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ABSTRACT The Convolution Neural Network (CNN) is widely used in the super-resolution task of depth
map. However, the ones with simple architecture and high efficiency generally lack accuracy, while the
ones with high accuracy demonstrate low efficiency and training difficulties due to their over-deep level and
complex architecture. We propose a depth map super-resolution fusion framework. This framework fuses
multiple Progressive Convolution Neural Networks (PCNNs) with different architectures by a pixel-wise
Partial Differential Equation (PDE). Each individual PCNN uses progressive learning and deep supervising
to construct a mapping from low resolution space to high resolution space. The PDE model automatically
classifies and processes the high-resolution depth maps with different feature output by fusing multiple
PCNNs. The fusion term in PDE is used to preserve or integrate the complementary features of the depth
maps, and the divergence term in PDE is used to remove noise to improve the spatial accuracy and visual
effect of the final output depth map. This method enables simple structured Neural Networks with high
accuracy, high efficiency and relatively simple network training for depth map super-resolution.

INDEX TERMS Depth map super-resolution, progressive convolution neural network, partial differential
equation, fusion network.

I. INTRODUCTION
The Time of Flight (ToF) sensor has a very low spatial
resolution due to its large size of single-pixel photosensitive
element, which makes it difficult to meet the requirements
of high-resolution depth map for practical applications such
as three-dimensional reconstruction [1]. Therefore, since the
advent of ToF sensor, the research on super-resolution of
depth map acquired by ToF sensor has become a research
hotspot in the field of computer vision, and various algo-
rithms have emerged. These algorithms can be roughly
classified into five categories. The first is filter-based algo-
rithm [2]–[6], which usually has the advantages of speed
and efficiency, but there are often some bad phenomena
such as edge blurring or loss of structural details caused by
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over-smoothing in the super-resolution results. The second
type is based on the sparse representation [7]–[9], which
evidences high accuracy, but its calculation speed is usually
slow, and a large training sample set is needed. Therefore,
it is more suitable for off-line image preprocessing with-
out real-time requirements. The third type is based on deep
fusion [10]–[13]. This kind of algorithm can preserve the
detailed information of depth map very well, but it needs
to obtain motion estimation and displacement labeling of
multi-frame depth maps first. Due to its high time complexity
with difficulties to meet real-time requirements, it is limited
for super-resolution multiples. The fourth type is based on
the optimization [14]–[19]. This kind of algorithm ensures
high-accuracy but results in some shortcomings such as
large amount of calculation and poor real-time performance.
The fifth type is based on deep learning [20]–[23]. This
kind of algorithm is the mainstream image super-resolution
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algorithm at present, and its reconstruction effect is generally
superior to other types of algorithms.

The Convolution Neural Network (CNN) is the most
advanced network architecture in deep learning. In recent
years, many CNN-based neural networks [22]–[26] have
been used for image super-resolution tasks. Some of them
adopt simple network architecture and few layers, such as
SRCNN [22] only utilizing three Convolution layers and
obtaining learn rich image features. Such networks are rel-
atively efficient and easy to train. But the accuracy of these
networks is lower. Some neural networks [27] adopt hundreds
or even thousands of layers and complex structures to obtain
high accuracy, but it is difficult to fine-tune and optimize
network parameters in training, resulting in low efficiency
which is difficult to improve under the huge network scale.
In order to solve the above problems, the Progressive Con-
volution Neural Network (PCNN) [28] is proposed, which
fuses multiple convolution neural networks for image super-
resolution. Compared with a single CNN, under the condition
that the number of layers is roughly the same, PCNN has been
improved in various evaluation metrics to a certain extent.
However, for the deeper individual CNN, PCNN does not
have performance advantages.

In this paper, we propose a fusion framework for depthmap
super-resolution by fusing multiple progressive convolution
neural networks (FMPN). The FMPN fuses multiple PCNNs
with different architectures by pixel-wise Partial Differential
Equation (PDE) model. The PDE model enables the neural
networks with simple structure and fewer layers to outper-
form deeper neural networks in accuracy and efficiency of
super-resolution. Each individual PCNN constructs a map-
ping from low resolution to high resolution space. Since
the depth map output from each PCNN might contain some
random features such as noises and some complementary
features relative to other depth maps, the PDE model are
applied to filter noise, reserve complementary features or
integrate them into the depth map final output. The experi-
mental results show that, for the fusion schemewith relatively
simple structure and less layers, the proposed fusion network
is superior to many other state-of-the-art super-resolution
algorithms and networks in terms of objective evaluation and
subjective visual quality.

II. RELATED WORK
A. PROGRESSIVE CONVOLUTION NEURAL NETWORK
(PCNN)
As shown in Figure 1, PCNN fuses two individual neural net-
works in turn, in which the output of the first network acts as
the input of the second network and the output of the second
network is the final output of PCNN. Each individual network
consists of three parts: feature extraction and presentation
layer, non-linear mapping layer and super-resolution recon-
struction layer.

In theory, each PCNN can fuse multiple individual net-
works and progressively learn the high-frequency features
output from each individual network. Thus, the similarity

between the output of the last individual network and the
Ground Truth will become the highest, so as to achieve
the super-resolution reconstruction of low-resolution depth
map. The corresponding PCNN model can be expressed by
equation (1).

β̂i = F{S1,S2,··· ,SM } (αi) = sM (· · · s2 (s1 (αi))) , (1)

where, i denotes the number of training samples {i =
1, . . . ,N}, M denotes the number of individual networks
in PCNN, α denotes the input low-resolution depth map,
F denotes the output of PCNN, and β̂i denotes the pre-
dicted value output from the ith low-resolution depth
map αi.
However, in practice, if the weights of some individual

networks are not frozen, PCNN is equal to a deeper individual
network with the same number of layers as the sum of the
individual networks. Therefore, PCNN usually consists of
only two individual networks, and the weights of one of
the individual networks needs to be frozen. All learnable
parameters in PCNN depend on the individual network that
is not frozen. As shown in Figure 1, the weights of the
orange individual network are frozen, while the weights of
the green individual network can be learned and optimized in
training.

B. PARTIAL DIFFERENTIAL EQUATION (PDE)
The fusion of depth maps based on Partial Differential Equa-
tion (PDE) [29] is a frame-by-frame evolution process of the
input multi-frame depth maps by the fusion term of PDE.
The related features in the current depth map are transferred
to the next depth map through the fusion term of PDE, and
the complementary features in each depth map are gradually
superimposed into the final depth map. The continuous evo-
lution equation for all depth maps can be expressed as

∂Ui
∂t
= div(Di∇Ui)− βidiv(gF (|∇U |max)∇Umax)

+ γ div(gR(∇Ui,U t=0
k )∇Ui), (2)

where, the three terms on the right of the equation represent
the diffusion term, the fusion term and the regularization term
in turn. The diffusion term is used to suppress noise, and
div() is the divergence operator. D is the gradient matrix;
i represents the current depth map; U represents the gray
levels of the pixel. The fusion term, i.e. inverse diffusion term,
is used to inject the relevant features into the current depth
map from the other ones. The relevant features are provided
by the depth map corresponding to the maximum absolute
value of the gradient. gF is a non-incremental function of
the absolute gradient value, which is used to modulate the
fusion quantity. Here, gF (|∇U |max) = 1 is a constant positive
function that provides an isotropic fusion. |∇U |max represents
the depth map corresponding to the maximum absolute value
of the gradient. βi denotes a positive weight parameter, which
is used to set the important degree of the fusion term relative
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FIGURE 1. Basic framework of Progressive Convolution Neural Network (PCNN).

to the diffusion term. βi can be expressed as

βi =

{
0, if i = max
β ∈ [0, 1] , otherwise,

(3)

In the inverse diffusion, the maximum gradient of each
pixel is automatically detected. If the maximum absolute
value of the gradient exists in the current depth map, the cur-
rent pixel value will not be updated, βi = 0. Otherwise,
if the maximum exists in another depth map, the gradient
information is injected into the current depth map through the
inverse diffusion process.

The third term of (2) is a regularization term, which is used
to limit the degree of inverse diffusion to control oscillation. γ
represents a positive weight parameter, and gR is a piecewise
linear function. when gR = 1, gR is used to constrain the
extreme value of the gradient by limiting the oscillation of
the pixel gray value in each depth map to the range between
the minimum value and the maximum value.

Each evolution process produces one output. In fact,
the fusion process is the continuous convergence of the root
mean square error (RMSE) among the output values. The
termination of the convergence process can be achieved by
setting the number of iterations or calculating the distance
between the output values and comparing it with the preset
threshold.

Before using the diffusion equation in a discrete image
domain, the numerical value needs to be discretized first. The
discretization process can be carried out by calculating the
gradient first and then the divergence.

In the fusion term of (2), the discretization form used to
calculate the maximum absolute value of the gradient for the
nearest neighborhood can be expressed as

∂Ui
∂t
= −βi

[
D+x (Umax)− D−x (Umax)

]
, (4)

where

D±x (U ) = ±
U (x ± dx)− U (x)

dx
. (5)

In the regularization term of (2), the discretization form of
gR can be expressed as

gR(D+x (Ui),D
+
x (U

t=0
k ))

=



D+x (Ui)−mink
[
D+x (U

t=0
k ), 0

]
D+x (Ui)

,

if D+x (Ui) < mink
[
D+x (U

t=0
k ), 0

]
D+x (Ui)−maxk

[
D+x (U

t=0
k ), 0

]
D+x (Ui)

,

if D+x (Ui) > maxk
[
D+x (U

t=0
k ), 0

]
0, otherwise.

(6)

max±x = arg
j
max

(∣∣D±x [Uj(x)]∣∣) (7)

where max±x represents the depth map where the forward and
backward maximum difference absolute values of the current
pixel gradient are located.

β±ix =

{
0 i = max±x
β ∈ [0, 1] otherwise

(8)

D+x (Umax) − D−x (Umax) is the discretization form of
div(∇Umax) in (4). In the discretization process, the forward
and backward maximum difference absolute values max+x
and max−x of the current pixel are detected first. If max+x
or max−x exists in the current depth map, then β+ix = 0 or
β−ix = 0. Otherwise, β+ix ∈ [0, 1] or β−ix ∈ [0, 1]. Since max+x
and max−x may exist in different depth maps, βi may have two
values at the same time. The divergence can be obtained by
calculating the difference between the two values of βi.

III. PROPOSED METHOD
A. FUSING MULTIPLE PCNNs FOR DEPTH MAP
SUPER-RESOLUTION
The fusion model of FMPN is shown in Figure 2. The
FMPN model consists of two steps: 1) the super-resolution
of multiple PCNNs based on deep learning; 2) the fusion
based on PDE. In the process of super-resolution, we con-
struct a network S, and then use these PCNNs to predict the
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FIGURE 2. FMPN model with M individual PCNNs.

high-resolution results of the low-resolution depthmap. In the
fusion stage, PDE is used to continuously and frame by frame
evolve all high-resolution depth maps output by PCNNs, and
finally generate high-precision and high-resolution output.
The Adoption of Individual Network: In general, the more

layers of CNN, the higher the complexity of the network,
the better its performance, and the higher the super-resolution
accuracy, but the more network parameters need to be trained,

the more difficult training, and the higher the computation
and time complexity. However, the advent of PCNN [28]
proves that CNN can still achieve the state-of-the-art perfor-
mance through the fusion of SRCNN [22] with only three
layers and simple parameters. SRCNN can be trained on
different large training sets with random weight initialization
and fixed learning rate. Therefore, we adopt SRCNN as
the individual network in FMPN. In addition, to prove the
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performance of the proposed FMPN, we only use SRCNNs
with a fewer layer because it can achieve a high performance.

It should be noted that the inputs are the same depth map
for all PCNNs, so there is no displacement in the output of
multiple PCNNs. Therefore, it is not necessary to register
multiple depth maps before using the PDE model; therefore,
reduces the time complexity and avoids the error of registra-
tion process.

The PDE model of FMPN can be expressed as

N (αi) =
∂Up
∂t
= div(Di∇Ui)− βidiv(gF (|∇U |max)∇Umax)

+ γ div(gR(∇Ui,U t=0
k )∇Ui). (9)

It can be seen that (9) is an expanded version of (2).
Here, The training samples are {(αi, βi), i = 1, . . . ,N},
α denotes the low-resolution input, β denotes the high-
resolution output, β̂i denote the output of all PCNNs for the
ith low-resolution depth map αi, and N denotes the whole
FMPN.

Suppose that the number of PCNNNs is M , which is
denoted as

{
Sj, j = 1, . . . ,M

}
. ∂Up
∂t denotes the evolution by

PDE for depth maps output from all PCNNs, P is the output
of each PCNN, which is expressed as

P = Sj (αi) = sj2
(
sj1 (αi)

)
, (10)

where sj1 and sj2 denote two individual networks of the
jth PCNN. Since there are multiple PCNNs in FMPN, and
each PCNN may consist of individual networks with dif-
ferent layers and structures, the number of different indi-
vidual networks may be multiple and can be expressed as
{sk , k = 1, . . . ,L}.
The training process minimizes the mean absolute error of

loss function L on the sample set:

L(S) =
1
N

N∑
i=1

∣∣∣βi − β̂i∣∣∣, (11)

where N denotes the total number of samples in training
set.

In the training of FMPN, the weights of PCNNs could be
either frozen or not. If the weights of all individual networks
in FMPN are frozen, there will be no possibility and necessity
of parameter tuning and training for each PCNN. Therefore,
freezing the weights of FMPN can only choose some of
PCNNs. As described in the last paragraph of Section 2.2,
in general, the weights of one of the individual networks that
construct PCNN is frozen. So, freezing or not of PCNN in
FMPN refers to the operation to the learnable individual net-
work in PCNN. The performance changes of FMPN caused
by the freezing of weights will be analyzed and evaluated in
the experiments.

For the freezing of weights, Figure 2 (a) and Figure 2 (b)
show two FMPNs constructed by M PCNNs, respectively.
Figure 2 (a) shows the partial freezing form of the weights
of FMPN, and Figure 2 (b) is the non-freezing form. In the

training of FMPN, only the weights of the unfrozen indi-
vidual networks in each PCNN are tuned. For the frozen
PCNNs, the Sj in equation (10) will not be updated dur-
ing the FMPN training. The FMPN in Figure 2 (b) fine-
tunes both the unfrozen PCNNs and unfrozen individual
networks. This will result in different sk and Sj after the
FMPN training. In Figure 2 (a), since the first individual
network s (1) of PCNN S (1) is frozen, the weights of s (1)
is constant in the FMPN training. As the output of s (1),
the high-resolution depth map output by PCNN S (1) is also
constant.

B. TRAINING INDIVIDUAL NETWORK
We adopt the Back Propagation (BP) algorithm [30] to train
the network.

We use Middlebury [31] and NYU v2 datasets [32] for
training and testing. We choose 117 depth maps from these
two datasets as the training sample set. Among them, there
are 100 training samples and 17 test samples. In order to
make the training dataset more efficient, we expand the
total number of training samples: The initial 100 depth
maps were rotated by 90◦, 180◦ and 270◦ respectively to
obtain 400 samples. Then, image blocks were extracted from
these depth maps with a step size of 14, and 894,400 image
blocks were finally obtained as the initial input of
SRCNN.

We first train a three-layer SRCNN as the benchmark. The
purpose of training is to obtain the optimal parameter θ =
{W1, W2, W3, B1, B2, B3}, here W1 and B1 denote the filters
and biases respectively. The network structure follows the
SRCNN 9-5-5 in [22]. Where, the convolution kernel in the
first layer is 9× 9, and the convolution kernel dimension and
the number of output feature maps are both 64. The feature
map is (33-9)/1 + 1 = 25. The second and third layers have
the same convolution kernel size and dimension, which are
5 × 5 and 32, respectively. Each of these two layers outputs
32 feature maps. The feature map output from the second
layer is (25-5)/1+ 1= 21, and the feature map obtained from
the third layer is (21-5)/1 + 1 = 17. The final feature map
obtained by training is 17 × 17, so the 17 × 17 block of the
image center is used as the label data. We extend SRCNN
to a deeper network by inheriting the existing weights. For
example, when inserting three new layers with 32 3× 3 filters
into the SRCNN 9-5-5, we only randomly initialize the new
3 × 3 filter, while the existing 9 × 9 and 5 × 5 layers
are obtained by inheriting the existing weights. In this way,
we can quickly get a new 6-layer individual network SRCNN
9-5-3-3-3-5. Of course, other deeper SRCNNs can also be
generated in this way. Figure 3 gives an example of trained
deeper SRCNN.

Each inserted convolution kernel is Zero padded so that the
output feature maps have the same size. To reduce the time
consumption of training, the new extended SRCNN is only
trained to 20 epochs. Initialization of the weights is obtained
randomly from Gaussian distribution with zero mean and
standard deviation 10−3. Since the network structure is
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FIGURE 3. An extended deep-layer SRCNN.

FIGURE 4. PCNN with network structure of 3 + 5.

relatively simple and the number of layers is small, the learn-
ing rate is limited at 10−4.

C. TRAINING PCNN
For PCNN training, the training algorithm and sample set are
the same as individual networks.

We construct PCNN by combining and arranging two
trained SRCNNs in a chain order. For example, we construct
four PCNNs with network structures of 3 + 3, 3 + 5, 5
+ 3 and 5 + 5, respectively. Take 3 + 5 as an example,
3 and 5 represents the layers number of the first SRCNN
and the second SRCNN, respectively. The feature map out-
put from the first SRCNN is used as the input of the sec-
ond SRCNN. The learning rate and weights initialization of
the second SRCNN is the same as those of the first SRCNN.
The weights of the second SRCNN is frozen, so all learnable
parameters in a PCNN depend on the first SRCNN. Initializa-
tion of the PCNN is obtained randomly from Gaussian distri-
bution with zero mean and standard deviation 10−3. We use
Mean Absolute Error (MAE) between the second SRCNN
output and Ground Truth as the loss function. The training
of each PCNN will proceed 15 epochs. Figure 4 shows a
trained PCNNwith network structure of 3+ 5, that is, PCNN
(3 + 5).

IV. EXPERIMENTAL RESULTS
A. EXPERIMENT SETUP
In this section, the performance of the improved method
(FMPN) is evaluated both quantitatively and qualita-
tively with respective benchmark and state-of-the-art super-
resolution algorithms.

1) BASELINE METHODS
We compare our results with the following four categories
of the methods. 1) Interpolation-based methods: Bicubic
Interpolation (Bicubic) and Moving Least Squares Filter
(MLS) [33]; 2) Single depth map-based methods: Cross-
based Local Multipoint Filtering (CLMF) [34] and Uni-
fied Multi-lateral Filter for RGB-D Sensors (UMLC) [35];

TABLE 1. Quantitative results (PSNR(dB)/SSIM) of FMPN with different
PCNNs at 4× upsampling.

3) Color image guided methods: Joint Geodesic Filter
(JGF) [3], Edge-adaptive Non-localMeans Filter (Edge) [14],
Auto Regressive Model (AR) [16], Guided Image Filtering
(Guided) [36], and Unified Multi-lateral Filter (UML) [37];
4) Deep learning-based methods including Super-resolution
Using Very Deep Convolution Networks (VDSR) [38] and
Deeply Recursive Convolution Network (DRCN) [39]. The
results of the comparison algorithms are generated by the
authors’ codes.

2) EXPERIMENTAL DATASETS
In the quantitative analysis, we conducted experiments on the
public datasetArt, Books, Dolls, Laundry,Moebius, andRein-
deer from the Middlebury stereo datasets [31], and Books,
Shark, Devil from ToF-Mark datasets [15]. In the qualitative
analysis, we expand the datasets by using Dolls and Laundry
from the Middlebury 2005 datasets [31], Devil and Shark
from ToF-Mark datasets [15], and Playtable, Jadeplant from
Middlebury 2014 datasets [40] to evaluate the visual effects
of various methods.

3) EVALUATION METRICS
To increase the diversity and objectivity of evaluation,
PSNR and SSIM are used to evaluate the performance of
various fusion schemes of FMPN in Table 1, and MAE
is used to analyze the performance of different methods
in Table 2 -Table 3.

4) EXPERIMENTAL SCHEME
First, the high-resolution depth maps from Middlebury
datasets are carried out bi-cubic interpolation by 1/2, 1/4,
1/8, and 1/16 to obtain the low-resolution depth maps as
the input of FMPN. Then, Gaussian noise with depth infor-
mation is added to the down-sampled low-resolution depth
maps to simulate the actual acquisition process of the depth
maps. Finally, we use a trained-well FMPN to up-sample
the low-resolution depth maps by 2×, 4×, 8× and 16×,
respectively. It should be noted that for the ToF-Mark datasets
with a resolution of only 120 × 160 [15], our up-sampling
factor is consistent with the author’s 6.25×.
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TABLE 2. Quantitative upsampling results (in MAE) on noise-free middlebury datasets. Red indicates the best performance, green indicates the second
best, and blue indicates the third best.

TABLE 3. Quantitative upsampling results (in MAE) on noisy middlebury datasets. Red indicates the best performance, green indicates the second best,
and blue indicates the third best.

FIGURE 5. Quantitative results (PSNR(dB)/SSIM) of FMPN with different PCNNs at 4× upsampling.

FIGURE 6. Quantitative results (PSNR(dB)/SSIM) of FMPNs with different weights initialization at 4× upsampling.

5) EXPERIMENTAL PLATFORM
The experiments are carried out onWindows 10 64-bit operat-
ing system, using a laptop with a quad-core 2.2 GHz Intel(R)

i7-4770HQ CPU, 16 GB RAM, Intel (R) Iris (TM) Pro
Graphics 5200. The proposed method is implemented based
on MATLAB R2018a and Caffe [41]. MATLAB is used to
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FIGURE 7. Quantitative upsampling results (in MAE) on noise-free middlebury datasets at 4 upsampling
factors.

evaluate the quality of super-resolution depth maps. Caffe
is used for the construction, training and test of the neural
network.

B. QUANTITATIVE RESULTS
1) EXPERIMENTS ON DIFFERENT FUSION SCHEMES
We first evaluate the FMPNs constructed by different. fusion
schemes. Table 1 shows the comparison results of FMPNs
with different fusion schemes for upsampling with scale 4×.
The fusion scheme includes whether the weights of the SRC-
NNs are frozen or not, and different network structures. For
network structure, FMPN consists of SRCNNs with different
fusion layers, and PCNNs constructed by different SRCNNs
and their multi-permutations. It should be noted that in almost
all cases, the second SRCNN of PCNN is frozen. The "freez-
ing" in FMPN refers specifically to the freezing of the first
SRCNNs of each PCNNs. In Table 1, the SRCNNs with
frozen weight are marked in red. For example, (5 + 7) refers
to freezing the weight of the first SRCNN (with 5 layers)
in PCNN. Generally, as the weight of the second SRCNN is
frozen by default, the second SRCNN (with 7 layers) is not
marked in red.

In Table 1, we notice that the performance of the FMPNs
with unfrozen weight are better than that of the FMPNs
with frozen weight under the same network structure. For
the FMPNs with frozen weight, (3 + 3) + (3 + 5) + (5
+ 7) perform better compared to (3 + 3) + (3 + 5) +
(5 + 7). This is because the SRCNN with more layers has

more weights, so its performance is more affected by the
freezing.

For different network structures, it can be seen that the
accuracy of. SRCNN increases by using more layers. The
accuracy of individual SRCNN with more layers is higher
compared to PCNNwith fewer layers. For example, the accu-
racy of individual 7-layer SRCNN is higher than that of
PCNN 3 + 3. This is the motivation of PCNN fusion in this
paper. It could be seen that FMPN ((3 + 5) + (5 + 7) +
(7 + 9)) and FMPN ((5 + 7) + (7 + 9)) perform better
compared to individual PCNN (7 + 9). FMPN ((3 + 3) +
(3 + 5) + (5 + 7)) and FMPN ((3 + 5) + (5 + 7) + (7
+ 9)) perform still better compared to FMPN ((3 + 5) +
(5 + 7)) and FMPN ((5 + 7) + (7 + 9)), respectively. This
indicates that using more PCNNsmight increase the accuracy
of FMPN. We also find that the accuracy of FMPN ((3 +
3) + (3 + 5) + (5 + 7)) is lower than FMPN ((3 + 5)
+ (5 + 7) + (7 + 9)), and the accuracy of FMPN ((3 +
5) + (5 + 7) + (7 + 9)) is lower than FMPN ((7 + 9) +
(9 + 11) + (9 + 13)). This implies that the deeper layers
of PCNN we use for FMPN, the better accuracy we may
get.

By comparing FMPN ((3 + 5) + (5 + 7) + (7 + 9))
and FMPN ((3 + 5) + (5 + 7) + (7 + 9)), it can be seen
that learning by completely freezing the weights of PCNNs
may improve the PSNR 0.15dB and SSIM 0.005 for unfrozen
FMPN. If we fine-tune the whole network without freezing
the weights of the first SRCNNs of the PCNNs, the gain
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FIGURE 8. Quantitative upsampling results (in MAE) on noisy middlebury datasets at 4 upsampling factors.

will increase to more than 0.3dB PSNR and 0.01 SSIM. This
shows the effectiveness of FMPN fusion.

Figure 5 intuitively shows the comparison results of
FMPNs with different fusion schemes with 4× upsampling
factor.

Moreover, we test the FMPNs with different weight initial-
ization. In Figure 6, it could be seen that both of the FMPN
((3 + 3) + (3 + 5) + (5 + 7)) and the FMPN ((3 + 5)
+ (5 + 7) + (7 + 9)) trained from unsupervised. weights
perform much worse compared to the corresponding FMPNs
fine-tuned from existing networks. Due to the unsupervised
weights initialization, for FMPNs, the convergence will be
more difficult than the way of inheriting the weights from
individual PCNNs.

2) COMPARISON TO THE STATE-OF-THE-ART
a: EXPERIMENTS ON MIDDLEBURY DATABASES [31]
In Table 2 and Table 3, we compare the FMPN with other
11 kinds of the state-of-the-art methods by upsampling at four
different factors (2×, 4×, 8×, and 16×) on noise-free and
noisy Middlebury databases [31], respectively. Red indicates
the best performance, green indicates the second best, and
blue indicates the third best. In the two tables, the FMPN is
constructed by three PCNNs whose layers are (3 + 5), (5 +
7) and (7 + 9) respectively.

FIGURE 9. Quantitative upsampling results (in MAE) with scale 6.25× on
the ToF-Mark datasets [15].

From the two tables, we can see that the accuracy of FMPN
((3+ 5)+ (5+ 7)+ (7+ 9)) outperforms the other methods
in most cases at four upsampling factors. However, in a few
cases, the results of FMPN are slightly worse than other meth-
ods such as DRCN [39]. For example, in Table 2, the MAE
results of FMPN at the 2× scale on Reindeer and at the
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FIGURE 10. Visual comparison of upsampling noise-free data set Devil (scaling factor = 6.25).

4× scale on Laundry are 0.17 and 0.29 respectively, slightly
higher than the 0.16 and 0.28 of DRCN [39]. In Table 3,
the MAE results of FMPN at the 8× scale on Laundry and
at the 4× scale on Moebius are 1.28 and 0.69 respectively,
slightly higher than the 1.25 and 0.67 of DRCN [39]. This is
because the number of Convolution layers used inDRCN [39]
is much higher than that of the FMPN. But for the average of
the six datasets tested, the FMPN achieved the lowestMAE in
all cases and performed best. This proves the effectiveness of
the FMPN in the super-resolution of depth map and its good
performance in noise suppression.

As summary, compared with other deeper networks,
the network size of the FMPN is relatively small, showing
better performance in various metrics. The FMPN ((3 +
5) + (5 + 7) + (7 + 9)) consists of 172,320 unfrozen
parameters, which is still smaller than VDSR [38] (20 lay-
ers, 650K + parameters) and DRCN [39]. On single Iris
Pro Graphics 5200 GPU, it takes about 0.05-0.09ms per
image in average, which is less than VDSR [38] and
DRCN [39].

Figure 7 and Figure 8 show theMAE results corresponding
to Table 2 and Table 3 more intuitively.

b: EXPERIMENTS ON ToF-MARK DATASETS [15]
In addition, the FMPN is assessed on TOF-Mark dataset [15],
which contained three data sets, Books, Shark andDevil, cap-
tured by the ToF sensors. The resolution of the original depth
maps is 120 × 160. The upsampling factor is approximately
6.25×. The FMPN is compared with eleven state-of-the-art
methods: DRCN [39], VDSR [38], TGV [15], Edge [14],
JGF [3], MLS [33], AR [16], Bicubic, and Markov Random
Field (MRF) [12], The Generalized Variation (TGV) [15],
Fast Interpolation (FGI) [19]. Figure 9 shows the results of
quantitative comparison. It can be observed that the FMPN

achieves the minimum MAE results in all cases, and its
overall performance is the best.

C. QUALITATIVE RESULTS
We evaluate the FMPN visually by upsampling the noise-free
and noisy datasets at three upsampling factors (i.e.,
6.25×, 8×, 16×). The comparison results are shown
in Figure10-Figure15. These datasets include Dolls and
Laundry in the Middlebury 2005 datasets [31], Playtable and
Jadeplant in the Middlebury 2014 datasets [40], and Devil
and Shark in the ToF-Mark datasets [15].

1) EXPERIMENTS UNDER NOISE-FREE CONDITIONS
Figure 10-Figure12 show the results of the super-resolution
on the noise-free datasets.

As can be seen from Figure 10, the results of JGF [3] have
the most serious blurring depth edges, which indicates that
its edge-preserving performance is the lowest. The results of
Bicubic, Edge [14], FGI [19] and TGV [15], also present cer-
tain level of blurring depth edges and texture-copy artifacts.
The results of MLS [33] and MRF [12] are slightly more
desirable than the afore mentioned ones while the results
of AR [16], VDSR [38], DRCN [39] and FMPN are most
appealing. Especially, in edge areas, FMPN demonstrated the
closest to Ground Truth and therefore proves its effectiveness
in depth map super-resolution.

In Figure 11, the visual effects generated by all methods
decreases, when the up-sampling multiple rises from 6.25×
to 8×, Bicubic shows the worst visual effect. Guided suf-
fers remarkable blurring depth edges and texture-copy arti-
facts. In addition, we noted that artifacts exist in MLS [33],
CLMF [34], UML [37], UMLC [35] and JGF [3] to some
degree. Edge [14] displays less artifacts than VDSR [38].
Both AR [16] and DRCN [39] show sharp edges yet with a
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FIGURE 11. Visual comparison of upsampling noise-free data set Laundry (scaling factor = 8).

FIGURE 12. Visual comparison of upsampling noise-free data set Playtable (scaling factor = 16).

few artifacts. However, the boundaries in FMPN are generally
smoother and sharper along the edge direction resulted from
its PDE fusion process.

When the upsamplingmultiple increases to 16×, the super-
resolution process for depth maps usually becomes difficult,
because the super-resolution of this multiple has to expand
from 1 pixel to 256 pixels (i.e., 16 × 16 = 256). How-
ever, the experimental results in Figure 12 demonstrate that
despite the apparent edge blurring of other methods FMPN
displays relatively clear edges and rich details. For example,
the four methods (i.e. Bicubic, Guided [36], CLMF [34] and
UML [37]) all indicate obvious texture-copy artifacts and
notable jagging artifacts. UMLC [35], MLS [33], Edge [14]

and JGF [3] suppress texture copying but still suffer from
blurry edge.While VDSR [38], AR [16] and DRCN [39] gen-
erate more visual appealing results than their peers, FMPN
demonstrated its capacity of producing the sharpest result
without jagging artifacts and preserving the rich details of the
scene in regions with fine structures.

2) EXPERIMENTS UNDER NOISY CONDITIONS
To further demonstrate the effectiveness of the FMPN,
we also carried out experiments on noisy data sets, and the
visualization results are shown in Figure13-Figure15. The
three data sets Shark, Dolls, and Jadeplant used in the test
were all added with depth-based Gaussian noise. The noise
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FIGURE 13. Visual comparison of upsampling noisy data set Shark (scaling factor = 6.25).

FIGURE 14. Visual comparison of upsampling noisy data set Dolls (scaling factor = 8).

adding process adopts the method provided by [13]: η(x) =
N
(
0, σ (x)−1

)
, where σ = 651, and x is the depth value of

each voxel in the low-resolution depth map used for testing.
Figure13 reveals that there are still much noises in the

results of JGF [3], Bicubic, Guided [36],MLS [33],MRF [12]
and Edge [14], evidenced with blurring edges, texture-copy
artifacts or jagging artifacts to some degree. It indicates that
the denoising capacity of these methods are limited FGI [19]
and TGV [15] produce clearer results, but with some obvious
edge discontinuities. VDSR [38], AR [16] and DRCN [39]
provide comparable results to FMPN in denoising, but can-
not eliminate texture-copy artifacts and blurring depth edges
either. In contrast, the FMPN achieves the best visual result
without visible noise.

For data set Dolls that has complex edge structure and
rich texture details, with strong depth discontinuity in the
edge region, it can be challenging for super-resolution.
Figure14 presents visual comparison results for depth map
‘‘Dolls’’. The results of Bicubic, MLS [33], and JGF [3]
contain visible noise due to their limited denoising capacity.
Edge [14] performs poorly in edge-preserving, evidenced by
the serious blurry artifacts shown on the top of the pony’s
ear highlighted in the green square. VDSR [38], AR [16] and
DRCN [39] demonstrated their denoise capacity similar to
FMPN, but they are incapable eliminating artifacts and abol-
ishing discontinuities. In contrast, the FMPN can effectively
remove noise, generate complex details, and achieve the best
visual result closest to the Ground Truth.
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FIGURE 15. Visual comparison of upsampling noisy data set Jadeplant (scaling factor = 16).

TABLE 4. Average running time comparison (seconds).

For larger super-resolution ratios, such as 16×, it is often a
challenge to recover the high-resolution details, especially for
noisy depth maps as mentioned before. We present the visual
comparison results for this case in Figure15 which shows that
only VDSR [38] and DRCN [39] demonstrated competitive
visual effects as well as FMPN. Bicubic, CLMF [34], JGF [3],
UML [37], and MLS [33] still contain a considerable amount
of noise, severe texture-copy artifacts, and blurring depth
edges. FMPN achieves the best visual result by providing
the best performance in mitigating texture-copy artifacts and
preserving depth edges. This benefits from its PDE-based
fusion process Firstly, a part of the noise is removed by super-
resolution, then the remaining noise is effectively eliminated
through the diffusion process in PDE, and the detailed fea-
tures of depth maps output by all PCNNs are further inte-
grated through the fusion process of PDE.

D. AVERAGE RUNNING TIME COMPARISON
We perform our experiments on a laptop proposed in Part A
of Section IV. The proposed method is implemented based on
Matlab and C++ code.
Table 4 shows the average running time in seconds of dif-

ferent methods with 2× upsampling factor on theMiddlebury
and the ToF-Mark datasets. TGV [15] and DRCN [39] take
more than 4,000 seconds and 15,000 seconds respectively.
Guided [36] takes the least time except for Bicubic. The
average running time of FMPN is between Edge [14] and
AR [16]. Although the performance ofVDSR [38] and FMPN

is similar, the time consumption of VDSR [38] is much more
than that of FMPN.

V. CONCLUSION
In this paper, we present a novel depth map super-resolution
method based on fusion of multiple Convolution neural net-
works. The key contributions are two-folds. The first one
is to adopt the progressive learning and deep supervision to
efficiently carry out the super-resolution of the noisy depth
map at the large upsampling factors. The second one is to use
the PDE-based fusion process integrating all output details
of the progressive Convolution neural networks and further
removing the noise, so as to realizing the high-precision
output of the network with simple structure. To verify the
proposed method, enough experiments on the Middlebury
and ToF-Mark datasets for depth map super-resolution are
carried out. We discussed various fusion schemes of the
proposed method and compared it with the SRCNNs, PCNNs
within different network structures, benchmark and the state-
of-the-art methods. The experimental results prove the pro-
posed network fusion schemes are obviously superior to other
individual networks in PSNR and SSIM and can achieve the
best subjective and objective results by comparing it with
state-of-the-art methods.
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