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ABSTRACT Epilepsy is one of the most common neurological diseases worldwide. Early prediction of
seizure onsets is of great significance for the safety of intractable epilepsy patients. This work aims to develop
areliable and accurate method for patient-specific seizure prediction based on scalp electroencephalograms
(EEGsS). Local fractal spectrum, relative band energy, and synchronization modularity features are used to
reveal the characteristics of multi-channel EEG in perspectives of time domain, frequency domain, and
functional connectivity, respectively. A novel framework, named multi-view convolutional gated recurrent
network (Mv-CGRN), is proposed to comprehensively analyze the spatio-temporal sequences of multi-
view features and capture the potential variations preceding the impending seizure. Moreover, an attention
mechanism is embedded in Mv-CGRN to determine the optimal feature combinations for each patient by
adaptively tuning the weight parameters. The proposed system achieves an average sensitivity of 94.50%
and an average false positive rate (FPR) of 0.118/h on CHB-MIT scalp EEG dataset, using the leave-one-out
cross validation (LOOCYV). Our work shows a promising performance compared with the state-of-the-art
works in the same filed.

INDEX TERMS Seizure prediction, electroencephalograms (EEG), local fractal detrended fluctuation
analysis (L-DFA), functional connectivity, multi-view convolution gated recurrent network (Mv-CGRN),
attention mechanism.

I. INTRODUCTION

Epilepsy is the second most common neurological disor-
der that affects about 65 million individuals worldwide [1].
Epilepsy seizures arise spontaneously from sudden surges of
electrical activity in the brain. It may cause direct injuries
to the neural tissues and indirect injuries such as fractures,
burns, accidents, and even death [2]. Current treatment for
epilepsy are mainly pharmacological and surgical. Unfortu-
nately, antiepileptic drugs failed to control seizures among
20%-30% of patients [3], and surgery is not always an avail-
able option. Therefore reliable and accurate prediction for an
impending seizure attack is of great significance to ensure the
safety and life quality of intractable epilepsy patients.
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Hitherto, much work has been devoted to seizure prediction
based on electroencephalogram (EEG), which is widely used
to measure the neural electrical activity. It has long been
observed that the transition from non-seizure state to seizure
state is not an abrupt and isolated phenomenon and may be
preceded by clinical, metabolic, or electrical changes [4].
Based on this observation, researches on seizure prediction
define the stages of epilepsy into four major periods: (1) the
preictal state which is the period preceding the seizure onset;
(2) the ictal state which is the period of the seizure itself;
(3) the postictal state which is the brain recovery period after
the seizure; (4) the interictal state which can be considered
as the normal state. Generally, seizure prediction can be per-
ceived as a binary classification problem of preictal signals
and interictal signals. Most current seizure prediction meth-
ods consist of two major steps: extracting features of EEG sig-
nals, and classifying the features with a pre-trained classifier.
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Although the dysfunction mechanism of epilepsy remains
unclear, various kinds of linear and nonlinear features have
been presented in previous studies to detect early changes
in EEG before the seizure onset. Examples of these fea-
tures include absolute and relative spectral band power [5],
[6], Hjorth parameters [7], autoregressive coefficients [8],
wavelet coefficients [9], largest Lyapunov exponent [10], sta-
tistical features [11], instantaneous amplitude and phase [12],
phase correlation [13], phase synchronization [14], and com-
mon spatial pattern features [15]. Considering that seizure
types and characteristics vary across patients and may evolve
over time with the same patient, multi-view feature extrac-
tions are becoming necessary in EEG processing and have
been employed in several studies [16], [17]. Yet efficient and
reasonable combination of features is a crucial part and a
challenging problem for seizure prediction. In addition to
traditional features in time, frequency, and time-frequency
domain, the interaction between different electrodes should
be noticed and explored in depth. Based on the graph theory,
the human brain can be regarded as a functional connec-
tion network. The functional connectivity [18]-[20] between
brain regions is assessed by time coupling or time dependence
between signals collected in different regions, which can act
as an important indicator of brain dysfunction before the
seizure onset.

On the other hand, the classification method also plays a
vital role in seizure prediction. With the rapid development
of machine learning, especially neural network algorithms,
many classifiers have been employed to automatically learn
and classify the extracted features of EEG, including sup-
port vector machine (SVM) [13], [14], [21], [22], linear
discriminant analysis (LDA) classifier [15], Bayesian clas-
sifier [5], [23], Adaboost classifier [24], convolutional neural
network (CNN) [9], [25], long short-term memory (LSTM)
network [26], [27], gated recurrent network (GRN) [28],
generative adversarial network (GAN) [29], etc. CNN is
widely used in image processing and has an advantage in
extracting the spatial information. Thus, it is a powerful
tool to analyze the feature matrices of multi-channel EEG.
At the same time, the time-varying information is essential
for seizure prediction since the neural electrical activity is
always a dynamic and nonstationary process. In recent stud-
ies, 3D CNN [16] and convolutional long short-term memory
(C-LSTM) network [30] have been introduced to process
sequences of feature matrices so that the fluctuation pattern
of EEG can be recognized. To achieve a better prediction
performance, we intend to propose an improved classification
framework which is capable of analyzing sequences of multi-
view feature matrices.

This work presents a novel patient-specific seizure pre-
diction method, and the main contributions can be sum-
marized as follows: (i) A well-designed combination of
features are used, consisting of local fractal spectrum, relative
band energy, and synchronization modularity. The charac-
teristics of multi-channel EEG are revealed in perspectives
of time domain, frequency domain, and functional
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connectivity, respectively. The multi-view feature set pro-
vides a reliable foundation for seizure prediction. (ii) A
novel framework based on CNN and GRN, named multi-view
convolutional gated recurrent network (Mv-CGRN), is pro-
posed to process multiple views of feature matrix sequences.
The spatio-temporal evolution pattern of multi-channel
EEG can be learned and categorized synthetically. (iii) A
depth-wise separable CNN is introduced in the fore-end of
Mv-CGRN to address the multi-band feature matrices. Fea-
tures in different frequency bands can be analyzed pre-
cisely and comprehensively while the parameter explosion is
avoided. (iv) An attention mechanism for multi-view features
is proposed to improve the classification performance by
focusing on essential features automatically. It enhances the
reliability and adaptability of the network for patient-specific
seizure prediction.

The rest of this paper is organized as follows. Section II
describes the utilized dataset. Section III presents the pro-
posed seizure prediction system including the preprocessing
procedure, feature extraction methods and the framework
of Mv-CGRN. Section IV gives the experimental results,
followed by relevant comparisons and analysis. A conclusion
is given in Section V.

Il. DATASET

In this work, the proposed prediction system is trained and
tested on CHB-MIT scalp EEG dataset [31], collected from
Children’s Hospital Boston. The EEG were recorded accord-
ing to the international 10-20 system of electrode positions.
Recordings of 23 pediatric patients are grouped into 24 cases.
Each case contains 9-42 hours of continuous recordings, with
the total length of 866 hours and 198 seizures. All recordings
were sampled at 256 Hz with a bipolar montage. To match the
composition of channels for each case, 20-channel signals are
adopted in this work.

The categorization of recordings is as follows: 30 minutes’
recordings preceding seizure onsets are categorized as pre-
ictal (P1); recordings of seizure periods are categorized as
ictal (P2); 30 minutes’ recordings following seizure onsets
are categorized as postictal (P3); the rest are categorized as
interictal (P0O). The purpose of seizure prediction is to distin-
guish P1 from PO, regardless of P2 and P3. For sequences
of seizures that occurred close to each other, the incoming
seizures are discarded if the interval time is less than 1 hour.
We evaluated the cases which have at least three seizures and
three hours of interictal period in EEG recordings. This is due
to the fact that inadequate samples will cause an overfitting
problem in the training phase and deprive the generalizability
of the classifier. Considering all the above categorizations
and constraints, 140 seizures and 476 hours of interictal
recordings are available for 24 cases.

lll. METHODOLOGY

The block diagram of the whole system proposed for seizure
prediction is given in Fig. 1. In the preprocessing step, raw
EEG are segmented and decomposed into sub-band signals.
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FIGURE 1. Block diagram of the proposed seizure prediction system.

The next step is to extract multi-view features from prepro-
cessed signals and divide the feature set into training set and
test set. The classification step consists of the training phase
(phase 1) and test phase (phase 2). In phase 1, the classifier
with trainable parameters is trained iteratively by the training
set to obtain the classification ability. In phase 2, the test set
is used to simulate the practical situations and evaluate the
prediction performance of the proposed system.

A. PREPROCESSING

A multi-band feature extraction scheme is designed to obtain
the more accurate and distinguishable features from EEG
segments. Wavelet packet transform (WPT) is a powerful tool
to analyze non-stationary bioelectrical signals and is used
to decompose raw EEG into sub-band signals in this work.
In WPT, a complete binary tree is created by decomposing
both detail coefficients and approximation coefficients of the
previous level without omission or redundancy. Thus, WPT
can provide a multi-scale signal set with higher frequency res-
olution, compared with discrete wavelet transform (DWT).
For N-level decomposition, WPT produces 2N different sets
of coefficients that give the time-frequency representations
of the original signal. In this work, a 7-level WPT is imple-
mented on raw EEG signals with Daubechies 4 (db4) wavelet.
According to the intrinsic frequency bands commonly used
in human brain researches, the wavelet packet coefficients
are combined to reconstruct the signals in six sub-bands that
are delta (0-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-
30 Hz), gamma-1 (31-60 Hz), and gamma-2 (61-120 Hz)
band. To eliminate the power line hums at 60 Hz and its
harmonics, wavelet coefficients of 57-63 Hz and 117-120 Hz
are excluded. As an example, Fig. 2 gives a raw EEG segment
in case Chb01 and its corresponding decomposed signals.

B. FEATURE EXTRACTION

1) LOCAL FRACTAL DETRENDED ANALYSIS

Fractal analysis is frequently employed in biomedical signal
processing to define the scale invariant structure in ECG,
EEG, MR, and X-ray pictures [32]. The scale invariant
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FIGURE 2. Raw EEG segment of channel Fp1-F7 in case Chb01 and its
decomposed signals in sub-bands.

structures of neuron firing time series differentiates between
healthy and pathological conditions and between different
types of pathological conditions [33], [34]. Therefore fractal
analysis can be an important tool to extract distinguishable
features in time domain for interictal and preictal state. Con-
ventional fractal analysis estimates the Hurst exponent that
defines the particular kind of scale invariant structure of the
time series. As an extension of detrended fluctuation analysis
(DFA), local detrended fluctuation analysis (L-DFA) was
conceived by [35] to characterize the dynamical fractal struc-
ture of biomedical signals. The fractal spectrum is calculated
from the local Hurst exponent which will fluctuate in time
and identify the time instant of structural changes within the
signal. Thus, temporal variations in the structure of EEG can
be effectively revealed by L-DFA.

For a given time series {x;}, the scale-dependent measure
s,mq 15 defined as a root-mean-square fluctuation of the inte-
grated response time series yy, around a polynomial trend ¥y, ),
of order A within a floating trial interval [mg —s/2, mg+s/2],
where my is the center of the interval and s is the sample size
(i.e., scale):

m
Y=Y (% —%) ey
1 mo+s/2
omo = |~ Do Om—3Ima) )
m=mo—s/2

A second-order polynomial detrending (i.e., A = 2) of the
response series is used in this work. The local Hurst exponent
hjoc 1s estimated as the linear regression slope of log-log plot
of fg,m, versus scale s, which portrays the local variation and
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FIGURE 3. Fractal spectrums of channel Fp1-F7 in case ChbO1.

self-similarity of the time series {x;}. The fractal spectrum
Dy, [36] is defined as follows:

_ log(Pn/ P}lnax))

log(e) )

Dy = lim <1
e—0

where Pj is the normalized distribution of Ay, in log-
coordinates, ¢ is the bin size of the histogram used to define
Py, and P,™* is the maximum probability of /.. The fractal
spectrums of local Hurst exponent series in each sub-band for
channel Fp1-F7 of the EEG segment in case Chb01 are shown
in Fig. 3. The abscissa value of the apex, which is the most
prominent index in the spectrum to characterize the temporal
structure of each channel, is used to form the time-domain
feature matrix of the EEG segment.

2) RELATIVE BAND ENERGY

Signal energy shows enormous potential in tracking the
seizure generation since it is sensitive to waveforms such
as seizure-like bursts of neural electrical activity. To bring
out the signal energy evolution hidden in different frequency
ranges that is related to the potential seizure attack, we cal-
culate the relative band energy based on the wavelet packet
coefficients.

As mentioned before, a 7-level (i.e., N = 7) WPT is
implemented on raw EEG signals in this work. Each subspace
of the binary tree is labeled by (g, p), where g is the depth of
the subspace in the tree, and p is the index of the subspace
at the same depth. The sub-band signal is reconstructed by
the wavelet packet coefficients {d(g, p)} of corresponding
subspaces. Mathematically, the energy of sub-band w is com-
puted as

ld(g, p)I* )

= Y

(g,p) € band w

The relative energy measures the ratio of the energy in band
w to the total energy of the signal in logarithm scale, which
is computed as

E,
&)

Erptal

RE,, = log
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where E7,, is the sum of band energy in delta, theta, alpha,
beta, gamma-1, and gamma-2 band. The relative energy RE,,
is computed for each channel of the EEG segment.

3) SYNCHRONIZATION MODULARITY

In this work, the functional connectivity of multi-channel
EEG is quantified by the synchronization modularity. Firstly,
the synchronization is calculated as the connection strength
between different channels. Thus, a weighted graph can be
constituted based on the connection matrix by regarding each
channel as a node. Then the community detection algorithm is
applied on the graph to obtain the synchronization modularity
of EEG.

The phase locking value (PLV) is a commonly used bivari-
ate measurement that reflects the degree of phase synchro-
nization in a specific frequency band [37]. Given that ¢x(¢)
and ¢y (¢) are the instantaneous phase of the input signal X (¢)
and Y (¢) at time point #, respectively, PLV is calculated by

Agx y(1) = ¢x (1) — ¢y (1) (6)
| |zt B
PLV = - De @)
=0

where [ is the time point index, L is the number of time points
in a time window. PLV indicates the phase synchronization
between two signals by the average of phase differences in
this time window. The PLVs range from O to 1, where “0”
means two signals are completely asynchronized, and “1”
means two signals are fully synchronized.

The modularity was defined by Newman and Girvan [38]
as the quality function of community detection. In this work,
the modularity is utilized to measure the functional connectiv-
ity of scalp electrical activity based on phase synchronization.
The synchronization modularity Oy, can be calculated by

gi=Yy Si(#i ®)
j

Qsm

'1 ”
55 2S5 = ZDVi V) ©)

where §j; is the phase synchronization (i.e., PLV) between
channel i and channel j, and S is the sum of phase synchro-
nization of all channel pairs. V; denotes the community index
of channel i. 6(V;, V;) yields “1” if channel i and channel j are
in the same community (i.e., V; = V), “0” otherwise (i.e.,
Vi # Vj). The detailed procedure of the graph community
detection algorithm is as follows:

1) Start from v communities (v is the number of channels
for a v-variate signal), where each community contains a
single channel. Calculate the original synchronization modu-
larity Qo;

2) Reduce the number of communities by merging one
community into another. Calculate the Qg of each merging
mode, and determine the mode with maximum modularity
increment AQ as the best merging mode;
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FIGURE 4. (a) Connection graph of a 10-second window of beta-band EEG
in case Chbo1, the width of lines in the graph indicates the
synchronization (>0.6) between channels, (b) Modularity map based on
the connection graph.

3) Merge the communities according to the best merging
mode, and repeat the iteration step until only one community
exists;

4) The community partition mode with maximum Qy,, is
considered as the best mode. For channel i, the modularity Q;
of its corresponding community is recorded.

The connection graph and the corresponding modularity
map in a 10-second window of beta-band EEG are given
in Fig. 4. A higher Q; in the map means a stronger interaction
among channels inside the community. The modularity map
digs out the potential information from the connection graph
and clearly reveals the functional regions of scalp electrical
activity.

C. MULTI-VIEW CONVOLUTIONAL GATED RECURRENT
NETWORK

1) DEPTH-WISE SEPARABLE CONVOLUTION

Depth-wise separable convolution was proposed by [39] to
accelerate the computation of CNN by separating the stan-
dard convolution into depth-wise convolution and point-wise
convolution. It has been applied and made great progress
in different research fields, especially in computer vision
tasks. The typical implementation of depth-wise separable
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convolution is Xception [40], which is a variant model of
Inception [41].

In [40], it is clarified that the standard convolutional
kernel can be seen as a three-dimensional filter: depth dimen-
sion and space dimension (corresponding to the width and
height of the feature map). The convolution operation actu-
ally implements a joint mapping of depth correlation and
spatial correlation. The combination of depth features and
the combination of spatial features can be performed sepa-
rately by the depth-wise convolutional layer and the 1 x 1
point-wise convolutional layer. It shows that the computa-
tion can be significantly reduced with slight performance
loss [39], [40].

2) GATED RECURRENT UNIT

GRN is one of the most efficient and powerful variants
of the standard recurrent neural network (RNN) [42]-[44].
It is composed of a series of cascaded gated recurrent units
(GRUs). The GRU employs a gating structure to control
the flow of information inside the unit. Thus, the cascaded
GRUs can adaptively capture the sequence dependencies over
various lengths of time and avoid the vanishing gradient
problem of long-term dependence in standard RNN. Com-
pared with long short-term memory (LSTM) network, which
is another popular variant of RNN, GRN can achieve the
similar performance with a much simplified structure and
fewer parameters.

Fig. 5 shows the typical architecture of a GRU which has
two main gates, namely the update gate and the reset gate. The
update gate z, is used to determine how much information of
the previous state is brought into the current state. The reset
gate r;, is used to determine how much information hidden in
the previous state needs to be forgotten. All the relationship
can be mathematically expressed as

=0 (W [en—1, un])
in =o(W; - [cn—1, unl) (10)
Cn = tanh(W - [y % cp_1, Un])

cp=(—=2z)*cp_1 + 24 %Cp

VOLUME 8, 2020



L. Tang et al.: Seizure Prediction Using Mv-CGRN

IEEE Access

Depth-wise convolution Two-stack point-wise convolution

E Conv [ Conv Conv E

; ) 33xl |11 | Ixlx6 1x1x32 !

: 6 Filter i 1,| 32 Filter 16 Filter ;

: BN | BN BN :
i

6@8x8

FIGURE 6. Framework of Mv-CGRN.

where u, is the input vector in the n-th state, ¢, and ¢, are
the output vector and candidate output vector, respectively,
W,, W, and W are trainable weight parameters, and o is the
sigmoid function.

3) ATTENTION-ASSISTED MV-CGRN

The framework of the proposed Mv-CGRN is given in Fig. 6.
In each time window, three views of features are extracted
from raw EEG as the input of the network, which are local
fractal spectrum (View 1), relative band energy (View 2),
and synchronization modularity (View 3). The channel-wise
features in each sub-band are mapped into a 8§ x 8 matrix
according to the relative positions of electrodes and eventu-
ally form a 6 x 8 x 8 matrix for each view. A depth-wise
convolution layer is employed to process the feature matrix
separately in each band, followed by a two-stack point-wise
convolution layer which combines the multi-band feature
matrices.

An attention layer is embedded between the flatten layers
and the GRU layer to adaptively integrate multi-view features
by weight parameters oy, and thus to capture the more dis-
tinguishable classification features for the particular patient.
Supposing that Hy is the output vector of the f-th view of
feature, the attention mechanism is defined as follows:

nf = tanh(W.Hy + b,) (11)
exp(ny)

= = 12

Zf exp(ny) (12)

Output = Zf arHy (13)

where W, and b, are trainable parameters. The integrated
vector exported by the attention layer in the n-th window
is the input vector of the GRU layer in the n-th state. The
last output vector of the GRU layer is forwarded to the
fully connected layer. Finally, a binary classification result of
“preictal” or “interictal” is obtained based on the output of
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the softmax layer. Convergence of parameters in Mv-CGRN
model during training is achieved by optimizing the cross-
entropy loss function.

IV. RESULTS AND DISCUSSIONS

The proposed seizure prediction method has been tested on
CHB-MIT scalp EEG dataset, as described in Section II.
In spite of the abundant research in epilepsy, there is no
univocally defined interval for the preictal state. In this work,
the preictal interval is defined as 30 minutes’ recordings
preceding the seizure onset, if any. Recordings inside and
outside the prediction interval constitute the positive and
negative, respectively. A seizure is correctly predicted if at
least one sample segment inside the corresponding preictal
interval is classified as positive. On the contrary, the posi-
tive classification of a sample segment outside the preictal
interval is counted as a false positive alarm. Usually, false
positive alarms tend to appear in clusters during an abnormal
period. Therefore, a refractory period is defined in which
subsequent alarms are ignored once the system is triggered
and gives the first alarm. The length of the refractory period
is determined as 5 minutes in this work. Sensitivity (SEN,
the ratio of correctly predicted seizures to the total number
of seizures) and false-positive-rate (FPR, the number of false
alarms per hour) are employed as two dominant evaluation
indexes for the prediction system. The prediction time of a
seizure is calculated as the distance between the first positive
sample segment determined by the system and its onset. The
prediction time indicates how early a seizure is predicted and
acts as another important index. The average, minimum, and
maximum prediction time of successfully predicted seizures
are denoted by Tp, Tp™M and Tpmex, respectively.

For each case, the features are computed over a 1-second
time window, and 10 successive windows make up a
10-second sample segment. The preictal and interictal record-
ings are divided into half-overlapping segments. Due to the
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TABLE 1. Experimental results of proposed seizure prediction method on CHB-MIT scalp EEG dataset.

Case Total Sz Used Sz SEN(%) FPR(/h) AUC Tp Tp™in Tpmax
Chb01 7 7 100 0.154 0.925 30 30 30
Chb02 3 3 100 0.033 0.995 30 30 30
Chb03 7 7 100 0.143 0.870 27.49 21.72 30
Chb04 4 3 100 0.104 0.998 28.95 26.90 30
Chb05 5 5 100 0.172 0.899 29.17 25.72 30
Chb06 10 10 100 0.097 0.912 28.66 23.79 30
Chb07 3 3 66.67 0.241 0.776 25.86 21.41 27.48
Chb08 5 5 100 0.019 0.910 25.24 12.41 30
Chb09 4 4 75 0.138 0.836 27.31 24.83 30
Chbl10 7 7 100 0.073 0.938 28.65 23.87 30
Chbl1 3 3 100 0.102 0.942 26.21 18.67 30
Chbl12 40 9 77.78 0.168 0.840 27.59 22.76 30
Chbl13 12 7 100 0.015 0.922 26.60 14.23 30
Chbl4 8 7 100 0.089 0.898 23.65 14.48 30
Chbl5 20 14 100 0.112 0.913 27.87 17.59 30
Chbl6 10 5 100 0.207 0.837 24.62 9.31 30
Chbl17 3 3 100 0.081 0918 13.79 8.28 18.62
Chbl18 6 6 100 0.144 0.882 2241 10.34 28.97
Chbl19 3 3 100 0.121 0.858 27.52 23.31 30
Chb20 8 6 100 0.086 0.941 29.83 28.55 30
Chb21 4 4 100 0.139 0914 30 30 30
Chb22 3 3 66.67 0.313 0.833 30 30 30
Chb23 7 5 100 0.039 0.989 30 30 30
Chb24 16 11 81.82 0.061 0.880 29.61 27.93 30

Summary 198 140 94.50 0.118 0.901 27.15 8.28 30

"Sz" is the abbreviation of "Seizure". Tp, Tp™™, and Tp™2* are measured in minutes
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FIGURE 7. Stacked bar chart of average weight parameters «; in the
attention layer of Mv-CGRN.

limited number of seizures and the relatively short length of
preictal intervals, the number of negative samples is much
larger than that of positive samples. The classifier tends to
be more accurate toward the class with the larger number
of training samples [45]. Thus, equal numbers of preictal
segments and interictal segments are selected to overcome
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TABLE 2. Comparison with relevant classification frameworks.

Classification Trainable
SEN(%) FPR(/h) AUC
framework parameters
Standard conv
31928 95.31 0.129 0.911
+LSTM
Standard conv
28824 94.88 0.122 0.904
+ GRN
Depth-wise separable conv
15248 94.5 0.113 0.899
+LSTM
Depth-wise separable conv
12144 94.5 0.118 0.901

+ GRN

the imbalance problem. To ensure the robustness and gener-
ality of the proposed Mv-CGRN model, leave-one-out cross
validation (LOOCYV) is used as the evaluation method in
our work. In LOOCY, the training is run M separate times,
where M is the number of seizures in each case. For each
seizure, the preictal segments are grouped with a random
set of interictal segments. Each time, all preictal-interictal
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TABLE 3. Comparison with related seizure prediction works using CHB-MIT scalp EEG dataset.

Number Number Preictal Prediction
Ref Features Classifier SEN(%) FPR(/h)
of case of Sz interval time
Phase/Amplitude
[46] - 10 31 77 0.17 60 -
locking value
Spectral power,
[5] SVM 17 78 98.68 0.046 60 -
Power ratios
Fourier transform
[47] - 13 125 83.33 0.392 86 453
coefficients, PSD
81 0.47 60 38.35
Common spatial
[15] o LDA 24 170 87 0.4 90 52.7
pattern statistics
89 0.39 120 68.71
[14] Phase locking value SVM 21 65 82.44 - 5 _
Wavelet transform
[9] CNN 15 18 87.8 0.147 10 5.83
coefficients
Spectral power,
[16] Statistical moments, 3D CNN 16 77 87.01 0.186 60 -
Hjorth parameters
Time series, L 93 - 60 -
[17] Multi-view CNN 2 12
FFT coefficients 90 - 60 -
Fractal spectrum,
This Relative band energy, Multi-view CGRN 24 140 94.5 0.118 30 27.15
work

PLV modularity

"Sz" is the abbreviation of "Seizure". "Preictal interval" and "Prediction time" are measured in minutes

groups are adopted for training except one group reserved for
test. By this method, all seizures are covered in the test and
the tested seizure is unseen during training. The evaluation
indexes are averaged across M test groups in each trial and
then averaged across 10 trials of LOOCYV for each case.
Table 1 gives the experimental results of the proposed
seizure prediction method. Owing to the combination use
of depth-wise separable convolution and GRN, the proposed
classification framework can process the features with com-
plicated data structure, which overcomes the limitation of
conventional classifiers like SVM, artificial neural network
(ANN), CNN, and RNN. In most cases, all seizures can be
successfully predicted with a low FPR. The area-under-curve
(AUC) value provides an alternative for evaluating the clas-
sifier performance. It shows the direct classification ability
on all the EEG segments, without any constraints. A high
average AUC value of 0.901 is achieved by the attention-
assisted Mv-CGRN. Fig. 7 plots the stacked bar chart of
average weight parameters oy in the attention layer for each
case, by which the patient-specific combination of multi-view
features can be visualized. We have also compared the perfor-
mance of Mv-CGRN with relevant classification frameworks
that utilize benchmark algorithms. The depth-wise separable
convolution and GRN were replaced by standard convolu-
tion and LSTM, respectively. The rest part of Mv-CGRN
remained unchanged, and the same hyper-parameters were
used including the batch size, learning rate, epoch, and the
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number of hidden units. As shown in Table 2, the highest
sensitivity and AUC value are achieved by the combination
of standard convolution and LSTM. It holds a slight advan-
tage at the cost of a large number of trainable parameters,
which means a high computational complexity. By contrast,
Mv-CGRN achieves the similar performance with much
fewer parameters, reduced by 61.96%.

Table 3 gives the comparison of our work with recent
seizure prediction works that use the same CHB-MIT scalp
EEG dataset. It is difficult to determine the best work without
any dispute since each work employs different constraints and
is tested on a limited set of dataset with different evaluation
methods. Moreover, there are some differences between the
application scenarios of each work. Thus, we have tried our
best to do the comparison pertinently and objectively. Zhang
and Parhi [5] presented a seizure prediction method based
on spectral power features that are ranked and selected in a
patient-specific manner. The method, tested on 78 seizures
of 17 cases, achieves the best performance among all the com-
pared works in terms of SEN and FPR, which are 98.68% and
0.046/h, respectively. However, it requires a prior knowledge
and an adequate validation process to select the optimal clas-
sification features for each patient. The procedure needs to be
performed repeatedly for new patient datasets, which reduces
the generalizability of the method. Liu ef al. [17], proposed
a multi-view CNN framework to analyze the features of time
domain and frequency domain. The method also achieves a
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relatively high sensitivity over 90%. However, it was only
tested on 2 cases and didn’t use the LOOCV. Our work
achieves an average sensitivity of 94.50% and an average FPR
of 0.118/h, outperforming all the compared works except [5].
In our work, 140 seizures are selected from 24 cases for
training and test based on the aforementioned standards.
Though the number of seizures is not the most, it is sufficient
to ensure the reliability and generalizability of our method.
The length of preictal interval is defined individually by each
work, ranging from 5 minutes to 120 minutes, which has a
direct impact on relevant indexes including SEN, FPR, and
prediction time. A moderate length of 30 minutes is adopted
in our work, and we have focused on exploring the potential
evolutions during this interval. The average prediction time
of our method is 27.15 minutes. It is an appropriate distance
for the daily prevention of seizure onset because the patient
doesn’t have to suffer the uncertainty of an attack over a long
time while still having enough time to take the suitable action
before the onset.

V. CONCLUSION

This work presents a patient-specific seizure prediction
method using multi-view features and a novel Mv-CGRN
framework. Raw EEG are decomposed into sub-band signals
by WPT according to the intrinsic frequency bands of human
brain. Local fractal spectrum, relative band energy, and syn-
chronization modularity features are extracted to characterize
the variations of EEG from the interictal state to the preictal
state in various perspectives. The Mv-CGRN, assisted by
the attention mechanism, is employed to process the spatio-
temporal feature sequences for different patients in a self-
adaption manner. The proposed method achieves an average
sensitivity of 94.50%, an average FPR of 0.118/h, and an
average prediction time of 27.15 minutes, using the leave-
one-out cross validation on CHB-MIT scalp EEG dataset.
The seizure prediction method in this work shows a reli-
able and promising performance compared with the state-of-
the-art works in the same field. With the aim of achieving
a more accurate prediction and meeting the real-life use
requirements, the future research will focus on three aspects:
(i) exploring an efficient method to automatically extract
features in a patient-specific manner; (ii) introducing train-
able parameters to determine the appropriate preictal interval
for each patient; (iii) furtherly simplifying the structure and
shortening the computing time of the Mv-CGRN model.
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