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ABSTRACT In this paper, the problem of designing the quantized feedback controller for a class of
continuous-time switched systems with packet loss and event-driven scheme is considered. Two novel
event-driven schemes are proposed to reduce the amount of data transmission on the network while ensuring
the system stability. Under the assumption of dwell time and maximum consecutive packet loss, we obtain
the upper bound of Lyapunov function for both mode-match and mode-mismatch situations. By combining
with the mode mismatch interval and the upper bound of Lyapunov function, the practical stability of the
closed-loop system is guaranteed. Two numerical examples are given to show the potential of the proposed
techniques.

INDEX TERMS Switched systems, quantization, packet loss, event-driven scheme, practical stability.

I. INTRODUCTION
During the past few decades, switched systems, one spe-
cial class of hybrid systems, have been widely investigated
and many useful results have been obtained (see, for exam-
ple [1]–[7]). If the data of a switched system is transmitted
through the network, then the controller design will subject to
the effect of quantization (caused by limited communication
rate), delay and packet loss (caused by network congestion).
In addition, reducing the amount of network data transmis-
sion through an appropriate transmission mechanism also
has important research value. Therefore, this paper will dis-
cuss the issues of quantization, packet loss and event-driven
scheme of the continuous-time switched systems. Obviously,
quantization will affect the accuracy of the transmitted data
because of quantization errors. The packet loss affects the
reliability of the transmitted data. Meanwhile, the data sam-
pling and the switching signals loss can influence the mis-
match interval of the system mode and the controller mode,
which brings difficulties to the system analysis. The research
goal of this paper is how to use the inaccurate and unreliable
quantized sampling data to design a controller ensuring the
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system stability while reducing the amount of network data
transmission.

The switched systems with quantization have been dis-
cussed in many documents. Existing literature can be divided
into two categories depending on the type of quantizer.
The first category is the switched systems with dynamic
quantization, which is represented by zoom strategy [8], [9].
The design idea is to update the quantization rules to ensure
higher quantization accuracy near the origin, thus make the
system asymptotically stable [10]–[13]. The second category
is the switched systems with static quantization, which is
represented by logarithmic quantizer and uniform quantizer.
If the quantization level is infinite, such as the standard
logarithmic quantizer [14], [15], the system can still achieve
asymptotical stability. Then the research focus is how to
design a feedback matrix to ensure the system stability
[16]–[21]. However, if the quantization level is finite, then
the practical stability of the system can only be guaranteed
[22]–[26]. This paper adopts a quantizer proposed in [26],
which belongs to the category of static quantizers with
finite quantization level. It is worth mentioning that [21]
also discusses the event-driven issue, and an event-driven
mechanism by comparing the states at sampling times is
designed. By analyzing of Lyapunov-Krasovskii functional
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candidates, the stochastic finite-time bounded of the system is
guaranteed. Different from [21], the event-driven mechanism
designed in this paper is according to the quantized sampling
states, and the quadratic piece-wise Lyapunov functional is
analyzed to ensure the practical stability of the system.

The switched systems with packet loss have also obtained
many results, such as [28]–[30]. Given the packet loss rate
of the random packet loss process, the mean square stability
of the system can be obtained if the packet loss rate meets
certain conditions. If it is assumed that the random packet
loss process has the largest number of consecutive packet
losses, then we can obtain the asymptotic stability or practical
stability of the system from the worst case. The packet loss
discussed in this article belongs to the second category.

If the switched systems are affected by event-driven
scheme, the recent results can be found in [31]–[35].
Literature [31] introduces an event-triggered algorithm to sta-
bilizing a switched linear system by using a pseudo-Lyapunov
function. By unifying the switched system, event-triggered
scheme, transmission delays and cyber attacks into a new
closed-loop control system, sufficient conditions are given to
guarantee the finite-time bounded of the networked switched
system in [32]. In [33], the authors co-design a novel switch-
ing event-triggered scheme and a mode-dependent adaptive
control law to guarantee the tracking error belonging to an
adjustable neighborhood of the origin. An event-triggered
scheme is constructed by using the difference between the
states at the current sampling time and the last transmission
time in [34], and the exponentially stability is guaran-
teed by analyzing the quadratic piece-wise Lyapunov func-
tional. Some event-triggered conditions by comparing of
the state at different sampling times are given in [35].
Furthermore, the switching synchronization problems for
two continuous-time switched non-linear systems are studied
there. However, the issue of quantization does not involve
in [31]–[35].

To the best of our knowledge, this work is the first
result that combines switching, quantization, packet loss and
event-driven scheme exception of [36]. In [36], the authors
study the fault detection of the switched systems with
dynamic quantizer and packet loss. By modeling a novel
switched system according to packet dropout, a switching
strategy which combines average dwell time and event-driven
switching is proposed. Sufficient conditions for the existence
of fault detection filters are given by analyzing the relation-
ship between the switching signal and the packet dropout
rate. Different from [36], this paper focuses on the controller
design of the switched system under the influence of quan-
tization, packet loss and event-driven scheme. The detailed
comparison between document [36] and this paper is shown
in table 1.

In this work, our contributions are third aspects with
respect to earlier literature. First, this paper discusses the
quantized stabilization of the switched systems with packet
loss and event-driven scheme, which has not been discussed
before. Second, two novel event-driven schemes are proposed

TABLE 1. Document [36] vs. this paper.

to reduce the amount of data transmission while ensuring the
system stability. Third, the upper bound of the interval where
the system mode and the controller mode are not matched is
given under the influence of packet loss and switch. On this
basis, sufficient conditions ensuring the practical stability of
the system are obtained by analyzing the Lyapunov function.

The remainder of the paper is organized as follows.
Problem formulation and preliminaries are illustrated in
Section II. Section III obtains the stability of the closed-loop
system on the basis of analyzing the upper bound of Lyapunov
function and total mismatch time. Two numerical examples
are included in Section IV to show the effectiveness of the
main results. Section V draws conclusion.

Notations. Throughout the paper, we use Rn to denote
the n-dimensional Euclidean space. N represents the posi-
tive integers set. ‘‘>’’ stands for matrix transposition. The
Euclidean norm is adopted as ‖ · ‖. For a vector x, ‖x‖ :=
(x>x)1/2. For a matrix M , the induced norm is defined by
‖M‖ := sup{‖Mx‖ : x ∈ Rn, ‖x‖ = 1}. The signal bac
denotes the largest integer which is smaller than or equal to
a. λmax(P) and λmin(P) represent, respectively, as the smallest
and biggest eigenvalues of the positive-definite matrix P. For
a set Q ⊂ Rn, Cl(Q), Int(Q), and ∂(Q) are its closure,
interior, and boundary, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES
System configuration studied in this paper is shown in Fig.1,
in which, xk = x(kTs) and σk = σ (kTs) with the
sampling period Ts. The symbol (a, b, c) denotes that a
and b are obtained at time c. The plant formulation,
the network-induced effect and the controller design are
described detailedly in this section.

FIGURE 1. System configuration.

A. PLANT FORMULATION
The continuous-time switched system is formulated as
follows:

ẋ(t) = Aσ (t)x(t)+ Bσ (t)u(t) (1)
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where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control
input. The switching signal σ (t) : [0,∞) → 9 denotes
the active mode at time t with a finite index set 9. We call
the discontinuities of σ as ‘‘switching time’’ or ‘‘switch’’.
Nσ (t, s) denotes the number of switches in [s, t).
Assumption 1: The individual system (Ap,Bp) : p ∈ 9

of the switched system (1) is stabilizable by state feedback,
that is there exists a feedback matrix Kp, p ∈ 9 such that
Ap + BpKp is Hurwitz.
Assumption 2: There is a dwell time ϕTs, ϕ ≥ 2(γ + 1)

such that Nσ (t + ϕTs, t) ≤ 1 for all t ≥ 0, where γ is the
maximum consecutive packet loss defined in section II-B.

B. NETWORK-INDUCED EFFECT
Here, we discuss the issues of quantization, packet loss and
event-driven scheme deduced by the network. Data quantiza-
tion is inevitable due to that the network bandwidth is always
limited, and the packet loss is caused by the congestion and
unreliable transmissions.

1) QUANTIZATION
This paper adopts a memoryless quantizer defined in [26].
For any bounded set 4, there is a finite subset ωδ of an index
set ω such that 4 ⊂ ∪υ∈ωδMυ , where {Mυ}υ∈ω is the finite
partition of Rn. The quantizer is represented as

Q : Rn
→ {qυ}υ∈ω ⊂ Rn

x 7→ qυ if x ∈Mυ (υ ∈ ω). (2)

Furthermore, we assume that if Cl(Mυ ) includes the origin,
then qυ = 0.
Lemma 3 [26]: For the above quantizer, there are positive

numbers β0 and φ0(p, q) such that

‖BpKqQ(x)‖ ≤ β0‖x‖ (3a)

‖PBpKq(Q(x)− x)‖ ≤ φ0(p, q)‖x‖ (3b)

for all p, q ∈ 9 and x ∈ ε̄P(χR) ⊂
⋃
υ∈ωδ

Mυ , in which

β0 = max
p,q∈9

max
υ∈ωδ

‖BpKqqυ‖
minx∈Mυ

‖x‖

and φ0(p, q) = max{‖PBpKq‖, φ̂0(p, q)} with

φ̂0(p, q) = max
υ∈ωδ\ω0

‖PBpKq‖maxx∈Mυ
‖qυ − x‖

minx∈Mυ
‖x‖

and ω0 = {υ ∈ ω : 0 ∈ Cl(Mυ )}. Moreover, ε̄P(χR) is
defined by (13a) with χ given by (46).
Specially, it is obvious that

‖BpKpQ(x)‖ ≤ β̃0‖x‖ (4)

for all p ∈ 9 and x ∈ ε̄P(χR) ⊂
⋃
υ∈ωδ

Mυ with

β̃0 = max
p∈9

max
υ∈ωδ

‖BpKpqυ‖
minx∈Mυ

‖x‖
< β0. (5)

2) PACKET LOSS
The variable θk in the system configuration indicates the
packet loss that may occur when the data is transmitted over
the network. If θk = 1, then it means that the data packet
is transmitted successfully, and the controller can use the
received data Q(xk ) and σk to design the control algorithm at
time tk = kTs. Otherwise, if θk = 0, then packet loss occurs.
We assume that the controller knows whether the system
sends data, and sets the control signal to 0 when the data
is lost. This article assumes that the maximum consecutive
packet loss for θk is γ , which means that if the data packets at
the previous γ sampling times are lost, then the data packets
of the current time must be successfully transmitted to the
controller.

3) EVENT-DRIVEN SCHEME
To reduce the network burden, we set the quantized sampling
data to be transmitted just at some specific times. Denote the
transmission times as tij , j ∈ N and ij ∈ N ∪ {0} satisfying
i1 = 0 and ij < ij+1. Two event-driven schemes are designed
in this paper, in which ij+1 is selected, respectively, as

ij+1 = min
{
k > ij

∣∣ max
p,q∈9

‖BpKq(Q(x(tij ))− Q(x(tk )))‖

> γ0‖x(tk )‖
}
, k ∈ N ∪ {0} (6a)

ij+1 = min
{
k > ij

∣∣ max
p,q∈9

‖BpKq(Q(x(tij ))− x(tk ))‖

> γ0‖x(tk )‖
}
, k ∈ N ∪ {0} (6b)

with any given constant γ0.
Since the switching signal σk is very important to the

controller design, we assume that it is transmitted from the
system to the controller at each sampling time. Therefore,
the transmission of the switching signal is affected by packet
loss but not by the event-driven scheme.
Remark 4: Different from the existing literature, such

as [21], this article designs an event-driven strategy based on
the quantized data. Since the controller received the quantized
dataQ(x(tij )) at the last transmission time, it is more practical
to determine whether to transmit data based on the difference
between Q(x(tij )) and the sampling state x(tk ) (or between
Q(x(tij )) and the quantized sampling state Q(x(tk ))).
Remark 5: In this paper, we assume that the data transmis-

sion from the controller to the plant (i.e. forward chancel)
is not affected by the network-induced influence but only
by data sampling. Thus, the system can receive the control
signal u(tij ) in [tij , tij+1 ). In fact, if the forward chancel is
affected by the limited bandwidth of the network, the control
signal available on the system is Q(u(tij )). In addition, if the
forward chancel is affected by the event-driven scheme at the
same time, an appropriate event-driven scheme for the con-
trol signals should be designed by comprehensive analyzing
quantization strategy and (6) to ensure the stability of the
closed-loop system. This is an issue we will consider in the
future.
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C. CONTROLLER DESIGN
For easy analysis, we denote σ ([t]−) = θkσ (tk ) +
(1 − θk )θk−1σ (tk−1) + . . . + (1 − θk )(1 − θk−1) . . . (1 −
θk−γ+1)θk−γ σ (tk−γ ) and x([t]−) = x(tk ) for any t ∈
[tk , tk+1) ⊂ [tij , tij+1 ). Obviously, σ ([t]

−) ∈ 9 holds under
the assumption that the maximum consecutive packet loss for
θk is γ . Under the influence of quantization, packet loss and
event-driven scheme, the control input u(t), t ∈ [tk , tk+1) ⊂
[tij , tij+1 ) is designed as

u(t) = Kσ ([t]−)θijQ(x(tij )) (7)

with the feedback matrix Kp, p ∈ 9 determined by
Assumption 1.

For the system (1) with the controller (7), that is

ẋ(t) = Aσ (t)x(t)+ Bσ (t)Kσ ([t]−)θijQ(x(tij )) (8)

for all t ∈ [tk , tk+1) ⊂ [tij , tij+1 ), we select Lyapunov function
as V (x(t)) = x>(t)Px(t) for any given positive-definite
matrix P. It holds that

V̇p(x(t),Q(x(tij )), θij )

= (Apx(t)+ θijBpKpQ(x(tij )))
>Px(t)

+ x>(t)P(Apx(t)+ θijBpKpQ(x(tij ))),

if σ (t) = σ ([t]−) = p (9a)

V̇p,q(x(t),Q(x(tij )), θij )

= (Apx(t)+ θijBpKqQ(x(tij )))
>Px(t)

+ x>(t)P(Apx(t)+ θijBpKqQ(x(tij ))),

if σ (t) = p, σ ([t]−) = q. (9b)

for any t ∈ [tk , tk+1) ⊂ [tij , tij+1 ).
Remark 6: It is worth mentioning that, under the influence

of event-driven mechanism and packet loss, the closed-loop
system (8) has a piecewise continuous solution:

x(t) = 8(t, tk )x(tk )

+ θij

∫ t

tk
8(t, τ )Bσ (τ )Kσ ([t]−)Q(x(tij ))dτ (10)

for all t ∈ [tk , tk+1) ⊂ [tij , tij+1 ), where 8(t, tk ) denotes
the state-transition matrix of the system (1). It guarantees
the forward completeness of the system (8) (i.e. the solutions
of (8) exist globally, for positive time).
Remark 7: Due to that the solutions of the system (8) are

piecewise continuous, the Lyapunov function V (x(t)) defined
above is just piecewise differentiable rather than full-interval
differentiable. Hence, the standard Lyapunov theorem (i.e.
V̇ (x(t)) < 0) can not be used to testify the asymptotic stability
of the closed-loop system (8). The proof process of system
stability is briefly described as follows:
Step 1: Seeking positive numbers C̃ and D̃ satisfying

V̇p ≤ −C̃‖x(t)‖2 and V̇p,q ≤ D̃‖x(t)‖2, respectively.
Step 2: Looking for the total mismatch time under the

influence of packet loss and switch.
Step 3: Analyzing the properties of Lyapunov function by

combining Steps 1 and 2, thus obtaining the practical stability
of the system (8).

It is worth mentioning that the proof idea of this article is
similar to literature [26] (switched systemswith quantization)
and [27] (switched systems with quantization and delay).
As can be seen from the following analysis, the main diffi-
culty and innovation of this article lies in the calculation of
mismatch interval, i.e. Step 2.
Assumption 8: For the system

ẋ(t) = Apx(t)+ BpKpQ(x([t]−)), p ∈ 9 (11)

without switch, packet loss and event-driven scheme, we
suppose that x(t) with x0 ∈ ε̄P(R) satisfies

V̇p(x(t),Q(x([t]−)), 1) ≤ −C‖x(t)‖2 (12)

or x(t) ∈ εP(r), whereC is a positive number, ε̄P(R) and εP(r)
are, respectively, defined as

ε̄P(R) : = {x(t) ∈ Rn
: V (x(t)) ≤ R2λmax(P)} (13a)

εP(r) : = {x(t) ∈ Rn
: V (x(t)) ≤ r2λmin(P)} (13b)

with R > r > 0.
Moreover, in order to anti-packet loss, anti-switch and anti-

event-driven scheme, we assume that the system (11) is stable
enough such that

C > 2‖P‖e3Ts max
{
β̃0, γ0/(1− η̃1),

max
p∈9
‖BpKp‖, γ0/(1− η̃2)

}
(14)

with 3 = maxp∈9 ‖Ap‖ and η̃1, η̃2 defined by (21).

III. MAIN RESULT
Definition 9: The system (8) is practical stable if, for any

x(0) ∈ Int(ε̄P(R)), σ0 ∈ 9 and the given positive numbers
χ and κ , there exists a time instant Tr ≥ 0 such that
x(t) ∈ Int(εP(κr)),∀t ≥ Tr , and such that x(t) ∈
Int(ε̄P(χR)),∀t ≥ 0.
The purpose of this section is obtaining the practical

stability of the system (8) by analyzing the upper bound
of V̇p(x(t), qx(t)), V̇p,q(x(t), qx(t)) and the mode mismatch
interval.

A. UPPER BOUND OF V̇p

The following lemma is useful to obtain the upper bound of
V̇p(x(t),Q(x(tij )), θij ).
Lemma 10: For the system (8), suppose that Ts is small

enough such that

η1 =
γ0 + β0

3
(e3Ts − 1) < 1 (15a)

η2 =
γ0 +maxp,q∈9 ‖BpKq‖

3
(e3Ts − 1) < 1. (15b)

Define β1 = e3Ts/(1 − θijη1) and β2 = e3Ts/(1 − θijη2). If
x([t]−) ∈ ε̄P(χR), for all t ∈ [tk , tk+1) ⊂ [tij , tij+1 ), we have

‖x([t]−)‖ < β1‖x(t)‖ (16)

and

‖x([t]−)‖ < β2‖x(t)‖ (17)
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under event-driven scheme (6a) and (6b), respectively.
Specially, if the modes of the plant and the controller are
matched, that is, σ ([t]−) = σ (t), then β0 can be replaced
by β̃0 in (15a).

Proof: It follows from (10) and 8(t, tk )−18(t, τ ) =
8(τ, tk )−1 that

x(tk ) = 8(t, tk )−1x(t)

− θij

∫ t

tk
8(τ, tk )−1Bσ (τ )Kσ ([t]−)Q(x(tij ))dτ.

By considering

‖8(t, tk )−1‖ ≤ e
(t−tk )‖Aσ ([t]−)‖ ≤ e3(t−tk ) < e3Ts , (18)

it yields

‖x(tk )‖ ≤ e3Ts‖x(t)‖

+ θij

∥∥∥∥ ∫ t

tk
8(τ, tk )−1Bσ (τ )Kσ ([t]−)Q(x(tij ))dτ

∥∥∥∥.
(19)

Under the event-driven scheme (6a), we get∥∥∥∥ ∫ t

tk
8(τ, tk )−1Bσ (τ )Kσ ([t]−)Q(x(tij ))dτ

∥∥∥∥
=

∥∥∥∥ ∫ t

tk
8(τ, tk )−1Bσ (τ )Kσ ([t]−)(Q(x(tij ))− Q(x([t]

−))

+Q(x([t]−)))dτ

∥∥∥∥
≤

∫ t

tk
‖8(τ, tk )−1‖dτ (γ0‖x(tk )‖ + β0‖x(tk )‖)

≤
γ0 + β0

3
(e3Ts − 1)‖x(tk )‖ = η1‖x(tk )‖. (20)

Combined (15a), (19) with (20) indicates that (16) holds
under the event-driven scheme (6a).

Moreover, if the event-driven scheme (6b) is adopted, one
has∥∥∥∥ ∫ t

tk
8(τ, tk )−1Bσ (τ )Kσ ([t]−)Q(x(tij ))dτ

∥∥∥∥
=

∥∥∥∥ ∫ t

tk
8(τ, tk )−1Bσ (τ )Kσ ([t]−)(Q(x(tij ))− x(tk )

+ x(tk ))dτ

∥∥∥∥
≤

∫ t

tk
‖8(τ, tk )−1‖dτ (γ0‖x(tk )‖ + max

p,q∈9
‖BpKq‖‖x(tk )‖)

≤
γ0 +maxp,q∈9 ‖BpKq‖

3
(e3Ts − 1)‖x(tk )‖

= η2‖x(tk )‖,

which guarantees (17) by using (15b) and (19). �
Define

η̃1 =
γ0 + β̃0

3
(e3Ts − 1) < η1 < 1

η̃2 =
γ0 +maxp∈9 ‖BpKp‖

3
(e3Ts − 1) < η2 < 1 (21)

and β̃1 = e3Ts/(1− θij η̃1), β̃2 = e3Ts/(1− θij η̃2).

For all t ∈ [tk , tk+1) ⊂ [tij , tij+1 ) and x([t]
−) ∈ ε̄P(χR),

it holds that

V̇p(x(t),Q(x(tij )), θij )

= (Apx(t)+ BpKpQ(x([t]−)))>Px(t)

+ x>(t)P(Apx(t)+ BpKpQ(x([t]−)))

+ 2θijx
>(t)PBpKp(Q(x(tij ))− Q(x([t]

−)))

− 2(1− θij )x
>(t)PBpKpQ(x([t]−))

≤ −C‖x(t)‖2 + 2θij‖P‖γ0‖x([t]
−)‖‖x(t)‖

+ 2(1− θij )‖P‖β̃0‖x([t]
−)‖‖x(t)‖

≤ (−C + 2θij‖P‖γ0β̃1 + 2(1− θij )‖P‖β̃0β̃1)‖x(t)‖
2

≤ (−C + 2‖P‖e3Ts max{β̃0, γ0/(1− η̃1)})‖x(t)‖2

: = −C̃1‖x(t)‖2 (22)

under event-driven scheme (6a) by using (4), (9a), (12)
and (16); and

V̇p(x(t),Q(x(tij )), θij )

= (Apx(t)+ BpKpQ(x([t]−)))>Px(t)

+ x>(t)P(Apx(t)+ BpKpQ(x([t]−)))

+ 2θijx
>(t)PBpKp(Q(x(tij ))− x(tk ))

− 2(1− θij )x
>(t)PBpKpx(tk )

≤ −C‖x(t)‖2 + 2θij‖P‖γ0‖x([t]
−)‖‖x(t)‖

+ 2(1− θij )‖P‖max
p∈9
‖BpKp‖‖x([t]−)‖‖x(t)‖

≤ (−C + 2θij‖P‖γ0β̃2 + 2(1− θij )‖P‖

× max
p∈9
‖BpKp‖β̃2)‖x(t)‖2

≤ (−C + 2‖P‖e3Ts max{max
p∈9
‖BpKp‖, γ0/(1− η̃2)})

×‖x(t)‖2

: = −C̃2‖x(t)‖2 (23)

under event-driven scheme (6b). By (14), we get C̃1 > 0 and
C̃2 > 0.

B. UPPER BOUND OF V̇p,q

The following lemma is useful to establish the upper of
V̇p,q(x(t),Q(x(tij )), θij ).
Lemma 11: For the system (8), define

ε1 = (e3Ts − 1)
(
1+ θij

γ0 + β0

3

)
,

ε2 = (e3Ts − 1)
(
1+ θij

γ0 +maxp,q∈9 ‖BpKq‖
3

)
. (24)

Then we have

‖x(t)− x(tk )‖ < ε1‖x(tk )‖ (25)

and

‖x(t)− x(tk )‖ < ε2‖x(tk )‖ (26)

for all t ∈ [tk , tk+1) ⊂ [tij , tij+1 ) with x(tk ) ∈ ε̄P(χR) under
event-driven scheme (6a) and (6b), respectively.
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Proof: By (10), we get

x(t)− x(tk ) = (8(t, tk )− I )x(tk )

+ θij

∫ t

tk
8(t, τ )Bσ (τ )Kσ ([t]−)Q(x(tij ))dτ.

(27)

for all t ∈ [tk , tk+1) ⊂ [tij , tij+1 ). Moreover, it holds that∥∥∥∥ ∫ t

tk
8(t, τ )Bσ (τ )Kσ ([t]−)Q(x(tij ))dτ

∥∥∥∥
≤

∫ t

tk
‖8(t, τ )‖dτ‖Bσ (τ )Kσ ([t]−)(Q(x(tij ))− Q(x([t]

−))

+Q(x([t]−)))‖

≤ (e3Ts − 1)
γ0 + β0

3
‖x(tk )‖ (28)

and∥∥∥∥ ∫ t

tk
8(t, τ )Bσ (τ )Kσ ([t]−)Q(x(tij ))dτ

∥∥∥∥
≤

∫ t

tk
‖8(t, τ )‖dτ‖Bσ (τ )Kσ ([t]−)(Q(x(tij ))− x(tk )

+ x(tk ))‖

≤ (e3Ts − 1)
γ0 +maxp,q∈9 ‖BpKq‖

3
‖x(tk )‖ (29)

under event-driven scheme (6a) and (6b), respectively.
Summarized above, (25) and (26) can be obtained by using
‖8(t, tk ) − I‖ < e3Ts − 1 which is obtained from
Proposition 7 in [26]. �

If the event-driven scheme (6a) is adopted, we know that

V̇p,q(x(t),Q(x(tij )), θij )
= 2x>(t)P(Ap + BpKq)x(t)+ 2θijx

>(t)PBpKq
× (Q(x(tij ))− Q(x([t]

−)))+ 2x>(t)PBpKq
× (Q(x([t]−))− x(t))− 2(1− θij )x

>(t)
×PBpKqQ(x([t]−))

< 2 max
p 6=q∈9

(‖P(Ap + BpKq)‖ + θijγ0β1‖P‖ + (φ0(p, q)

+‖PBpKq‖ε1)β1 + (1− θij )β0β1‖P‖)‖x(t)‖
2

: = 2 max
p 6=q∈9

51(p, q, θij )‖x(t)‖
2
≤ D̃1‖x(t)‖2 (30)

holds for all t ∈ [tk , tk+1) ⊂ [tij , tij+1 ) and x([t]
−) ∈ ε̄P(χR),

where D̃1 := 2maxθij=0,1maxp 6=q∈9 51(p, q, θij ).
Similarly, if the event-driven scheme (6b) is adopted,

we obtain that

V̇p,q(x(t),Q(x(tij )), θij )

= 2x>(t)P(Ap + BpKq)x(t)+ 2θijx
>(t)PBpKq

× (Q(x(tij ))− x(tk ))+ 2x>(t)PBpKq

× (x(tk )− x(t))− 2(1− θij )x
>(t)PBpKqx(tk )

< 2 max
p 6=q∈9

(‖P(Ap + BpKq)‖ + θijγ0β2‖P‖

+‖PBpKq‖ε2β2 + (1− θij )β2‖PBpKq‖)‖x(t)‖
2

: = 2 max
p 6=q∈9

52(p, q, θij )‖x(t)‖
2
≤ D̃2‖x(t)‖2 (31)

holds for all t ∈ [tk , tk+1) ⊂ [tij , tij+1 ) and x([t]
−) ∈ ε̄P(χR),

where D̃2 := 2maxθij=0,1maxp 6=q∈9 52(p, q, θij ).

C. UPPER BOUND OF MODE MISMATCH INTERVAL
Definition 12: For any τ2 > τ1 ≥ 0, we define the mode

mismatch interval µ(τ2, τ1) as follows:

µ(τ2, τ1) : = the length of the set

{τ ∈ [τ1, τ2) : σ (τ ) 6= σ ([τ ]−)}.

Lemma 13: Fix ϕ ∈ N satisfying ϕ ≥ 2(γ + 1). For any
switching signal σ with dwell time ϕTs, the mode mismatch
interval µ satisfies

µ(t, 0) <
(

γ

γ + 1
+

1
ϕ

)
t +

(
1

γ + 1
+ 1

)
Ts (32)

for any t > 0. Moreover, if σ (T0) 6= σ ([T0]−), then, for any
t > T0, it holds that

µ(t,T0) <
(

γ

γ + 1
+

1
ϕ

)
(t − T0)+

(
γ

γ + 1
+ 2

)
Ts.

(33)

Proof: Consider that the mode mismatch interval is only
affected by packet loss and switch, we first establish the upper
bound of µ(t, 0). Assume that there are m switches in [0, t),
and we denote them as t̃1, t̃2, . . . , t̃m. We have

µ([t]−, 0) =
[t]−/Ts−1∑

k=0

µ(tk+1, tk ) (34)

with t0 = 0 and tk = kTs. By considering

µ(tk+1, tk ) =



[t̃l]− + Ts − t̃l if there is a switch t̃l in
[tk , tk+1) and θk = 1

0 if there are no switch in
[tk , tk+1) and θk = 1

Ts if θk = 0

for any k = 0, 1, . . . , [t]−/Ts − 1, we obtain that

µ(tk+1, tk ) = (1− θk )Ts + θkψk ([t̃l]− + Ts − t̃l)

< Ts − θkTs(1− ψk ), (35)

where

ψk =

{
1 if there is a switch in [tk , tk+1)
0 if there are no switch in[tk , tk+1).

Combined with (34) and (35) gives us that

µ([t]−, 0) <
[t]−/Ts−1∑

k=0

(Ts − θkTs(1− ψk ))

= [t]− −
[t]−/Ts−1∑

k=0

θkTs(1− ψk ). (36)

For
∑[t]−/Ts−1

k=0 θkTs(1 − ψk ), there are [t]−/Ts transmis-
sions, and the number of successful transmissions is at least
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b[t]−/((γ + 1)Ts)c. Then the number of intervals without
packet loss and switch is at least b[t]−/((γ + 1)Ts)c − m̃,
where

m̃ =

{
m− 1 if there is a switch in [[t]−, t)
m if there are no switch in[[t]−, t).

We can claim that b[t]−/((γ + 1)Ts)c − m̃ ≥ 0. In fact,
if m̃ = 0, then b[t]−/((γ + 1)Ts)c ≥ 0 obviously holds.
Otherwise, if m̃ ≥ 1, then we have⌊

[t]−

(γ + 1)Ts

⌋
≥

m̃ϕ
γ + 1

− 1 ≥ 2m̃− 1 ≥ m̃

by using ϕ ≥ 2(γ + 1). Thus we get

[t]−/Ts−1∑
k=0

θkTs(1− ψk ) ≥
(⌊

[t]−

(γ + 1)Ts

⌋
− m̃

)
Ts

>
[t]−

γ + 1
− (m̃+ 1)Ts. (37)

Applying (37) to (36), we have

µ([t]−, 0) <
γ

γ + 1
[t]− + (m̃+ 1)Ts,

and thus

µ(t, 0) <
γ

γ + 1
[t]− + (m̃+ 1)Ts + t − [t]−

≤ t −
[t]−

γ + 1
+ (m+ 1)Ts

< t −
t − Ts
γ + 1

+ Ts +
t
ϕ

=

(
γ

γ + 1
+

1
ϕ

)
t +

(
1

γ + 1
+ 1

)
Ts,

where the last inequality is based on t ≥ t̃m ≥ mϕTs.
Hence (32) holds.

Next, we show (33). Similarly, we assume that m switches
occur in (T0, t), and let them as t̃1, t̃2, . . . , t̃m.
Obviously, it holds that

µ([T0]− + Ts,T0) ≤ [T0]− + Ts − T0. (38)

Consider that σ (T0) 6= σ ([T0]−) may be caused by switch or
packet loss, we define t̃0 as follows:
1) there is a switch in [[T0]−,T0), then we define t̃0 as such

switch;
2) there are no switch in [[T0]−,T0) but packet loss occurs

at [T0]−:
2.1) if there exist switches before [T0]−, then we define t̃0

as the last switch before [T0]−;
2.2) if there are no switch before [T0]−, then t̃0 is defined

as [T0]− − ϕTs.
Let ξl = (t̃l+1 − t̃l) − ϕTs,∀ ∈ {0, 1, . . . ,m − 1}, then

ξl ≥ 0. Hence t−T0 = mϕTs+(t− t̃m)+
∑m−1

l=0 ξl−(T0− t̃0).
1) If

(t − t̃m)+
m−1∑
l=0

ξl ≥ T0 − t̃0, (39)

then t − T0 ≥ mϕTs, and thus mTs ≤
t−T0
ϕ

. Using (35)
and (38) gives that

µ(t,T0)

≤ [T0]− + Ts − T0 +
[t]−/Ts∑

k=([T0]−+Ts)/Ts

(Ts − θkTs(1− ψk ))

≤ Ts + ([t]− − [T0]−)−
[t]−/Ts∑

k=([T0]−+Ts)/Ts

θkTs(1− ψk ).

(40)

Similar to the analysis of (37), we have

[t]−/Ts∑
k=([T0]−+Ts)/Ts

θkTs(1− ψk )

>
[t]− − [T0]−

γ + 1
− (m̃+ 1)Ts, (41)

in which

m̃ =


m− 2 if [[t]−, t) and [T0, [T0]− + Ts)

both have a switch
m− 1 if [[t]−, t) or [T0, [T0]− + Ts) has a switch
m if there are no switch in [[t]−, t)

and [T0, [T0]− + Ts).

Applying (41) to (40) results in that

µ(t,T0) ≤ (m+ 2)Ts +
γ

γ + 1
([t]− − [T0]−)

≤
t − T0
ϕ
+ 2Ts +

γ

γ + 1
(t − T0 + Ts)

=

(
γ

γ + 1
+

1
ϕ

)
(t − T0)+

(
γ

γ + 1
+ 2

)
Ts.

2) If (t − t̃m) +
∑m−1

l=0 ξl < T0 − t̃0, then mTs ≤ (t − T0)/ϕ
does not hold. Combined with (38), µ(t, [t]−) ≤ t− [t]− and

µ([t]−, [T0]− + Ts)

=

([t]−−Ts)/Ts∑
k=([T0]−+Ts)/Ts

(Ts − θkTs(1− ψk ))

≤ ([t]− − [T0]− − Ts)−
[t]− − [T0]− − Ts

γ + 1
+ (m̃+ 1)Ts

results in that

µ(t,T0) ≤ t − T0 −
[t]− − [T0]− − Ts

γ + 1
+ Ts + mTs

< t − T0 −
t − T0 − 2Ts
γ + 1

+ Ts +
t − t̃0
ϕ

=
γ

γ + 1
(t − T0)+

t − t̃0
ϕ
+ Ts +

2
γ + 1

Ts

by using mTs ≤ (t − t̃0)/ϕ. Thus (33) holds if

γ

γ + 1
(t − T0)+

t − t̃0
ϕ
+ Ts +

2
γ + 1

Ts

≤

(
γ

γ + 1
+

1
ϕ

)
(t − T0)+

(
γ

γ + 1
+ 2

)
Ts, (42)

which is equal to (T0−t̃0)/ϕ+2/(γ+1)Ts ≤ Ts+γ /(γ+1)Ts.
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Consider ϕ ≥ 2(γ + 1) and T0 − t̃0 < [T0]− + Ts − t̃0 ≤
(l̃ + 1)Ts ≤ (γ + 1)Ts, where l̃ ≥ 0 is the consecutive packet
loss before T0, we get

T0 − t̃0
ϕ
+

2
γ + 1

Ts − Tsv ≤
Ts
2
+

2
γ + 1

Ts − Ts

=
3− γ

2(γ + 1)
Ts,

which is smaller than γ /(γ + 1)Ts if γ ≥ 1. Hence, (42),
and thus (33) can be obtained. Otherwise, if γ = 0, that
is, the system without packet loss, then (33) obviously holds
according to Proposition 18 in [26]. �

D. PRACTICAL STABILITY ANALYSIS
The practical stability of the system (8) under event-driven
scheme (6a) is discussed in this section. For the case
of event-driven scheme (6b), the stability analysis can be
obtained just replacing C̃1 and D̃1 by C̃2 and D̃2, respectively.
The following lemmas are first established, which are useful
to obtain the practical stability of the system (8).
Lemma 14: Let Assumptions 1-8 hold. Let C̄ :=

C̃1/λmax(P) and D̄ := D̃1/λmin(P). If

C̄ > (D̄+ C̄)
(

γ

γ + 1
+

1
ϕ

)
, (43)

then there is a time Tr ≥ 0 such that x(Tr ) ∈ εP(r)
for any x(0) ∈ Int(ε̄P(R)) and σ (0) ∈ 9, and moreover
x(t) ∈ Int(ε̄P(χR)) for any t ∈ [0,Tr ].

Proof:Wefirst prove that x(t) does not leave Int(ε̄P(χR))
without belonging to εP(r). Assume that there is a time
0 < TR < Tr such that

x(TR) ∈ ∂ε̄P(χR), and

x(t) ∈ Int(ε̄P(χR)) \ εP(r) (0 ≤ t < TR). (44)

Based on (22) and (30), we know that V̇p(x(t), qx(t)) ≤
−C̄V (x(t)) and V̇p,q(x(t), qx(t)) < D̄V (x(t)). Hence, in
accordance with (43) and x(0) ∈ Int(ε̄P(R)), we get

V (x(TR)) ≤ exp(D̄µ(TR, 0)− C̄(TR − µ(TR, 0)))V (x(0))

= exp
((

(D̄+ C̄)
(

γ

γ + 1
+

1
ϕ

)
− C̄

)
TR

)
× exp

(
(D̄+ C̄)

(
1

γ + 1
+ 1

)
Ts

)
V (x(0))

< exp
(
(D̄+ C̄)

(
1

γ + 1
+ 1

)
Ts

)
R2λmax(P)

= (χR)2λmax(P) (45)

with

χ
.
= exp

(
D̄+ C̄

2

(
1

γ + 1
+ 1

)
Ts

)
. (46)

However, x(TR) ∈ ∂ε̄P(χR) means that V (x(TR)) =
(χR)2λmax(P), and we have a contradiction. Thus TR satis-
fying (44) does not exist. Hence x(t) ∈ Int(ε̄P(χR)) for any
t ∈ [0,Tr ].

Next, we will show that there exists Tr ≥ 0 such that
x(Tr ) ∈ εP(r). Assume x(t) /∈ εP(r) for any t > 0, it means
that x(t) ∈ Int(ε̄P(χR))\εP(r). Based on (45), we get

V (x(t)) < exp
(
(D̄+ C̄)

(
1

γ + 1
+ 1

)
t
)
V (x(0)). (47)

Hence limt→∞ V (x(t)) = ∞, which is contradict with
x(t) ∈ Int(ε̄P(χR))\εP(r),∀t > 0. Thus it must be a time
Tr ≥ 0 such that x(Tr ) ∈ εP(r). �
The same as Lemma 16 in [26], we can also define a small

interval Iδ such that V (x(t)) is differentiable in Iδ under the
influence of packet loss and event-driven scheme. By using
the mean value theorem, the following lemma holds.
Lemma 15: Let Assumptions 1-8 hold. If x(t) leaves εP(r)

at T0, then σ (T0) 6= σ ([T0]−).
Lemma 16: Let Assumptions 1-8 hold. Assume that T0 is

a time at which x(t) leaves εP(r). Define

κ := exp
(
D̄+ C̄

2

(
γ

γ + 1
+ 2

)
Ts

)
.

If κ satisfies

κ2r2λmin(P) < R2λmax(P), (48)

then there exists T1 ≥ T0 such that x(T1) ∈ εP(r) and
x(t) ∈ Int(εP(κr)),∀t ∈ [T0,T1] for any σ (T0) ∈ 9.

Proof: If t > T0 satisfying x(t ′) ∈ ε̄P(χR)\εP(r) for all
t ′ ∈ [T0, t), then V (x(t)) satisfies

V (x(t)) ≤ exp
((

(D̄+ C̄)
(

γ

γ + 1
+

1
ϕ

)
− C̄

)
(t − T0)

)
× exp

(
(D̄+ C̄)

(
γ

γ + 1
+ 2

)
Ts

)
V (x(T0))

< κ2r2λmin(P) < R2λmax(P) (49)

based on (45). It means that x(t) ∈ Int(ε̄P(R)) ⊂ Int(ε̄P(χR)).
By using the proof by contradiction similar to Lemma 14,
there is a time T1 > T0 such that x(T1) ∈ εP(r). Moreover,
V (x(t)) < κ2 r2λmin(P) guarantees x(t) ∈ Int(εP(κr)),
∀t ∈ [T0,T1]. �
Theorem 17: Let Assumptions 1-8 hold. If (43) and (48)

hold, then the system (8) is practical stability, that is, there
is a time Tr ≥ 0 such that x(t) ∈ Int(εP(κr)),∀t ≥ Tr and
x(t) ∈ Int(ε̄P(χR)),∀t ≥ 0 for any x(0) ∈ Int(ε̄P(R)) and
σ (0) ∈ 9.

Proof: Lemma 14 tells us that x(t) ∈ Int(ε̄P(χR)),
∀t ≥ 0. Next, we will show x(t) ∈ Int(εP(κr)),∀t ≥ Tr .
Based on Lemma 14, we know that there exists Tr such that
x(Tr ) ∈ εP(r). Let τ1, τ2, . . . as the times at which x(t) leaves
εP(r). According to Lemmas 15 and 16, σ (τk ) 6= σ ([τk ]−)
and (49) holds. Then there exists τ̂k ∈ (τk , τk+1] such that
x(τ̂k ) ∈ εP(r) and x(t) ∈ Int(εP(κr)),∀t ∈ (τk , τk+1]. If there
are finite {τk}, then the practical stability can be obtained.
Otherwise, if there are infinite {τk}, then limk→∞ τk = ∞

by using τk+1 − τk ≥ ϕTs. Hence x(t) ∈ Int(εP(κr)),
∀t ≥ Tr . �
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IV. SIMULATION
In this section, we present two illustrative examples to
demonstrate the validity and effectiveness of the main results.

A. TWO-TANK SYSTEM
For comparison with literature [26], let us first consider the
following two-tank system denoted by the system (1) with
σ (t) ∈ {1, 2} and

A1 =
[
−1 1
1 −1

]
, A2 = A1,

B1 =
[
1
0

]
, B2 =

[
0
−1

]
. (50)

Choose K1 = −[0.6163 0.7979] and K2 = [0.7979 0.6163],
thenA1+B1K1 andA2+B2K2 are Hurwitz. The quantizerQ(·)
is defined by Q(x) = [Q1(x1) Q2(x2)]> with

Qi(xi) =


−ξ̃0(η̃ξ + η̃ξ+1)

2
if xi ∈ [−ξ̃0η̃ξ+1,−ξ̃0η̃ξ )

0 if xi ∈ [−ξ̃0, ξ̃0]
ξ̃0(η̃ξ + η̃ξ+1)

2
if xi ∈ (ξ̃0η̃ξ , ξ̃0η̃ξ+1],

where ξ̃0 = 0.5 and η̃ = 1.45.
Let Ts = 0.01, P = [1.2467 0.2230; 0.2230 1.2096].

Assume C = 90,R = 30, r = 0.71, γ = 3 and ϕ = 11.
If γ0 = 0.2, then 3 = 2, β0 = β̃0 = 1.2350, η1 = 0.0145
and η2 = 0.0122. Then we have C̄ = 59.4669, D̄ =
10.4187, κ = 2.6141, χ = 1.5477, which means that the
conditions (14), (43) and (48) hold. Hence Theorem 17 is
guaranteed.

In order to discuss the impact of γ0 on the system per-
formance, Table 2 lists the key parameters of the system
under different values of γ0 when x0 = [−17; 31.28] ∈
Int(ε̄P(R)). In Table 2, κ1 andχ1 correspond to κ andχ in The-
orem 17, respectively, under event-driven scheme (6a). The
parameter ν1 represents the number of transmissions in the
first 200 sampling moments under event-driven scheme (6a).
The variables κ2, χ2 and ν2 are similarly defined under
event-driven scheme (6b).

TABLE 2. The impact of γ0 on system performance.

From Table 1, we can see that the increment of γ0 can
reduce the number of data transmissions. However, too
large γ0 will increase the value of κ and χ , and thus reduce the
system stability. Moreover, the event-driven scheme (6b) has
a higher number of transmissions but better system stability
than the event-driven scheme (6a) under the same γ0.

Comparison: Compared to the case without packet loss
and event-driven scheme in [26] (in which χ = 1 and κ =
1.0384), it is obvious that the system stability obtained here
is weaker than the one in [26] in the sense of bigger χ and κ .
However, the data transmission rate in this paper is only
12%-14% of that in [26] when γ0 = 0.01.

For the initial state x0 = [−17; 31.28] and γ0 = 0.2,
the switchingmodes of the system and the controller are given
in Fig. 2. It can be seen from Fig. 2 that the controller mode
does not always match the system mode. However, Fig. 3-4
show that the practical stability of the closed-loop can be
guaranteed.

FIGURE 2. System mode and controller mode.

In Fig. 3-4, colored lines denote the state trajectories of
the system under different initial states. The blue ellipse,
red ellipse and black ellipse represent ε̄P(R), Int(ε̄P(χR))
and Int(ε̄P(κR)), respectively. Fig. 3 shows that x(t) ∈
Int(ε̄P(χR)),∀t ≥ 0. Fig. 4 guarantees that there is a time
instant Tr such that x(t) ∈ Int(εP(κr)),∀t ≥ Tr . Since the
theoretical analysis corresponding to the packet loss from
the worst case, the upper bounds of the Lyapunov function,
i.e. (χR)2λmax(P) and (κR)2λmax(P), obtained here are
conservative.

B. A NUMERICAL EXAMPLE
To show that there exist some times t̃ ≥ 0 such that x(t̃) ∈
Int(ε̄P(χR))\Int(ε̄P(R)), we consider the system (1) with

A1 =
[
−0.5 1.5
1 −1

]
, A2 =

[
−1 1
1 − 1

]
,

B1 =
[
1
0

]
, B2 =

[
0
−1

]
. (51)

Select K1 = −[1.1163, 1.2979] and K2 = [0.9342, 0.5827].
The other parameters are the same as Section IV-A. The
closed-loop dynamic responses are given in Fig. 5 with dif-
ferent initial conditions. From such figure, it is obvious that
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FIGURE 3. State trajectories in region (−60,60)× (−60,60).

FIGURE 4. State trajectories in region (−2,2)× (−2,2).

FIGURE 5. State trajectories in region (−60,60)× (−60,60).

x(t) ∈ Int(ε̄P(χR)),∀t ≥ 0. Furthermore, we know that there
are some t̃ such that x(t̃) ∈ Int(ε̄P(χR))\Int(ε̄P(R)).

V. CONCLUSION
For a class of continuous-time switched systems with packet
loss, quantization and event-driven scheme, a controller
is designed here to guarantee the practical stability of
the closed-loop system by combining the upper bound of
Lyapunov function and mode mismatch interval. The future
work can involve the observer-based output feedback and the
network-induced time-delay or disturbance.
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