influence of the bankruptcy contagion.

VII. CONCLUSION AND FUTURE WORK
In this article, we presented a new common relationship
called the cash flow relationship, which is more essential
than other relationships, such as the supply relationship, that
are usually considered in multi-agent models of bankruptcy
contagion. We also presented a graphical structure called
a cash flow graph to record cash flow relations between
financial institutions and provide a discussion of the nature of
the cash flow graph. We concerned ourselves mainly with the

effects of cash flow and considered relations between agents
in a structural way, then presented our model from a soft-
ware engineering perspective to illustrate the considerations
involved in implementing themodel in a software application.
Furthermore, the model was constructed using componenti-
zation to simplifying the subsequent implementation process.

Compared with previous models, our model can be applied
inmore circumstances, because of its underlying relationship,
cash flow relationship, which is a more essential relation-
ship than considered before, such as supply relationship.
Meanwhile, there are some defects in our model as well. First,
although the formulas proposed are considered the linear
effects of cash flows, the model is only a rough measure.
More quantitative data from experiments results or a real-life
case are needed to improve the scalability of the model.
Second, although referring to some real financial statistics
in the experiments, we don’t offer a method to model a cash
flow graph from a real scene, and how to calculate an accurate
value for cash flow edge is still a question now.

In the future, we will endeavor to expand this research
effort in two directions. On the one hand, we will consider
more factors in our agent model to complicate our formulas.
On the other hand, we will work to find out a practicable
method to model a cash flow graph from real companies’
scene accurately, in order to apply our model in the real
market circumstances.
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