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ABSTRACT In business process collaboration (BPC), especially when it comes to message communication
and data exchange, there are complex data dependencies among sender process, receiver process and
messages. However, each participant of the overall BPC develops its part independently as a service,
including its own communication part and data flow. As a result, data flow errors across processes may
occur easily. In this article, we propose a method based on BPMN to detect these errors caused by data
dependency violations. Our method is inspired by the study of detecting data flow errors within a single
process and focuses on a subset of the elements of the BPC model, without having to consider the complete
set. In particular, we define a set of data flow error patterns by analyzing and formalizing data dependencies
in order to clearly clarify and identify errors. Then we give the corresponding automatic detection algorithm.
Finally, through two evaluations, we demonstrate the effectiveness of our proposal.

INDEX TERMS Business process management, business process collaboration, data flow error across
processes, data dependency.

I. INTRODUCTION
With the development of business globalization, business pro-
cess collaboration (BPC) among organizations has become
more and more complex and frequent [1]. Meanwhile,
the booming of BPaaS (Business Process as a Service)
has facilitated the development and deployment of such
service-based BPC [2]. In this context, it is important to
ensure andmaintain the soundness of BPC involvingmultiple
participants.

In general, the soundness of data flow, like that of control
flow, is a fundamental requirement of BPC [3]. Besides the
soundness of data flow within each private (local) process,
the BPC requires that the data flow across processes is
sound. In fact, BPC enables multiple processes to cooperate
and interact with each other to achieve shared goals [4].
To ensure successful collaboration, clear message commu-
nication and data exchange are required between processes.
Thus, an error-free data flow across processes plays a crucial
role. However, since each participant in BPC independently
designs its own communication part and data flow, data flow
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errors across processes caused by data dependency violations
are easy to occur.

To address the above issue, several methods have been
proposed to consider data flows across processes in BPC
[4]–[7]. However, less attention has been paid to providing
the formalization of data flow errors across processes, which
affects the identification and detection of errors. Indeed, when
detecting data flow errors, semi-formal definitions, user-
provided definitions, and natural text descriptions sometimes
contain misleading information, which may become more
serious in BPC context because different participants might
have different understandings of errors. In addition, although
some studies have proposed corresponding formalizations to
clarify and detect data flow errors within a single process
(e.g., Missing Data, Redundant Data, Lost Data [8]–[10]),
they do not consider the data related to messages, and can-
not support the message communication and data exchange
across processes that BPC needs to cover.

In this article, we propose a formal method based on
BPMN to detect data flow errors across processes in BPC.
Our method draws on the ideas from both detecting data flow
errors within a single process [8] and TraDE [11], [12]. The
former describes the data dependencies among nodes within
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FIGURE 1. The collaboration model of the Booking Travel example. Each participant in BPC independently designs its
own communication part and data flow (the Customer and Travel Agency are invisible to each other). Meanwhile,
the exchanged data (right side) among the sender, receiver and messages (left side) is manually added and
maintained by participants. In this context, the definition, use, and delivery of exchanged data is an error-prone task.
Thus, it is necessary to provide a unified formalization for data flow errors across processes and accurately detect
them.

a single process based on operational data specification (read
and write operations), which inspires us to further analyze
data dependencies across processes and formalize data flow
error patterns across processes. The latter provides a data
modelingway that unifies the data flow across andwithin pro-
cesses, which makes the exchanged data open in the form of
data contract agreed by all participants and easy to share and
access in BPC.With these in mind, the key to detect data flow
errors across processes is to check whether the exchanged
data is accurately defined, used and passed in processes and
messages, so as to ensure that the data dependencies among
the sender, receiver and messages are not violated.

In summary, we make three primary contributions:
(1) We propose a formal method to detect data flow

errors across processes, which is mainly applicable to
message communication and data exchange in BPC.
It focuses on a subset of the elements of the BPC
model (e.g., sending/receiving nodes, messages, and
exchanged data), without having to consider the com-
plete set.

(2) We define a set of data flow error patterns across pro-
cesses and a corresponding automatic detection algo-
rithm. Especially in BPC context, unified and formal
definitions can not only clearly clarify and identify
errors, but also avoid deviations in participants’ under-
standing of data flow errors.

(3) We conduct two evaluations with two collaboration
model sets (8 and 33 models, respectively) to illustrate
the effectiveness of our proposal, including a bench-
mark evaluation and a comparative evaluation.

The rest of this article is organized as follows.
Section 2 provides an example throughout the paper to

illustrate our motivations. Section 3 presents the defini-
tions related to our method. Section 4 analyzes the data
dependencies in BPC and formalizes them. Section 5 pro-
poses the definitions of data flow error patterns and cor-
responding detection algorithm. After two evaluations are
reported in Section 6, Section 7 outlines the related work and
Section 8 summarizes this article.

II. A MOTIVATING EXAMPLE
To further illustrate our motivations, we introduce a BPC
example of Booking Travel used throughout the paper. This
example is adapted from [13] and consists of two participants:
Customer and Travel Agency (TA). It allows these participants
to collaboratively complete business matters related to book-
ing travel. The BPC example represented by a BPMN collab-
oration model and the exchanged data are shown in Figure 1.
In order to simplify the model and data flow, we present the
input and output of each node in the form of data object
collections and data associations.

Initially, the customer requests a travel offer from the travel
agency according to the travel period, departure and desti-
nation information. When the offer is received, the customer
begins to evaluate. If the evaluation is to reject, customer
informs the travel agency of the reason, otherwise it will
send a confirmation to the travel agency. Finally, the customer
receives the itinerary. Likewise, when a travel request is
received, the travel agency will make the offer, including the
hotel, flight and quote, and then send the offer to the customer.
After that, collaboration will depend on the message from the
customer. If a rejection from the customer is received, the col-
laboration will end, otherwise it will send the itinerary to
the customer. All the above data items need to be exchanged
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between participants throughmessages, and they are regarded
as exchanged data and presented in a global data contract by
TraDE.

In this scenario, accurate message communication and data
exchange are critical for successful collaboration. In fact,
BPMN standard provides the concept of correlation (see
Definition 3 in Section 3) to allow messages to be correlated
to appropriate participant instances. Thus, on the one side,
the sender first specifies the content data of the message,
and appends the specific correlation data to the message,
then passes the message to the receiver in the form of mes-
sage flows. On the other side, the receiver first matches the
correlation data of the message to receive the message, and
then extracts the content data to the predefined data objects
[4]. In this context, the exchanged data has to be accurately
defined, used and passed among sender, receiver and mes-
sages. That is to say, these three aspects have to satisfy the
necessary data dependencies to send or receive messages.

However, the definition, use, and delivery of exchanged
data is still an error-prone task for participants. Indeed, each
participant of the overall BPC develops its part independently
as a service, including its own communication part and data
flow. The exchanged data involving sender, receiver and mes-
sages is manually added and maintained by participants. As a
result, it is easy to cause data dependency violations during
collaboration and interaction, resulting in data flow errors
across processes.

For example, in Figure 1, if the Customer process does not
defineD2 into the input data of node 1 (i.e.,D2(Departure) is
not available in node 1), then node 1 will not be able to meet
the data required to send the Travel Info message because
the message has been defined to contain D1, D2, D3, etc.
Conversely, if the Travel agency process does not define D3
into the output data of node 10, then it will not able to receive
the Travel Info message because node 10 cannot extract D3
from Travel Info message to its output data and D3 will be
regarded as undefined in the travel agency process.

III. PRELIMINARIES
In this section, we present several definitions related to our
method, some of which are extended from BPMN [14],
highlighting data and message communication. Meanwhile,
we introduce some auxiliary functions to facilitate the subse-
quent data flow processing.
Definition 1 (Business Process, BP): Generally, a business

process describes a sequence of activities in an organization
with the goal of carrying out work. Here, we describe the
process simply as a 3-tuple BP = (G, Input, Output):

(1) G: a process is depicted as a graph (N , E), where
N = NA

∪ NE
∪ NG is a set of nodes that represents

Activities (NA) Events (NE ) and Gateways (NG); and
E ⊆ (N×N ) is a set of directed edges (sequence flows)
that define sequential relation between nodes.

(2) Input, Output: N → 2D are functions that assign input
and output data items to nodes in N , where D is the set

of data items defined or used in BP, and 2D refers to
the power set of D.

Here, we use Definition 1 to represent a business process,
where (1) is adapted from the BPMN standard, while (2) high-
lights the input and output data of nodes. In addition, we intro-
duce an auxiliary function Send(BP) (resp. Receive(BP)) to
obtain the set of nodes that sends (resp. receives) messages in
BP. Moreover, we assume that each sending (resp. receiving)
node can only send (resp. receive) one message.
Definition 2 (Message, M):M is a set of all messages pre-

senting the content of all potential communication between
processes within a BPC.

Definition 2 is derived from the BPMN standard. A mes-
sage represents the content of a communication between two
processes. The auxiliary function ContentData: M → 2D

assigns the content data to the messages.
Definition 3 (Correlation): Correlation is used to associate

a particular message to an ongoing conversation between two
particular process instances.

Specifically, the concept of Correlation describes a set of
data items on a message that need to be satisfied in order
for that message to be associated to a particular sending
or receiving node [14]. In addition, the auxiliary function
CorrelationData: M → 2D assigns the correlation data to
the messages. Note that, BPMN standard allows the content
data of messages to be used for correlation purposes, and
in this article, we also support other data to be used for the
correlation data of messages. In short, according to Defini-
tion 2 and 3, a message m contains not only content data, but
also correlation data.
Definition 4 (Business Process Collaboration, BPC): A

BPC is a composition of multiple processes, in which pro-
cesses can collaborate and interact with each other in the way
of message communication.

(1) Structure: BPC = BP0 || . . . || BP|BPC|−1, where ‘||’
represents a parallel operator, |BPC| represents the
number of BPs in the BPC.

(2) Message communication relation 1 ⊆ Ns ×M × Nr:
let δ = (ns, m, nr) ∈ 1, where u_1(δ) = ns ∈
Send(BPi), u_2(δ) = m ∈ M, and u_3(δ) = nr ∈
Receive(BPj), i 6= j, BPi, BPj ∈ BPC.

(3) Exchanged data (ED): ED ⊆ ∪i<|BPC|Di, where Di is
the set of data items defined or used in BPi.

In this definition, (1) shows that BPC is composed of
several BPs, which are parallel in the form of composition.
This means that BPC is a modular and loose structure, which
is convenient for composition and configuration on demand.
(2) specifies message communication relation between pro-
cesses, which is characterized by the sending node, receiving
node and messages. Note that, we use the classical projection
function u_i to represent the i-th entry of such a triple in 1.
(3) represents data that need to be exchanged between pro-
cesses. It indicates a common, consolidated and agreed set of
data items representing a data contract between participating
processes [11], [12].
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In addition, in order to facilitate the processing of mes-
sages corresponding to nodes, we give the auxiliary function
Rmsg(nr ) = {u_2(δ)|δ ∈ 1, and u_3(δ) = nr} to repre-
sent the message m received by node nr . Similarly, function
Smsg(ns) = {u_2(δ)|δ ∈ 1, and u_1(δ) = ns} represents the
message sent by node ns.
Note that, since we focus on data flow errors across pro-

cesses, we mainly care about exchanged data, while ignor-
ing the data irrelevant to message communication within
the process. Meanwhile, we give two assumptions to avoid
ambiguity. One is to assume that there is no control flow error
in BPC. The other is to assume that there is no data flow error
inside a single process in BPC.

IV. DATA DEPENDENCIES IN BPC
In this section, we first analyze the data dependencies
between processes and messages. Then, we introduce a data
model and a set of properties to formalize data dependencies.

A. DATA DEPENDENCIES
Data dependencies are derived from the data specification.
The operational data specification in this article is based on
the literature [8] (see (1)), while considering the message
communication and data exchange requirements in BPC,
as shown in (2).

(1) In a BP, a data item has to be defined before it can be
used. When node n reads a data item di, di is part of
its input data, meaning that it is used by node n. When
node n performs awrite operation on di, di is the part of
its output data, meaning that it is defined or redefined
by node n.

(2) In a BPC, each BP also needs to consider the impact
of external data flows, that is, the data flows related to
messages.
(2.1) Between receiving nodes and messages: when
receiving a message, the node needs to go through
two steps. Firstly (matching step), it has to accurately
define input data to match the correlation data of
message. Secondly (transformation step), it has to
accurately define output data where the content
data of message should be extracted to. According to
(1), data needs to be defined or redefined. The receiv-
ing node has to extract the content data of message
to its output data (i.e., write operation). Otherwise,
the data will be considered undefined and cannot be
used by the receiver.
(2.2) Between sending nodes and messages: when
sending a message, the node has to accurately define
input data and message related data, so that the
available input data can match (fill in) the content
and related data of the message.Otherwise, the mes-
sage cannot be sent due to the lack of necessary data.
(2.3) Between messages and processes: the corre-
lation data of all messages received by the same
process are not empty. Indeed, many instances of a

particular process may typically run in parallel [14],
if the correlation data of the messages is empty, any
process instance can match it, resulting in message
confusion.

Note that in some simple scenarios, (2.3) is optional, but
considering the complexity of data flow design and mainte-
nance, and the relative independence of multiple participants
in BPC, we consider it mandatory from a unified and more
strict perspective.

B. DATA MODEL AND PROPERTIES
The data model is applied to each process node. It not only
intuitively shows the input and output data of nodes within
the process, but also explicitly captures the data flows related
to messages.
Definition 5 (Data Model): A data model of node n is a

4-tuple DM = (Input, Output, ContentSet, CorrelationSet):

(1) Input: the input data of node n
(2) Output: the output data of node n
(3) ContentSet: the content data of the message associated

with node n
(4) CorrelationSet: the correlation data of the message

associated with node n

Specifically, Input(n) and Output(n) are defined in Defini-
tion 1, while ContentSet(n) and CorrelationSet(n) are derived
from Definition 2, 3, that is to say:
If n ∈ Send(BP), then ContentSet(n) = Content-

Data (Smsg(n)), and CorrelationSet(n) = CorrelationData
(Smsg(n))
If n ∈ Receive(BP), then ContentSet(n) = ContentData

(Rmsg(n)), and CorrelationSet(n) = CorrelationData
(Rmsg(n))
To better understanding of data model, Figure 2 shows

the fragment of the data model applied to Booking Travel
example.Meanwhile, the complete datamodel information of
this example is shown in Table 1. Note that all four constituent
elements of the data model are optional. For example, the data
model of node 2 is not empty, while that of node 13 is empty.
In particular, a data based XOR gateway (node 4) usually has
only input data to decide which branch to take.
In Figure 2, the task of node 1 (Send Travel Request ∈

Send(Customer)) is to send a message to travel agency pro-
cess. It uses the data items of Input(1) to fill in the content
data (ContentSet(1)) and correlation data (CorrelationSet(1)).
Then, the Node 2 (Receive Offer ∈ Receive(Customer))
receives a message from travel agency process. It uses the
data items of Input(2) to match the correlation data (Cor-
relationSet(2)), which determines whether it can receive the
message.When themessage is successfullymatched, the con-
tent data (ContentSet(2)) is extracted to Output(2). Node 3
does not involve sending or receiving message, so it has only
Input(3) and Output(3), while its ContentSet(3) and Correla-
tionSet(3) are empty.
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TABLE 1. Complete data model information for Booking Travel example.

According to data dependencies analyzed in 4.1, we can
give the following properties that need to be satisfied in
collaboration with the help of data model.
Property 1 (Corresponding to Section 4.1 (2.2)):

If n ∈ Send(BP), then Input(n) ⊇ (ContentSet(n)∪
CorrelationSet(n))

Property 1 specifies the condition that has to be met
between the sending nodes and the messages, i.e., the data
dependencies between input data and message-related data
(content data and correlation data).
Property 2 (Corresponding to Section 4.1 (2.1)): If

n ∈ Receive(BP), then (Input(n) ⊇ CorrelationSet(n)) ∧
(Output(n) ⊇ ContentSet(n))

Property 2 specifies the condition that has to be met
between the receiving nodes and the messages, i.e., the data
dependencies between input data and correlation data, as well
as the data dependencies between output data and content
data.
Property 3 (Corresponding to Section 4.1 (2.3)):

If BP ∈ BPC, then ∀m ∈ ∪n∈Receive(BP) Rmsg(n):
CorrelationData(m) 6= ∅

Property 3 specifies the data dependencies that all mes-
sages received by a process must comply with.

V. DETECTING DATA FLOW ERRORS IN BPC
In this section, we formally define a set of data flow error
patterns across processes.Moreover, we propose an algorithm
to detect them automatically.

A. DEFINITIONS OF DATA FLOW ERROR PATTERNS
Definition 6 (Unable to Send Message in BPC, USMB): In
process BP of BPC, node n involves a USMB if its input
data is not accurately defined, it cannot fill in the content data
and correlation data of the message it sends. More formally,

in process BP of BPC, node n involves a USMB if the
following holds:

n ∈ Send(BP) ∧ (Input(n) 6⊇ (ContentSet(n)

∪CorrelationSet(n)))

For example, in node 12 (see Figure 1), the travel agency
sends the offer to the customer through the Offer message.
The correlation data specified in the message containsD0-D3
(see Table 1). However, if the D0 is not defined in the input
data of node 12, it will not be able to fill in the correlation
data. As a result, the message could not be sent. Similarly,
if the content data of the Offer message contains D4 in
addition to D5, D6 and D7, node 12 is also unable to send
the message because D4 is not defined in Input (12). In short,
this error conflicts with Property 1.
Definition 7 (Unable to Receive Message in BPC, URMB):

In process BP of BPC, node n involves a URMB if its input
data is not accurately defined, it cannot match the correlation
data of the message it receives, or its output data is not
accurately defined, then it cannot extract the content data of
the message it receives. More formally, a process BP of BPC,
node n involves a URMB if the following holds:

n ∈ Receive(BP) ∧ ((Input(n)

6⊇ CorrelationSet(n)) ∨ (Output(n) 6⊇ ContentSet(n)))

For example, in node 2 of Customer process, the customer
receives an offer from the travel agency. The correlation data
specified in theOffermessage areD0-D3. However, ifD0-D3
are not defined in Input(2), or one of them is missing, node 2
cannot match the message. Similarly, if there isD2 in the con-
tent data of theOffermessage, node 2 cannot receive the mes-
sage because D2 is not defined in Output(2), that is, the node
2 cannot properly extract the content data of the message to
its output data. In short, this error conflicts with Property 2.
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Definition 8 (Unable to Match Correct Message in BPC,
UMCMB): A process BP involves a UMCMB if at least
one of the messages received by BP has no correlation data.
More formally, process BP in BPC involves a UMCMB if the
following holds:

∃m ∈ ∪n∈Receive(BP)Rmsg(n) : CorrelationData(m) = ∅

For example, according to BPMN standard, many
instances of a particular process will typically run in parallel.
Correlation is used to associate a particular message to a par-
ticular process instance. Specifically, there may be multiple
instances of both theCustomer process and the Travel Agency
process running at the same time. If the correlation data of a
message is empty, any receiver process instance can match it,
resulting in message confusion. In short, this error conflicts
with Property 3.

B. ALGORITHM FOR DETECTING DATA FLOW ERRORS
According to the above definitions and properties, we pro-
pose an algorithm to automatically detect data flow errors.
Here, we take the detecting USMB as an example for
algorithm analysis, while the complete algorithm, covering
detecting URMB and UMCMB, is similar to the former, and
is shown in the form of appendix in [15].

Part 1 of algorithm is presented to detect all nodes with
USMB error. Its core is to use Property 1 and Definition 6 to
detect the sending nodes. It determines whether the node
has accurately defined its input data to be able to fill in the
content data and correlation data of the message. Specifically,
for each process, Part 1 of algorithm first finds all sending
nodes. Then, it counts the content data and correlation data
of message related to the node. Finally, it determines whether
the node satisfies the Definition 6.

Part 1 of Algorithm Detecting Data Flow Errors-USMB
Input info: BPC
Output info: OutNodeSet /∗The set of nodes with USMB

error∗/
1: OutNodeSet← ∅
2: for each BP ∈ BPC do
3: for each node n ∈ Send(BP) do /∗According to
Definition 6∗/
4: ContentSet(n) = ∪m∈Smsg(n) ContentData(m),
5: CorrelationSet(n)=∪m∈Smsg(n) CorrelationData(m)
6: if Input(n) 6⊇ (ContentSet(n) ∪ CorrelationSet(n))

then
7: OutNodeSet← OutNodeSet ∪ {n}
8: end if
9: end for
10: end for
11: return OutNodeSet

Next, we briefly analyze the time complexity of Part 1 of
algorithm. Suppose a BPC has |BPC| processes, each of
which contains |N| nodes and |D| data items. Part 1 needs

to obtain sending nodes and corresponding data items in each
process. Therefore, in the worst case, its time complexity is
O(|BPC| × |N| × |D|).

VI. EVALUATION
In this section, we report two evaluations. The first evalu-
ation, as a benchmark study, explores whether our method
can correctly detect data flow errors and whether it causes
misdiagnoses. The second evaluation, as a comparative study,
compares our method with the latest methods in accuracy and
performance when given the same data set. All evaluations
have been carried out on a PC running Windows 10 (64 bits),
and it has a 3.00 GHz processor and 8 G RAM.

A. BENCHMARK EVALUATION
This evaluation consists of three stages from designing a set
of collaboration models with data items, adding data flow
errors into some of collaborationmodels, to conducting a user
experiment for modeling data in collaboration models. The
stage 1 serves as the basis for subsequent stages, while the
stage 2 and stage 3 are used to obtain the test models and
illustrate the effectiveness of our method.

In stage 1, we invite experts and our partners to design col-
laboration models for five scenarios, namely Booking Travel
(S1), Crowdsourcing (S2), Paper Review (S3), Pastry Cook
(S4) and Online Education (S5). These scenarios are adapted
from existing literature [13], BPMN example library [14] as
well as real-world business cases from our partners. These
models use a lot of data information. To reduce unnecessary
interferences, we have confirmed in advance that they have
no data flow errors and control flow errors (all of them are
available in [15]).

In fact, in order to obtain collaboration models, we first
planned to select models from publicly available model
libraries as benchmark, such as BPMN example library.
Unfortunately, only a small fraction of the models contains
data items. Moreover, many models still have problems such
as lack of necessary data annotations, unclear data identifica-
tions, and even control flow errors. To deal with this problem,
we invited the experts and our partners to provide the above
collaboration models. These models come from different
areas and case libraries, which can reflect the diversity and
realistic complexity of collaboration scenarios.

In stage 2, we ask experts and our partners to add data flow
errors to some collaboration models (6 errors in total, 2 in
S1.2, 2 in S3.2, and the rest in S4.2), while other models (S2.1
and S5.1) do not add errors, as shown in Table 2. In this way,
we obtain a set of models (8 in total) that covers all the error
patterns we defined.

In stage 3, we conduct a user experiment to get a set
of collaboration models that might have data flow errors
to further evaluate our method. Unlike the stage 2, we do
not know the possible errors in the models in advance, thus
this provides us the opportunity to analyze data flow errors
using statistics. The experiment involves 30 graduate students
with BPMN modeling knowledge, including data aspect.

VOLUME 8, 2020 170867



T. Xiong et al.: Detecting Data Flow Errors Across Processes in Business Process Collaboration

TABLE 2. Statistics of collaboration models in stage 2. Sx.1 means the
original model without data flow errors for scenario Sx, any other Sx.n
represents the n-th variant of a model with errors.

Specifically, we describe the 5 models obtained from stage
1 and data specifications in the form of text, so that partici-
pants can model the data flow for these models. We remove
the data items from the models and assign the models to
different groups (6 participants per group). All participants
are required to independently complete the data modeling of
a given model and, if necessary, allow them to modify the
model.

Finally, we obtain 33 collaboration models with data items
in stage 3, in which some participants provide multiple vari-
ants of the same model. These models differ in the number
of exchanged data and elements (e.g., communication nodes
and gateways) because the models have been modified by
the participants as appropriate. Moreover, we manually check
whether these models have data flow errors. In the end,
we find a total of 29 errors, including 9 USMB, 14 URMB
and 6 UMCMB. This can be regarded as the gold standard
for evaluating our method. Due to space limitation, complete
model statistics are displayed in [15], while refined statistics
are shown in Tables 3.

TABLE 3. Statistics of the data flow errors in the 33 collaboration models.

Results: We firstly evaluate our method using the models
obtained in stage 2 and count the corresponding results. The
evaluation of stage 2 (6 errors in 8 models) show that all data
flow errors added in advance have been detected accurately,
and no false positives have been triggered, including those
models without errors.

Secondly, as a further extension and generalization of
stage 2, we conduct the evaluation based on stage 3 (29 errors
in 33models). By comparingwith the errors checked by hand,
we find that all data flow errors in stage 3 have been detected,
and there are no misdiagnoses. These two evaluations

indicate that our method is effective for all data flow error
patterns we defined.

Table 3 summarizes the frequency of each data flow error
pattern in the 33 collaboration models. More than half of
the models (18/33 = 54.55%) have data flow errors, and
some of them have different types of errors. URMB is the
most common data flow error pattern, with 12 (12/33 =
36.36%) models showing this type of error. In particular, two
of these models contain two such errors. The proportion of
USMB errors is about one third (9/33 = 27.27%) while that
of UMCMB is 6/33 = 18.18%. In short, it indicates that data
flow errors across processes remain a serious problem, which
reminds us that we need to pay more attention to prevent and
avoid these errors, especially URMB.

B. COMPARATIVE EVALUATION
The second evaluation explores the differences in accuracy
and performance between our method (i.e., based on data
flow error patterns in BPC (DEB)) and the latest methods
(i.e., based on model checking (MC) [5] and data flow simu-
lation (DFS) [4]). The reason for choosing them is that they
represent state of the art and are based on BPMN modeling
like DEB. We use the two model sets obtained in the first
evaluation as test data. Since there is no significant difference
between the results of the two data sets in statistics, wemainly
show and analyze the results of the first data set (8 models).
Due to some models may contain multiple errors, we record
the cumulative time required to detect all errors. Meanwhile,
each cycle in the model is defined to run only once.

Table 4 summarizes the statistics for each method in the
comparative evaluation. We list the core elements of the
model as indicators of their complexity, in which S_node,
R_node, Gateway and Data item represent the number of
sending nodes, receiving nodes, gateways and exchanged data
in the model, respectively.

We find that these three methods can meet the expected
goal in terms of accuracy, all of which are 100%, but they
show differences in performance (i.e., DEB > MC > DFS).
There are following reasons for this.

(1) MC provides a framework based on modeling and
model transformations to verify behavioral properties related
to BPMN collaboration model. It first needs to perform two
consecutive model transformations on the initial model (i.e.,
from BPC to RECATNet, and from RECATNet to rewriting
logic). Then it uses the Maude LTL model checker that sup-
ports rewriting logic to verify custom behavior properties.
As a result, these consecutive transformations and the state
space traversal of the whole model consume a lot of cost
and time, making performance of MC sensitive to the size
of model (the number of nodes, gateways and data items),
especially when the model has parallel gateways. In S3.2,
MC spends the most time, reaching 30542ms.

(2) DFS introduces a tool called Mida to simulate the
execution of BPMN collaboration model, which supports
the design and detection of data flow in a graphical way.
Although users can monitor the execution in real time during
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TABLE 4. Statistics in comparative evaluation.

each simulation, the identification of data flow errors is still
in charge of users, rather than through automation. In par-
ticular, when the model itself includes branch gateways, DFS
requires users tomanually adjust data tomeet different branch
conditions. For the sake of fairness, we evaluate DFS in the
worst case, that is, each branch in the XOR gateway will be
executed. As a result, it needs more cost and time to detect
errors.With respect to performance, DFS is weaker than other
methods.

(3) DEB has the best performance in this evaluation. The
reason is twofold. First, DEB only focuses on the subset of the
model (i.e. sending/receiving nodes, messages and exchanged
data), so it does not need to perform semantic transformation
and state space traversal on the whole model. Second, DEB
provides a set of clear data flow error patterns and resolution
algorithm, which support automatic error detection without
manual intervention. In this way, it avoids the possible state
space explosion and greatly reduces the detection time. From
this point of view, it may be an effective supplement to the
soundness analysis of data flow in BPC, and may improve
user satisfaction when using interactive tools (e.g., IDE (Inte-
grated Development Environment)).

VII. RELATED WORK
In this section, we review the related work to detecting data
flow errors in a single process (DfSP) and BPC.

A. DETECTING DATA FLOW ERRORS IN A SINGLE
PROCESS
In the early work, Sadiq et al. [16] for the first time identify
a variety of data flow errors at the conceptual level, including
missing data, redundant data, lost data, etc. However, it does
not provide a concrete solution for data flow errors. Sub-
sequently, a large number of methods have been proposed
to analyze and detect data flow errors based on different
modeling perspectives, such as BPMN [17], [18], Petri net
[9], UML activity diagrams(UMLAD) [8], BPEL/WS-BPEL
[10], etc.

The existing DfSP focuses the data dependencies among
nodes within a single process (e.g., input and output of
nodes), without considering the data related to messages.

FIGURE 2. An example fragment of the Customer process with our
defined data models.

This makes it unable to directly support the message com-
munication and data exchange that BPC needs to cover.

B. DETECTING DATA FLOW ERRORS IN BPC
Recently, the work of considering data flow errors
across process has attracted more and more attention.
Kheldoun et al. [5] propose a formal method to verify BPMN
collaboration models. Firstly, it transforms BPMN collabo-
ration model, containing messages, data objects, etc., into a
High-level Petri net (RECATNet), using a specific ATLAS
transformation language. Then, it continues to transform the
semantics of RECATNet to the conditional rewriting logic.
Finally, it uses theMaude LTLmodel checker, which supports
rewriting logic, to detect custom behavior properties. Overall,
it has strict formal semantics and can support the verification
of custom properties. Different from this, Corradini et al. [4]
introduce a simulation tool to visualize data flow during
BPMN collaboration execution. It analyzes the interdepen-
dencies among processes, messages and data, and provides
direct formal semantics based on LTS for core components
(e.g., messages and gateways). In this way, users can debug
data flow errors, such as wrong data format, message-related
data errors, data-based gateway errors, etc. Unfortunately,
these methods rarely consider providing formal definitions
for data flow errors across processes, but either implicitly
represents them in user-defined data formulas or require users
to be responsible for identifying them.

In addition, Yu et al. [6] map the collaboration model
to E-Commerce Business Process Net based on Petri net to
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analyze data flows among multiple participates, and propose
a incidence matrix method to check data properties. Yet, it is
limited to the field of E-commerce. To avoid data flow issues,
Meyer et al. [7] extend data objects by means of text anno-
tation to meet the data dependencies in BPMN collaboration.
Unlike our work, it introduces SQL query to operate input
and output data, tending to automate data processing.

Another related work is about data modeling in BPC. The
authors of [19] emphasize automating data exchange between
processes use messages. Furthermore, Hahn et al. [11] intro-
duce TraDE to improve the flexibility of data modeling,
supporting data exchange and runtime data change across
processes. All cross process data items are exposed by par-
ticipants in a web accessible way (e.g., through a REST
API) [12]. Meanwhile, each data item is represented as a
resource, so it can be easily accessed, referenced and shared
with others through the uniform resource locator. In short,
this method focuses on modeling data flows across processes,
alleviating data heterogeneity (such as data structure and
semantic differences). On this basis, we further explore the
data dependencies between processes and messages to detect
data flow errors.

VIII. CONCLUSION
In this article, we focus on detecting data flow errors across
processes in BPC. As a core contribution, we define a set of
data flow error patterns by analyzing and formalizing data
dependencies in order to clearly clarify and identify errors.
Meanwhile, we believe that these patterns are a foundation
and beginning, and surely as more complex collaboration
scenarios are explored, more new patterns and methods are
bound to appear and provide power for the study of BPC.
Furthermore, we develop an automatic detection algorithm,
which centers on the subset of sending and receiving nodes,
messages and exchanged data, without having to consider the
whole model. Finally, we conduct two evaluations, including
a benchmark evaluation used to explore the effectiveness
of the method, and a comparative evaluation used to illus-
trate the difference in accuracy and performance between the
method and the latest methods. The evaluation results indicate
that our method can accurately detect these errors without
producing false positives. In addition, all the compared meth-
ods can achieve the expected goal in accuracy, while our
method is superior in performance to others.

In the future, we will continue to enrich data flow error pat-
terns by analyzing more collaboration scenarios. In addition
to the common read andwrite operations in data specification,
we are interested in further exploring the impact of data
destruction operation on data dependencies.
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