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ABSTRACT With the popularity of weak/relaxed memory models widely used in modern hardware
architectures, the C11 standard introduced a language level weak memory model, A.K.A the C11 memory
model, that allows C/C++ programs to exploit the optimisation provided by the hardware platform in
memory ordering and gain benefits in efficiency. On the other hand, with the weakened memory ordering
allowed, more program behaviours are introduced, among which some are counterintuitive and make it even
more challenging for programmers to understand or to formally reason about C11 multithread programs.
To support the formal verification of the C11 weak memory programs, several program logics, e.g. RSL,
GPS, FSL, and GPS+, have been developed during the last few years. However, due to the complexity of
the weakened memory model, some intricate C11 features still cannot be handled in these logics. A notable
example is the lack of supporting to the reasoning about a highly flexible C11 synchronisation mechanism,
the release-sequence. Recently, the FSL++ logic proposed by Doko and Vafeiadis moves one step forward
to address this problem, but FSL++ only considers the scenarios with atomic update operations in a release-
sequence. In this article, we propose a new program logic, GPS++, that supports the reasoning about C11
programs with fully featured release-sequences. We also introduce fractional read permissions to GPS++,
which are essential to the reasoning about a large number of real-world concurrent programs. GPS++ is
a successor of our previous program logic GPS+, but it comes with much finer control over the resource
transmission with the newly introduced restricted-shareable assertions and an enhanced protocol system. A
more sophisticated resource model is devised to support the soundness proof of our new program logic. We
also demonstrate GPS++ in action by verifying C11 programs with release-sequences that could not be
handled by existing program logics.

INDEX TERMS Program logic, formal semantics, program verification, C11 weak memory model, release-
sequence.

I. INTRODUCTION
To discuss the behaviours of shared-memory concurrent
programs, a memory model must be assumed, as it fun-
damentally defines how the threads communicate with
each other. The traditional strong memory model, i.e., the
sequential-consistency (SC) [1] model, assumes a single
global memory that is accessed by all threads in an interleav-
ing manner while the instructions in each thread are executed
strictly following their program orders. However, this model
is abandoned by most of the modern hardware architectures,
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as it leaves very little room for optimisation. Modern hard-
ware architectures embrace more relaxed memory models,
which allow memory accessing operations to be reordered
and threads to have their own observations about the memory
states. For instance, the memory model used for the x86
architecture is the total-store-order (TSO) model instead of
the SC model, as with write buffers facilitated, the x86 archi-
tecture allows some store operations to be reordered after
the following load operations as long as a total order for all
store operations is preserved. Other platforms like ARM and
PowerPC adopt even weaker memory models.

With the various levels of memory weakening allowed by
different hardware platforms, a unified interface is essential
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TABLE 1. Program Logics’ Support to C11 Synchronisations.

to help programmers to compose programs that have best
performance regardless the underlying platforms. Therefore,
in the C11 standard [2], [3], a language-level weak memory
model, i.e., the C11 memory model, is introduced and has
later been formalised by Batty et al. [4]. However, it remains
challenging to understand or to reason about the counter-
intuitive behaviours introduced by this weakened memory
model. Several program logics (RSL [5], GPS [6], [7] FSL
[8], GPS+ [9], [10], and FSL++ [11]) focusing on C11
programs have been proposed during the last few years, but
the reasoning about some highly intricate features of the C11
memory model is still not supported. A notable example is
that the support to a highly flexible C11 synchronisation
mechanism, i.e., the release-sequences, is usually left out. As
shown in Table 1, there are four commonly used paradigms
to establish C11 synchronisations. From the most straightfor-
ward way that only uses release write and acquire read pairs
to the ones with fully featured release-sequences involved,
the complexity increases along with its flexibility, as more
program commands’ interactions need to be taken under
consideration. The formal reasoning about the most flexible
paradigm facilitating with fully featured release-sequences is
not supported until this work.

Beside the memory optimisations, another approach to
maximising the benefits of multiprocessing is to reduce the
fractions of tasks that could not be parallelised. For instance,
instead of enforcing all the accesses to a shared resource
to be mutually exclusive, a readers-writer-lock allows mul-
tiple readers (or a single writer) to exist at a time. The
readers-writer-lock is widely adopted by real-world programs
(e.g. the Linux kernel, pthread library, etc.). However, to for-
mally verify a sophisticated algorithm like the readers-writer-
lock, fractional permissions [12], [13] will be a necessary
ingredient, which is not yet supported in the GPS family.

In this article, we propose GPS++, a program logic that
supports the reasoning about C11 programs with fully fea-
tured release-sequences. To achieve this, our logic is facil-
itated with an enhanced per-location protocol system, a new
type of assertions, i.e., the restricted shareable assertion, and a
set of new reasoning rules to deal with C11 release-sequences
related operations. We also introduce the support to fractional
permissions, which enables us to use the proposed logic
against sophisticated real-world concurrent algorithms such
as the readers-writer-lock.

This article extends the earlier conference version [14] sig-
nificantly with the following additional contributions: 1. The
support for fractional read permissions in the new logic, that
allows it to reason about real-world concurrent algorithms

FIGURE 1. A language for C11 concurrency.

that otherwise would not be possible; 2. The proof in the new
logic of the correctness of a non-trivial concurrent program,
i.e. readers-write-lock (which cannot be handled by previous
logics in the GPS family) that illustrates the applicability of
GPS++; 3. Amore sophisticated resource-map-based instru-
mented semantic model that help characterise the subtle new
features in GPS++; 4. The formulation of the soundness of
the GPS++ logic, together with proof sketches for lemmas
and theorems.

In the rest of the article, we first introduce our core lan-
guage that captures most essential C11 features and the C11
memory model in §II. Then we discuss this work’s founda-
tion, the GPS+ logic, in §III, before presenting our new logic
in §IV. We demonstrate the power of our new program logic
by using it to verify example programs including a variant
of the readers-writer-lock in §V. After that, we present the
formal foundation of GPS++ in Section VI and illustrate its
soundness in §VII. Finally, related work is discussed in §VIII
and the article is concluded in §IX.

II. THE LANGUAGE AND THE MEMORY MODEL
A. THE LANGUAGE
We use the expression-oriented language presented in Fig. 1
as our core language. It is used to capture the essential fea-
tures of the C11 memory model. With the support to atomic
read/write (load/store), fences, and compare-and-swap (CAS)
our language can express C11 programs using various kinds
of inter-thread synchronisation mechanisms, including the
powerful release-sequence.

Our language has variable names (represented by
metavariable x) and integer values (represented by metavari-
able V ) as values (Val). The pointer arithmetic, let-
binding, loop command repeat e, conditional statement
if . . .then . . .else, thread forking fork e, memory allo-
cation alloc(V ), memory load (read) [v]O and store (write)
[v]O := v, atomic update operation CASO,O(v, v, v), and fence
operations fenceO are supported as our expressions (e).
Specifically, in the loop command repeat e the loop body e
will be repeatedly executed until a non-zero value is returned.
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Note that a memory orderO needs to be specified for some
expressions indicating which degree of memory relaxation
can be applied to the annotated operation. Following the C11
language, we require a memory location is either atomic
or non-atomic and this cannot be changed once defined.
For an atomic location v1, the memory order O used in
a load operation [v1]O can be acquire (acq) or relaxed
(rlx); the memory order O in a store operation [v1]O := v
can be either release (rel) or relaxed (rlx). Meanwhile,
memory accesses to non-atomic locations can only be anno-
tated as non-atomic (na). The compare-and-swap expres-
sion CASO1,O2 (v1, v2, v3) requires v1 to be the address of
an atomic location and performs the following steps in a
single atomic move: firstly, the value of v1 is loaded with
the memory order O1 (which can be either acq or rlx),
then the value is used to ‘‘compare’’ with the expected value
v2; if they are the same, the value v3 is stored to location v1
with the memory order O2 (which can be rel or rlx) (the
‘‘swapping’’) and a numerical value 1 is returned indicating
its success; otherwise 0 is returned indicating the failure of
the compare-and-swap process.

B. THE GRAPH SEMANTICS
The C11 memory model resides at language-level aim-
ing at abstracting away the differences of underlying hard-
ware memory models. Therefore, it is not straightforward to
express it in an operational manner. The axiomatic approach
is often used instead to formalise the C11 memory model,
where execution graphs are used to represent candidate exe-
cutions (with the program actions/events as vertices and their
relations represented by the edges) and a set of axioms
decide if an execution is legal or not. This is the approach
adopted by Batty et al. [4] to give the first formalisation
of the C11 memory model. The memory models used in
the C11 program logics [5], [6], [8]–[11] are defined in a
similar manner but with certain simplifications, e.g., only
accepting synchronisations created using a simple way with-
out release-sequences involved. This work follows the graph
based axiomatic semantics, with extra information added for
threads (highlighted in Fig. 2), and supports synchronisations
with fully featured release-sequences.

As shown in Fig. 2, the event graph G (A,T , sb,mo, rf)
concerns a set of events, and records their action type infor-
mation in A (the action types will be further discussed
shortly), their thread identities in T (i.e. to which threads
they belong), as well as their relations in sb,mo, and rf. The
sequenced-before relation (sb) represents the non-transitive
program order. All store operations accessing a same location
form a strict-total order, which we record in themodification-
order (mo). When a load operation reads from a store oper-
ation, this relation is tracked in the reads-from map (rf). We
formalise the thread pool as T which tracks each numerically
indexed thread’s last event and the expressions to be executed.

As shown in Fig. 3 and Fig. 4, we adopt a two-layer seman-
tics, namely, event-step andmachine-step, followingGPS and
GPS+. An event-step (e

α
→ e′) is the execution of e, resulting

FIGURE 2. Syntax of event graph.

in a return value or a remainder expression (e′) and an action
(α) to be added to the execution graph in the machine-
steps. The executions of arithmetic, let-banding, repeat, and
conditional expressions returns different values or remainder
expressions but they only generates skip actions (S) as they
do not involve memory accesses. The allocation expression
alloc(n) generates an allocation action A(`..`+ n− 1),
which indicates n fresh memory location ranging from ` to
`+ n− 1 are allocated and ` is returned. Store and fence
expresses generate corresponding write (W) and fence (F)
actionswith specifiedmemory orders; andwe let them always
return 0 as they should not be used to change the program
control flow. Note that the event-step rule for read action
R only specifies that it should return some numerical value
V . The actual value can be read is constrained by the mem-
ory model axioms (consistentC11) in the machine-steps
(which will be discussed shortly in this section) with the
global execution taken under consideration. There are two
rules for CAS expressions to correspondingly capture the
successful and failure cases. In the case of success, an update
action U(`,Vo,Vn,Or ,Ow) is generated, where the current
value Vo stored at location ` is required to be the same as
specified in the expression; otherwise, the CAS should be
considered as failed and is treated as an atomic read action
which reads some value other than Vo.
We use the machine configuration 〈T ;G〉 to represent

the execution states, where the thread pool T contains the
expressions to be executed in each thread and the execution
graph G is a record of the execution history. Machine-step
rules are used to update the machine configurations. The first
rule states that an arbitrary thread from T can take a move
(e

α
→ e′) and generate a newmachine configuration (〈T ′;G′〉)

based on the current one (〈T ;G〉) with the new event (a′)
and the corresponding relations added to the event graph
given that the C11 memory model axioms are preserved in
the extended graph (consistentC11(G′)). More specifically,
assume the thread i in the thread pool T is chosen to execute,
its last event is a and the expression to be executed is e.
Then e is reduced to e′ following the corresponding event-step
semantics rule, yielding a new action α with a new event
name a′. We update i in the thread pool with this information
(a′, e′), then add the newly generated event to the event
graph as the following, yielding a new graph G′. Firstly, the
mapping a′ 7→ α and a′ 7→ i are added to the action map
(G′.A) and the thread map (G′.T ), respectively. This informa-
tion will be crucial for reasoning about programs with C11
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FIGURE 3. Event-steps semantic rules: e
α
−→ e′ .

FIGURE 4. Machine-step semantics: 〈T ;G〉 −→ 〈T ′;G′〉.

release-sequences, as we will need to know if different writes
are from a same thread or not. Secondly, we know that a′

comes after a, so we record it in the sequenced-before relation
(G′.sb). Finally, the modification-order only gets updated if
a′ is a write (W) or a success update action (U), so we have
G′.mo ⊇ G.mo. Similarly, the read-from relation only gets
updated if a′ is a read (R) or an update action (U) which
reads from a write/update action b. The exact way these two
relations to be updated is restricted by the C11memorymodel
axioms consistentC11 that to be presented in the next
subsection.

The second machine-step rule indicates that the fork e
command creates a new thread (i.e. j) that will be added to
the thread pool. The expression e is waiting to be executed in
the new thread while the parent thread (i) has whatever left in
the evaluation context K [0].

A thread terminates if its expression is reduced to be a
pure value and the program terminates when all its threads
terminate.

C. THE MEMORY MODEL
Amemorymodel defines how different CPU cores can access
a shared memory, and thus controls how multithread pro-
grams should behave. As a language-level memory model
that must be sufficiently generalised, the C11 memory model
regulates the program behaviours by using a group of axioms

based on the event graph. We have discussed the event graph;
nowwe first introduce several derived relations before we can
formally introduce the C11 memory model axioms.

1) HAPPENS-BEFORE RELATION
The happens-before relation is the cornerstone of the causal-
ity in C11 programs. That is, for two events a and b,

unless we can establish that a happens before b (a
hb
→ b),

there is no guarantee that a’s effect will be observed by b.
The happens-before relation is derived from the sequenced-
before and the synchronised-with relations (to be discussed
shortly in §II-C2), i.e., hb , (sb ∪ sw)+. Intuitively, the
happens-before relation preserves the program order for
events within the same thread; however, for the events from
different threads can by ordered in hb only if their threads are
synchronised at appropriate locations.

This idea is demonstrated in Fig. 5 with an unsuccessful
message passing program. In this example, we assume both
x and y are initialised as 0. In the first thread, the flag y is
changed to 1 (event b) after the message x is set to be 42
(event a); the second thread first reads y to be 1 (event c)
then reads x (event d). Though a chain of relations can be

established as a
sb
→ b

rf
→ c

sb
→ d , the stale value 0 can still

be read by d as the read-from relation between b and c
is not strong enough to form a synchronisation, thus the
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FIGURE 5. A failed message passing example.

happens-before relation a
hb
→ d could not be derived and a’s

effect is not guaranteed to be seen by d .

2) RELEASE-SEQUENCE AND SYNCHRONISATION
As a weak memory model, the C11 memory model allows
threads to have different observations about the memory.1

But when necessary, one thread’s observation can be passed
to another if they are synchronised. To form a synchroni-
sation and share its observation, the sharer’s thread must
first perform a release action. Intuitively, the release action
would label its up-to-date memory observation as ready to be
shared. Then a sequence of store operations, i.e. a release-
sequence, work like messengers notifying their readers that
some information can be acquired. However, the acquisition
is only successful after an acquire action is performed in the
reader’s thread. In this way, the acquire action is synchronised
with the release action and is obliged to acknowledge the
memory modifications happened before the release action.

The release-sequence plays the crucial role in this process.
It is led by an action with the release memory order, i.e.,
the release head, which can either be a release fence or a
release store, and is followed by the longest sub-sequence
of store operations from the modification order (mo) where
these store operations are either in the same thread as the
release head or atomic update operations (i.e., U).

As the example shown in Fig. 6a the release write event a is
the release head; and the release-sequence also contains b and
c as they follow a in the mo order and is either in a’s thread
(b) or is an atomic update (c). Another thread can acquire a’s
observation by reading from any event from this sequence.
Fig. 6b shows that a release-sequence can be interrupted if a
non-update store operation (c in this case) from a different
thread is positioned in the chain of mo order. In the case
shown in Fig. 6b, the release-sequence only contains the head
a. As shown in Fig. 6c, a relaxed write can lead a hypothetical
release-sequence and in this case itself is called a hypothetical
release head. If an operation acquires from this sequence, it is
synchronised with a release fence prior to the hypothetical
release head if there is any.

To formally define the synchronised-with relation, we first
define a predicate (along with some shorthand definitions)
that indicates if an action b is qualified to be a member of the
release-sequence led by action a:

rs_element(a, b) , sameThreadG(a, b) ∨ isCASG(b)

sameThreadG(a, b) , G.T (a) = G.T (b)
1For instance, in the example shown in Fig. 5, thread 2 can observe a state

where x = 0 ∧ y = 1, which is infeasible from the perspective of thread 1.

isCASG(b) , G.A(b) = U(−,−,−,−,−)
WO(a) , G.A(a)

= W(−,−,O) ∨ U(−,−,−,−,O)
RO(a) , G.A(a)

= R(−,−,O) ∨ U(−,−,−,O,−)

For a store action a, we say that event b is in a’s release-
sequence, a

rs
→ b or rs(a, b), if and only if:

WO(a) ∧

(
a = b ∨ rs_element(a, b) ∧ a mo

→ b ∧

∀c. a
mo
→ c

mo
→ b⇒ rs_element(a, c)

)
Then we can formally define the synchronised-with rela-

tion as that shown in Fig. 7:

D. DEMONSTRATING C11 SYNCHRONISATIONS
We have introduced the highly flexible release-sequence
based C11 synchronisation mechanism. In Fig. 8, we demon-
strate how C11 synchronisations can be formed in different
manners by restoring the message passing protocol discussed
in Fig. 5 in various ways. Recall that, as summarised in
Table 1, existing C11 program logics usually support sim-
plified versions of the C11 synchronisation mechanism, due
to its complicity, with limited scenarios allowed to from syn-
chronisations. These demonstrations are also used to illustrate
which types of C11 synchronisations can be supported by
existing C11 program logics.

The first C11 program logics, RSL and GPS, can only be
used to reason about C11 programs with synchronisations
formed between release write and acquire read pairs as that
is shown in Fig. 8a. With C11 fences supported, FSL and
GPS+ can also reason about programs like that is shown
in Fig. 8b. Still, they do not accept release-sequences with
more than one element. FSL++ overcomes this limitation,
but expect the release head, it only accepts atomic update
operations to be in a release-sequence (Fig. 8c). To the best of
our knowledge, only this work supports the reasoning about
C11 programs with synchronisations based on fully-featured
release-sequences, including the scenario shown in Fig. 8d.

E. THE AXIOMATIC MODEL
With the preparations that have been made about synchroni-
sations, happens-before relations and etc., in this subsection,
we present the axiomatic definitions for the C11 memory
model in Fig. 9 following a similar approach used by [4].
Intuitively, the axioms are regulations that rule out illegal
executions, e.g., ‘‘no one can read from an event that happens
after itself’’ or ‘‘an update action cannot be interrupted’’,
and etc. These axiomatic rules also leave us enough room to
ensure the aforementioned principle: no guarantee of obser-
vation without happens-before relations.

Specifically, ConsistentMO1 states that mo is a binary
relation over writing actions. ConsistentMO2 requires all
writing actions in mo to follow a strict total order. Consis-
tentRF1 indicates there always is at least one writing action
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FIGURE 6. Examples of release-sequence (highlighted in red).

FIGURE 7. Synchronised-with relation.

FIGURE 8. Examples of C11 synchronisations.

FIGURE 9. The C11 axioms.

before a reading on the same location, that is, all locations are
initialised before reading. ConsistentRF2 says that a reading

action cannot read from a writing that happens after itself.
For a non-atomic reading action, ConsistentRFNA requires
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it must read from a writing action that happens before it.
Coherence puts restrictions on happens-before relations and
the modification orders, e.g. a reading actions should not read
older value than its happens-before ancestors. AtomicCAS
enforces no interruption could happen to an atomic update
action. ConsistentAlloc states the sets of locations allocated
by two allocation actions will not intersect, that is, no location
will be allocatedmore than once. Acyclic is introduced to rule
out the thin-air-read problem following [6], [9].

Note that while atomic locations are meant to be accessed
concurrently, concurrent accesses (accesses that are not
ordered in hb) to non-atomic locations with at least one write
action lead to a hazardous situation called data-race, in which
the program behaviour is undefined. The memory error is
another hazardous situation, which involves accessing a loca-
tion before it is allocated. Definitions for these two hazardous
situations are needed to complete our semantical model as we
need them to rule out executions with undefined results.

dataRace(G) , ∃`.∃a, b ∈ dom(G.A).G.A(a) =W(`,−,na) ∧ G.A(b) =W(`,−,na)∨
G.A(a) =W(`,−,na) ∧ G.A(b) = R(`,−,na)∨
G.A(a) = R(`,−,na) ∧ G.A(b) =W(`,−,na)


∧¬((a, b) ∈ hb ∨ (b, a) ∈ hb)

memErr(G) , ∃l.∃b ∈ dom(G.A). (G.A(b)=W(`,−,−)

∨ G.A(b)=R(`,−,−) ∨ G.A(b) = U(`,−,−,−,−))
∧ @a ∈ dom(G.A).A(a) = A( È) ∧ ` ∈ È∧ (a, b) ∈ hb

III. RECAP OF GPS+

Verifying concurrent programs is difficult. To reason about
C11 concurrent programs with weak memory behaviours is
even harder. To do this, GPS-like logics amalgamate three
techniques from state-of-the-art concurrent program logics
(e.g. [15]–[28]), namely ghost states, protocols and separa-
tion logic. Our proposed program logic, GPS++, follows the
line of GPS works. In this section, we lay the foundation for
the discussion of our program logic by briefly introducing its
closest predecessor GPS+.

A. PROTOCOLS FOR ATOMIC LOCATIONS
As illustrated in previous sections, in C11 concurrent pro-
grams threads communicate with each other by writing and
reading atomic locations. As updates may happen in other
threads, it is difficult to determine the precise value of an
atomic location. Therefore, GPS/GPS+ employs the concept
of per-location protocols and each atomic location has its
own protocol depicting how its states can evolve along with
the program execution. The possible states for an atomic
location are partially ordered, and the state assertion is used
to describe the lower-bound state an atomic location can be
in. That is, assuming an atomic location `’s protocol is τ , the
state assertion ` : s τ says that ` is at least at state s.

Atomic locations can be concurrently accessed by different
threads, therefore their state assertions should be able to
be duplicated and shared between different threads. These

assertions that do not require exclusive ownership are called
knowledge in GPS logics. A knowledge assertion is decorated
with the notation � and the following rules applied:

` : s τ ⇒ � ` : s τ �P⇔ �P ∗�P �P⇒ P

The first rule states that a state assertion is knowledge. The
second rule says that copies can be made out of a knowledge
assertion. When necessary a knowledge assertion can also be
transformed back to its normal form using the third rule.

To complete the protocol definition τ for its atomic loca-
tion `, a partial order vτ must be provided to depict all `’s
possible state transitions. That is, assuming ` is currently in
state s and a write command moves it to state s′, this is valid
if and only if s vτ s′ is defined in the protocol. In addition,
state interpretations need to be specified for all states. A state
interpretation τ (s, z) describes the conditions that must be
satisfied for a write command to be permitted to write value
z to ` and transfer ` to state s. On the other hand, when a
reader reads ` at state s, it knows some conditions have been
established in the writer’s thread. Therefore, they can reach
agreement about these facts, i.e., they are synchronised. The
following rules formally capture this process.

[GPS+-RELEASE-STORE]
PV τ (s′′, v) ∗ Q ∀s′ wτ s. τ (s′,−) ∗ P⇒ s′′ wτ s′{

` : s τ ∗ P
}
[`]rel := v

{
` : s′′ τ ∗ Q

}
The [GPS+-RELEASE-STORE] rule states that to move

` to the target state s′′, the state interpretation τ (s′′, v) must
be derivable from the resource P currently possessed in its
precondition (the first premise). Note that the ghost move
V used to imply the state interpretation refers to a transi-
tion that only affects auxiliary states leaving physical states
unchanged. Note also that due to the possible moves from
the environment, the actual state of ` before the writing
may be different from the lower-bond state s in the triple’s
precondition. Therefore, the second premise is introduced
requiring that the target state s′′ is reachable from any possible
state s′ that ` might be currently in.

[GPS+-ACQUIRE-LOAD]
∀s′ wτ s. ∀z. τ (s′, z) ∗ P⇒ �Q{

` : s τ ∗ P
}
[`]acq

{
z. ∃s′. ` : s′ τ ∗ P ∗�Q

}
The [GPS+-ACQUIRE-LOAD] states that some knowl-

edge �Q can be added to an acquire read’s postcondition
if the knowledge can be derived from the candidate states’
interpretations. Note that only knowledge assertions can be
retrieved, as the read operations from different threads may
observe a same state and try to retrieve the same information.
If the information to be retrieved is not duplicable, conflicts
will raise. The assertion P included in this rule enables rely-
guarantee style of reasoning and reduces the possible states
that can be read [6].
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B. ESCROWS FOR NON-ATOMIC LOCATIONS
The [GPS+-ACQUIRE-LOAD] rule only retrieve knowledge
assertions from state interpretations. However, the ownership
of some exclusive resource is also often needed to be trans-
mitted across threads. This can be done by using escrows
in GPS/GPS+. Intuitively, an escrow σ : P Q is a safe
protecting Q with a non-duplicable resource P as the key.
Following ghost move rules are used to put some resource
(Q) under escrow and retrieve it:

σ : P Q

QV [σ ]

σ : P Q

P ∧ [σ ]V Q
An escrow [σ ] is no longer ownership-dependent. It can be

transformed into knowledge following the rule: [σ ]⇔ �[σ ].
As shown in the second rule, the ‘‘key’’ P will be consumed
once it is used to open the safe and retrieve the resource Q.
Therefore P is preferred to be a ghost assertion instead some
assertions relating to physical resources. A ghost assertion
in the form γ : t µ indicates that γ is a ghost variable,
and its value is a ghost permission t drawn from some
partial commutative monoid (PCM) type µ. With a fresh
identity, a new ghost value t can be introduced out of thin
air: trueV ∃γ. γ : t µ .

C. WORKING WITH FENCES
As shown in Fig. 8b, synchronisations can also be established
by using relaxed write and read operations but only with the
help from C11 fences. In GPS+, this process is interpreted
as that a relaxed write can only share the resource made
shareable (denoted as 〈P〉) by a prior release fence. On the
other hand, when some resource is retrieved by a relaxed read,
it cannot be used instantly. Instead, it is marked aswaiting-to-
be-acquired �P and an acquire fence is needed to transform
it back to its normal form.

The fence related rules are adopted by our new program
logic. Detailed discussions will be provided in the next
section to illustrate how we make them compatible with other
more complicated features.

IV. REASONING ABOUT C11 RELEASE-SEQUENCES AND
FRACTIONAL PERMISSIONS
The use of release-sequences provides C11 programs great
flexibility to choose the best way to synchronise their threads.
However, as discussed in previous sections no existing pro-
gram logic supports the formal verification about the use
of fully featured release-sequences due to its complexity.
Also, there is no work in GPS family that supports fractional
permissions. In this section, we introduce our new reasoning
framework, GPS++, that support the aforementioned fea-
tures with the aid from several novel techniques.

A. A NEW TYPE OF ASSERTION AND THE ENHANCED
PROTOCOL SYSTEM
The key to reason about the C11 synchronisation process is
to deal with the relaxed write operations involved. As that is
discussed in §II-C2, unlike a release write, a relaxed write

cannot form a synchronisation by itself. That is, no resource
can be shared by a relaxed write to its readers unless (1) there
is a release fence prior to it; or (2) it belongs to a release
write’s release-sequence. To reason about the behaviours of
a relaxed write in the C11 synchronisation, its context must
be taken under consideration. The first scenario is relatively
easier, as we can adopt the shareable assertion introduced by
GPS+ to indicate if there is a prior release fence that makes
some resource available for the relaxed write operation to
share. The second scenario is more complicated, as we need
to know if there is a prior release write to the same memory
location and if so, whether or not the release-sequence led by
that release write is still valid at the point where the relaxed
write takes place.

To tackle this problem, a naive solution is to intro-
duce location-based restricted shareable assertions. That
is, a release write operation on location ` may create an
assertion 〈P〉`, which indicates P is shareable by following
relaxed writes operation on ` who are assumed to be the
members of its release-sequence. However, as discussed in
§II-C2 a release-sequence could be interrupted by non-update
writes from other threads and this definition is not sufficient
to be used to detect these potential interruptions. There-
fore, we introduce state-based restricted shareable assertions
(which we call restricted-shareable assertions for short)
instead. Specifically, a release write that changes location
` to state s may make some resource P shareable, 〈P〉s, for
the members of its release-sequence. To check if a following
relaxed write belongs to the release-sequence and can use the
restricted-shareable resource 〈P〉s, we first check (1) whether
they are operations on the same location; (2) whether they
are in the same thread; and (3) whether the sequence is free
from interruptions. The check for condition (1) can be done
by simply examining whether the two writes follow the same
protocol. To enable the checks for condition (2) and (3),
we extend the state interpretation τ (s, z) used in GPS+ to
the form like τ (s, z, tid, upd), where tid indicates in which
threads the target location can be transformed to the state s,
and upd is 1 if the state s can only be reached by atomic update
operations or 0 otherwise. With these preparations, we derive
the following predicates:

sameThread(s, s′)
, ∀t, t ′, v, v′, c, c′. (τ (s, v, t, c) 6⇒ false ∧

τ (s′, v′, t ′, c′) 6⇒ false)⇒ t = t ′

isCAS(s)
, ∀v, t, u. (τ (s, v, t, u) 6⇒ false)⇒ u = 1

With these definitions, the thread and interruption checks
can be formalised as:

∀s′′. s′ wτ s′′ wτ s⇒ sameThread(s′′, s) ∨ isCAS(s′′).

where s is the state established by the release head and s′ is the
target state of the relaxed write being checked. The following
properties can be derived for our new restricted-shareable
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assertions based on our semantical model:

[SEPARATION-R]
〈P1 ∗ P2〉s ⇔ 〈P1〉s ∗ 〈P2〉s

[UNSHARE-R]
〈P〉s V P

The [SEPARATION-R] rule indicates that a restricted-
shareable assertion can be split as while as several
restricted-shareable assertions can be merged if they are
restricted to the same state. The [UNSHARE-R] rule states
that a restricted-shareable assertion can be transformed back
into its normal form via a ghost move.

The new restricted-shareable assertion, the enhanced pro-
tocol system, and their properties are semantically supported
by our upgraded resource model, which will be presented in
later sections.

B. REASONING ABOUT C11 RELEASE-SEQUENCES
With our new restricted-shareable assertions and the
enhanced protocol system introduced, new reasoning rule
can be devised to handle the C11 programs with fully fea-
tured release-sequences. In this section, we first introduce
the essential rules most related to C11 synchronisations in
Fig. 10. Rules to deal with fractional permissions are pre-
sented in §IV-C, while other rules are discussed in §IV-D.

Unlike a release write in GPS+ which only needs to
concern about what resource it can share to its readers,
a release write in this work can also initiate a release-
sequence, that is, it can make some resource shareable by
the qualified relaxed writes followed. This idea is formalised
in our [RELEASE-STORE] rule as that part of the resource
P currently held in the release write’s precondition can be
transformed into a restricted shareable assertion 〈Q1〉s′′ .

We require the P used in the rule must be normal, i.e., it can
not contain any special forms of assertions (e.g., shareable
assertions or waiting-to-be-acquired assertions). This ensures
that Q1 is also free from special assertions and we do not cre-
ate the problematic nesting of special assertions by puttingQ1
into 〈. . . 〉s′′ . The formal definition for the normality check is
normal(P) , P⇒ false ∨ 〈P〉 6⇒ false. This is not the
only occasion where the normality check is used. Allowing
special assertions to be transmitted across threads also raises
problems, therefore we require state assertions to be normal
as well to prevent special assertions from being included.

The [RELAXED-STORE-2] rule illustrate how a release
write works in a release write’s release-sequence. With the
restricted-shareable assertion 〈P2〉so created by a releasewrite
and passed down to the relaxed write, the relaxed write knows
it may be in a release-sequence created at state so. The validity
of the release-sequence needs to be checked using the second
premise (recall §IV-A) then P2 can be used to imply the target
state interpretation (the first premise).

Our reasoning framework is compatible with the rules
developed in GPS+ for reasoning about the synchroni-
sation initiated by a relaxed write with the help from a
prior release fence. Therefore we inherit these rules as
our [RELAXED-STORE-1] and [RELEASE-FENCE] rules.
They state that a release fence can turn some resource into

a (unrestricted) shareable resource and then being used by
any relaxed write that follows. Intuitively, these tow rules
are sound for C11 release-based synchronisation mechanism
because every relaxed write after a release fence is a (hypo-
thetical) release head and is allowed to share the observa-
tions established at point where the release fence took place
(recall §II-C2).

On the other side, if the reader is an acquire read, the
[ACQUIRE-LOAD] rule applies. It states that when observ-
ing the location ` at a certain state s′, some knowledge �Q
can be learnt from the state interpretation. Similarly, as shown
in the [RELAXED-LOAD] rule, a relaxed read can also
retrieve some knowledge from the state interpretation, but this
knowledge �Q is not instantly useable and is waiting-to-be-
acquired by a following acquire fence that may transfer it to
a normal knowledge according to the [ACQUIRE-FENCE]
rule. These three rules are adopted from GPS+ with minor
changes, as our extension with release-sequence is still com-
patible with the principles working on the reader’s side.

Compare-and-swap (CAS) plays an important role in C11
concurrent programming. It is the foundation to the imple-
mentation of many locks and non-blocking algorithms. It can
join in a release-sequence without being in the same thread
as the release head. Therefore, sophisticated concurrent algo-
rithms like the atomic reference counter [11] can use CAS
operations to create synchronisations between many different
threads. GPS+ provides some basic support to CASes with-
out user specified memory orders. In this work, we devise
a set of rules to cover CAS operations with all possible
memory order specifications. We first take a close look at the
[ACQ-REL-CAS] rule. The first premise corresponds to the
case of success where `’s value is same vo as expected. In
this case, the acquire-release CAS performs as a release store
However, unlike normal release write which can only use the
resource P in its precondition to imply its target state’s inter-
pretation, a successful CAS can also use the resource from the
state interpretation of `’s current state (τ (s′, vo,−,−)). In this
way, the CAS can retransmit the information passed down in
its release-sequence.Moreover, a successful CAS can retrieve
non-knowledge resources from the state interpretation of `’s
current state. The second premise corresponds to the case of
failure where ` is found to have some value other than vo.
In this case, the acquire-release CAS performs as an acquire
read and some knowledge�R can be retrieved from the actual
state observed.

The ideas for the other CAS rules are similar. How-
ever, when a CAS has relaxed memory order for its read-
ing component ([RLX-REL-CAS], [RLX-RLX-CAS-1], and
[RLX-RLX-CAS-2]), it still can retrieve some information
(Q) from the state it reads but this information needs to
be marked as ‘‘waiting-to-be-acquired’’ in its post condi-
tion (�Q). When a CAS has relaxed memory order for its
writing component ([ACQ-RLX-CAS], [RLX-RLX-CAS-1],
and [RLX-RLX-CAS-2]), it can only use the resources
that are already sharable to derive its target state
interpretation.
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FIGURE 10. Synchronisation related verification rules.

C. DEALING WITH FRACTIONAL PERMISSIONS
As discussed in §II-E, while atomic locations are designed for
concurrent accesses, concurrent accesses (i.e., the accesses
not ordered in hb) to a non-atomic location with at least one
of them being a store operation lead to data-races. To ensure
the verified programs are data-race-free, previous work in
GPS family models each non-atomic location as a resource

that could only be exclusively held by one thread at a time,
which means these logics can not support the reasoning about
programs with concurrent non-atomic reads (though they
would not result in any race-condition). To verify real-world
concurrent programs with concurrent non-atomic reads
(e.g. the readers-writer-lock algorithm), we introduce frac-
tional permissions for non-atomic locations.
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Fractional permissions technique is an example of partial
permissions [12], [13]. In our setting, a fraction in the interval
[0, 1] is used to represent the portion of the ownership to a

non-atomic location. The full permission `
1
7→ − is needed

for a thread to write to `; while for a non-atomic read, only a
fraction of the permission will be sufficient:

[NON-ATOMIC-STORE]

{uninit(`) ∨ ` 1
7→ −} [`]na := v {`

1
7→ v}

[NON-ATOMIC-LOAD]
p ∈ (0, 1]

{`
p
7→ v} [`]na {x. x = v ∗ `

p
7→ v}

The empty permission `
0
7→ − is semantically equivalent

to emp. Permissions can also be combined or separated as
defined below:

[SEPARATION-F]

`
p
7→ v ∗ `

q
7→ v⇐⇒

{
`
p⊕q
7→ v if p⊕ q is defined

false otherwise

where p⊕ q =

{
p+ q if p, q, p+ q ∈ [0, 1]
undefined otherwise

According to the composition rules, a full permission (writ-
ing permission) is not compatible with another full permis-
sion or any other non-zero permissions. As a result, a program
verified by our logic would not have any race condition
where a write goes in parallel with other accesses to the same
non-atomic location.

D. OTHER RULES
Besides the rules highlighted in previous subsections, we also
have the following rules that make our reasoning system
complete. We gather them into groups for the convenience
of discussion.

The following inference rules depict properties of knowl-
edge assertions. That is, knowledge can be transformed back
to its normal form; knowledge symbol can be safely nested;
a piece of knowledge acts like pure information and thus the
separation assertion is equivalent to the logical conjunction; a
picked escrow, an assertion about atomic location and a pure
term are all knowledge; and a duplicable ghost term is also a
form of knowledge.

[KNOWLEDGE-MANIPULATION-1. . . 7]

�P⇒ P �P⇒ ��P �P ∗ Q⇔ �P ∧ Q

[σ ]⇒ �[σ ] t : t ′ τ ⇒ � t : t ′ τ t = t ′ ⇒ �t = t ′

t ·µ t = t

γ : t µ ⇒ � γ : t µ

The first inference rule below states that ghost terms can be
composed or separated according to their PCM definitions.
The second inference rule states that two atomic assertions

about the same location only coherence if the protocols are
same and the states are reachable from one to another or the
other way around.

[SEPARATION-1. . . 2]

γ : t µ ∗ γ : t ′ µ ⇔ γ : t ·µ t ′ µ

` : s τ ∗ ` : s′ τ ′ ⇒ τ = τ ′ ∧ (s vτ s′ ∨ s′ vτ s)

Following rules are about possible ghost moves. Particu-
larly, similar to the [UNSHARE-R] rule we have discussed
before, the fifth rule allows us to change an unrestricted
shareable assertion to its normal form. The seventh rule states
that a new ghost term can popup from thin air with a fresh
identifier. The eighth rule states that a ghost variable can be
updated to a new value as long as the new value is compatible
with the environment. The last two rules are inherited from
GPS/GPS+ to cope escrows.

[GHOST-MOVE-1. . . 8]
P⇒ Q
PV Q

PV Q
P ∗ RV Q ∗ R

PV Q QV R
PV R

〈P〉V P

trueV ∃γ. γ : t µ
∀tF : JµK. t1#µtF ⇒ t2#µtF

γ : t1 µ V γ : t2 µ

σ : P Q

QV [σ ]

σ : P Q

P ∧ [σ ]V Q
Note that, following the GPS/GPS+ logic for PCM terms

with type µ we use the shorthand notation t1#µt2 to indicate
that t1 ⊕ t2 is defined. The type declaration can be omitted
when it is obvious.

The following rule is for the memory allocation. Starting
with any valid precondition, alloc(n) allocates n fresh and
continuous locations, which are marked as uninitialised, and
uses the leading location as its return value.

[ALLOCATION]

{true} alloc(n) {x. x 6= 0 ∗ uninit(x) ∗ · · · ∗ uninit(x + n− 1)}

The following tow rules are for atomic initialisation. In the
precondition Pmust hold as changing an atomic location to a
particular state requires the state interpretation to be satisfied.

[INITIALISATION-1. . . 2]
P⇒ τ (s, v)

{uninit(`) ∗ P} [`]rel := v
{
` : s τ

}
P⇒ τ (s, v)

{uninit(`) ∗ 〈P〉} [`]rlx := v
{
` : s τ

}
[CONSEQUENCE-RULE]

P′ V P {P} e {x. Q} ∀x. QV Q′

{P′} e {x. Q′}
[FRAME-RULE]
{P} e {x. Q}

{P ∗ R} e {x. Q ∗ R}
Essentially, the following rules states that the special asser-

tions are not to be nested. Nesting special assertions is
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problematic as it may introduce things violate the exquisite
design of the whole system. For instance, assuming we allow
an assertion in the form of �〈P〉, it immediately becomes
shareable, 〈P〉, after an acquire fence which does not have
the releasing semantics. Therefore, we prevent such nesting
from the resource model level and these inference rules are
corollaries of our resource model design. Note that the anno-
tation (e.g. a) used in these rules can be any valid label (for
restricted shareable assertions) or nothing (for unrestricted
shareable assertions).

[ASSERTION-PROPERTY-1. . . 7]

�〈P〉a ⇒ false if EMP6∈JPKρ

�〈P〉a ⇒ false if EMP6∈JPKρ

�� P⇒ false if EMP6∈JPKρ

〈�P〉a ⇒ false if EMP6∈JPKρ

�� P⇒ false if EMP6∈JPKρ

〈P〉a ∗ 〈Q〉a ⇔ 〈P ∗ Q〉a
〈〈P〉a1〉a2 ⇒ false if EMP6∈JPKρ

[PURE-REDUCTION-AXIOM-1. . . 2]

{true} v {x. x=v} {true} v==v′ {x. x=1⇔ v=v′}

We also have the following rules for conditional state-
ments, let-binding, fork expression, and the repeat loop. The
fork rule states that given e can be safely executed from the
precondition Q, we can fork a new thread with the precon-
dition {P ∗ Q} to execute e and leaving only P to the parent
thread.

[CONDITIONAL]
{P ∗ v 6= 0} e1 {x.Q} {P ∗ v = 0} e2 {x.Q}

{P} if v then e1 else e2 {x.Q}
[LET-BINDING]

{P} e {x. Q} ∀x. {Q} e′ {y. R}

{P} let x = ein e′ {y. R}

[FORK]
{Q} e {true}

{P ∗ Q} fork e {P}
[REPEAT]

{P} e {x. (x = 0 ∧ P) ∨ (x 6= 0 ∧ Q)}

{P} repeat e end {x. Q}

V. CASE STUDIES
In this section, we first demonstrate our logic with an illus-
trative example using a release-sequence to pass messages
between three threads. Then, we further illustrate the power of
our logic by using it to verify a readers-writer-lock implemen-
tation where both the release-sequence and concurrent reads
are involved.

A. AN ILLUSTRATIVE EXAMPLE
In Fig. 11 we show a message passing program. In this
example, the initial values for x and y are both 0. In the first
thread, the message x is set to be 42 then y is set to be 1. As
the write operation to y is a release write, it initiates a release-
sequence that contains the following relaxed write and may
contain the CAS in the second thread. In the third thread,

FIGURE 11. Message passing using release-sequence.

y is repeatedly checked until a non-zero value is observed.
Then the message x is examined. Note that, for readability we
use x = e1; e2 as an equivalent expression for the command
let x = e1 in e2 (or simply e1; e2 if the evaluation result of
e1 is not used in e2). For the same reason, we use || to separate
the threads forked.

We assert that at the end of the execution, the reading of x
must return the new value 42. Intuitively, this is because for
the third thread to exit the loop, a non-zero value y must be
observed, which can only be the result from one of the writes
in the release-sequence led by the release write to y in the
first thread. Therefore a synchronisation is formed between
the release write to y and the acquire read of y, ensuring the
information about x = 42 is available when the their thread
reads the value of x. To formally reason about this procedure,
the protocols for x and y must be defined first. We call x’s
states xo (the initial state) and xn (the new state). Its protocol
Px allows one possible state transition: xo vPx xn. The state
interpretations can be defined as:

Px(s, v, t, c) , s = xn ∧ v = 42 ∧ t = 1 ∧ c = 0,

which states that thread 1 is allowed to change x to state xn
by writing 42 to it and it is not necessary to be a CAS.

There are four states for y: y0, y1, y2 and y3 and the fol-
lowing transitions are permitted:

y0 vPy y1, y1 vPy y2, y1 vPy y3, and y2 vPy y3.

The state interpretations are defined as:

Py(s, v, t, c) ,

s = y1 ∧ v = 1 ∧ t = 1 ∧ c = 0 ∧� x : xn Px
∨ s = y2 ∧ v = 2 ∧ t = 2 ∧ c = 1 ∧� x : xn Px
∨ s = y3 ∧ v = 3 ∧ t = 1 ∧ c = 0 ∧� x : xn Px ,

which indicates what values, threads, and the CAS indicators
are needed to move y to a corresponding state. Most impor-
tantly, the interpretations also specify that the stores must
have the knowledge � x : xn Px at hand before the actions
can be taken. Therefore, when the acquire load in the third
thread reads from any one of them, the knowledge about x
can be retrieved.

The proof of the program is illustrated in Fig. 12. As the
threads start with observing x and y in their initial states.
In the first thread, the relaxed store to x moves x to its
new state thus we have x : xn Px in (1.2). This resource
is essential for the next command to be performed as it is
required to know x : xn Px in the state interpretation of
y1. With x : xn Px at hand, the release write to y can be
performed and moves y to the state y1. Moreover, according
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FIGURE 12. Verification of the message passing program.

FIGURE 13. A broken release-sequence.

to the [RELEASE-STORE] rule and rules about knowledge it
canmake a restricted-shareable cope of x : xn Px , which can
be used by the relaxed store that follows.When processing the
relaxed store to y, the [RELAXED-STORE-2] rule is applied.
The release-sequence validity check will success as the only
state that can be in the middle of the release head y1 and the
target state y3 is y2, a state can only be reached with a CAS
operation, and CAS does not interrupt a release-sequence.

In different scheduling, the CAS from the second thread
may find y to be in state y0, y1, or y3 before its execution. The
CAS only success if it observes y1. But even when it fails, the
protocol still holds. According to the [ACQ-REL-CAS] rule,
the CAS operation’s postcondition can be derived as shown
in (2.2).

In the third thread, first y is repeatedly read. According
to the [REPEAT] rule and the definitions of Py, exiting the
loop needs y is at least at state y1 as that is denoted in (3.2).
According to the [ACQUIRE-LOAD] rule, some common
knowledge can be retrieved from the state interpretation,
which is x : xn Px in this case. Therefore, when x is read
in the last step, it is guaranteed to return the latest value 42.

Our verification system can also detect possible interrup-
tions in a release-sequences andwill not allow the verification
to go through. This is illustrated in the following example
shown in Fig. 13, where the CAS operation in the second
thread is changed to a relaxed store.

For the new program, state transitions and interpretations
for y have to be changed to:

y0 vPy y1 ∧ y0 vPy y2 ∧ y1 vPy y2 ∧

y1 vPy y3 ∧ y2 vPy y1 ∧ y2 vPy y3 ∧ y3 vPy y2
Py(s, v, t, c) ,

s = y1 ∧ v = 1 ∧ t = 1 ∧ c = 0 ∧� x : xn Px
∨ s = y2 ∧ v = 2 ∧ t = 2 ∧ c = 0

∨ s = y3 ∧ v = 3 ∧ t = 1 ∧ c = 0 ∧� x : xn Px

If we attempt to apply [RELAXED-STORE-2] to the
command [y]rlx := 3 and change y to state y3 using the

FIGURE 14. A readers-writer-lock.

restricted-shareable resource obtained from release head
y1, the validity check for the release-sequence (the second
premise) will fail as according y’s protocol definition, a non-
CAS state y2 from a different thread may be interrupting. The
verification will fail as we would have expected.

B. VERIFYING THE READERS-WRITER-LOCK
In this section, we use our reasoning system to verify the
readers-writer-lock implementation shown in Fig. 14. Note
that, this lock has a bounded capacity N, i.e. it allows at most
N readers (or one writer) to access the protected non-atomic
data field at a time. Note also that, for readability we use
the following field offsets: x.data , x + 0, which is the
location of the data field; and x.count , x + 1, which refers
to a counter that keeps track of the number of active players
(a reader is counted as 1, while a writer is solely counted
as N). Once the lock is created and initialised by the new()
function, a reader can atomically increase the counter by 1
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FIGURE 15. An execution of readers-writer-lock.

(when there are vacancies available, i.e. r1 6= N in Fig. 142)
to inform other players that there is an active reader, which
will prevent a writer from obtaining the lock. After using the
shared resource, the reader relinquishes the reader’s lock by
atomically decrease the counter by 1. A writer waits until the
counter is 0 (which indicates that there is no other reader nor
writer); then it atomically set the counter to N indicating that
the shared resource is fully occupied; then it can safely mod-
ify the non-atomic data. When finishing, the writer releases
the lock by setting the counter back to 0.

Our readers-writer-lock allows concurrent reads. To verify
such an algorithm, we use fractional permissions. The idea
is to divide the permission to access x.data into N pieces
(1/N each). Correspondingly, the value of the counter rep-
resents how many pieces of the fractional permissions have
been distributed. Atomically increasing the counter by 1,
a reader gains one piece of 1/N permission, which is suf-
ficient for it to perform the read action. However, a writer
will have to update the counter from 0 to N to retrieve the
full permission that consists of all of the N pieces. When
releasing the lock, the permissions go back to the invariant
(or protocol, in our terminology). This design is demonstrated
in the execution graph shown in Fig. 15, which is anno-
tated with the permissions transferred along the execution.
In this particular execution, Writer 1 first sets x.data
to 42 after obtaining the full permission. Then this infor-
mation is released together with the full ownership of the
protected data by the release write c. In fact, c initiates a
release-sequence, from which the two readers both retrieve
one piece of the 1/N permission to access x.data and read
the value 42. The rest of the permission goes to Writer 2
when j reads from the release-sequence (which is under-

lined): c
mo
→ d

mo
→ g

mo
→ f

mo
→ i

rf
→ j. The two 1/N permissions

assigned to the readers are also transferred to Writer 2

via release-sequences: f
mo
→ i

rf
→ j and i

rf
→ j. Thereupon,

Writer 2 can write to x.data freely.
Now we embed this idea into the definitions of the

counter’s protocol Pc and prove that our algorithm works as
intended while the protocol is preserved. Firstly, we choose
ci,j as the counter’s states, where i tracks how many pieces of
the fractional permissions have been issued so far and j repre-

2 v1 6= v2 , (v1 == v2) == 0

FIGURE 16. Verifying the initialisation of a Readers-Writer-Lock.

sents the number of the fractional permissions that have been
returned. As the capacity of our lock is N, we require that for
any valid state i ∈ [j, j+ N] holds. For valid states, the state
transitions are defined as ci,j vPc ci+1,j (when the counter is
increased and new permission is issued) and ci,j vPc ci,j+1
(when the counter is decreased and some permission is
returned). The state interpretation is defined as below:

Pc(s, v, t, u) , s=ci,j ∧ v= i− j ∧ (i= j ∨ i > j ∧ u=1)

∗∃v′. x.data
(N−v)/N
7−→ v′.

This definition specifies that at state ci,j, we have
x.count = i− j. Both CASes and atomic writes can change
x.count to 0 (i = j); however, we must use a CAS (u = 1)
to change x.count to other states (where i < j). Most impor-
tantly, at state ci,j wemust ensure that there is (N− (i− j))/N
permission under the guard of the protocol. This enables
a player to retrieve some permission when it increases the
counter (move i forward) and enforces a player to return
permission when it decrease the counter (move j forward).
With these preparations, we can verify our readers-writer-
lock algorithm. Firstly, we demonstrate in Fig. 16 that the
new() function prepares the lock invariant.
Then, as shown in Fig. 17, a reader begins with some

(maybe dated) knowledge of the counter. It repeatedly reads
from the counter until it reads some value that is not equal
to N, which indicates that the lock is not fully occupied.
According to the protocol, we can deduce that at state (2)
r2 is actually smaller than N. This is critical for our rea-
soning, as when the reader increases the counter in the next
step, we will have to know it would not bring the counter
over the bound and break the protocol. Therefore, after a
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FIGURE 17. Verifying the Reader’s Lock.

successful CAS that increases the counter by 1, the reader
exits the loop knowing that the protocol is preserved and a
fraction of the ownership of x.data is retrieved as shown
in state (4). At this stage, the resource retrieved is waiting-
to-be-acquired, as the CAS itself has only relaxed memory
order for loading. An acquire fence turns the resource to
its normal form at (5). Then x.date can be read according
to the [NON-ATOMIC-LOAD] rule. When unlocking, the
reader first gets the latest value of the counter (in state (7)).
As it have a fractional ownership of x.data at hand, we
can deduce that the environment cannot change the counter
to 0, which requires that all the fractions of x.data’s
ownership to be returned. This idea is also formalised in
the [RELAXED-LOAD] rule, according to which we can
only read states whose interpretation is compatible with the
resource we currently hold. Thus, we know that the counter’s
latest valuemust be greater than 0 and can be safely decreased
by 1 using a release CAS when we return the fractional
permission (state (9)). At last, we return the value read
from x.data.

The verification of thewriter’s program is shown in Fig. 18.
A writer’s lock can only be acquired when the value of the
counter is 0. When it reads 0 from the counter, it starts
attempting to update the counter to N using CAS. When
the CAS successes, the full ownership of x.data can be
retrieved according the protocol and the [RELAXED-LOAD]
rule (in state (3)). Then, an acquire fence makes the

FIGURE 18. Verifying the Writer’s Lock.

waiting-to-be-acquired resource locally available before it
can be changed to the new value v that is given in the param-
eters. Releasing the writer’s lock is easier than releasing a
reader’s lock. As the writer owns the full permissions to
the protected data (state (6)), it knows that the environment
cannot change the counter to another state (which requires
to add or remove fractional permissions from the protocol)
during the time it holes the lock. Therefore, the writer can
simply use a release write to change the counter back to 0 and
release the full ownership of the data.

VI. THE RESOURCE BASED SEMANTIC MODEL
With memory weakening behaviours, it is difficult to model
the semantics of C11 programs based on a single piece of
sequentially consistent heap shared by all threads. Instead,
GPS and GPS+ use resources and resource triples respec-
tively to depict the computational states of the threads and,
based on the concept of resource, GPS and GPS+ develop
an instrumented semantics to bridge the program logics and
the event/machine level semantics similar to the one we have
defined in §II. In this section we first give a brief introduction
to our predecessors’ semantic models, on top of which we can
introduce our new resource-map model that is much more
expressive and enables us to depict the behaviours of C11
release-sequences.

A. RESOURCES AND RESOURCE TRIPLES
In the GPS logic, resources are used to logically describe
computational states. A resource r ∈ Resource is a triple
combined with a physical location map, a ghost identity map,
and a set of known escrows: (5, g, 6). For a non-atomic
location, the physical location map 5 maps it to some value
na(V ); for an atomic location, 5 maps it to a trace of states
governed by the corresponding protocol at(τ, S); and there
are also infinite uninitialised locations are mapped to ⊥.
Similarly, the ghost identity map tracks the ghost values for
our auxiliary variables. All established escrows are recorded
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in the known escrow set. Resources form a PCM with com-
position ⊕. Some useful definitions are:

emp , ((λn. ⊥), (λµ. λn. εµ),∅)

r ≤ r ′ , ∃r ′′. r ⊕ r ′′ = r ′

brc , {r ⊕ r ′ | r ′ ∈ Resource}

With resources defined, the semantics for a GPS
proposition can be defined as a set of resources, i.e.,
JPKρ ⊆ Resource, where ρ is a term interpretation assumed
for protocol states and other PCM terms. Note that, GPS
propositions depict the lower bound of the states, that is:
∀r ∈ JPKρ . ∀r ′#r . r ⊕ r ′ ∈ JPKρ .
To support the reasoning about C11 fences, in GPS+

we introduced two new types of assertions, i.e. share-
able assertions and waiting-to-be-acquired assertions. Cor-
respondingly, its semantic representation is lifted from the
resource based model to a model based on resource triples.
A resource triple (rL, rS, rA) combines three resources to
represent the locally available resource, shareable resource,
and the resource retrieved from other threads that is waiting
for an acquire action to merge it into the local resource.

B. NEW RESOURCE MAP BASED MODEL
In this work, to deal with the even subtler restricted sharable
assertions, we extend the underlying resource model in
GPS/GPS+ logic to amore expressive label indexed resource
map:

R ∈ ResMap , Label → Resource

where Label , {L,S,A} ∪ S and S is the domain of
the atomic locations’ states. There are three special
labels, R(L),R(S), and R(A), which respectively repre-
sent the local, (unrestricted) shareable and the waiting-to-
be-acquired resources. For a resource indexed by a state,
R(s) (s ∈ S), it represents the resource that is made shareable
at state s. The idea behind resource maps is to partition
the resource available to a thread into fragments and label
them for easier manipulation. When putting the resources
under all the different labels together, we should get a mean-
ingful resource back. Therefore, we define that a resource
map R is well-formed if the sum of all its components, i.e.
⊕l∈LabelR(l) (or⊕R for short), is defined.
Similar to the resources introduced in the GPS logic,

the ResMap is also a PCM. Its composition operation ⊕
is point-wisely lifted from the resource composition opera-
tions. We say two ResMaps are compatibleR#R′ if we have
R⊕R′ defined. There is an identity element EMP, which
represents empty for all labels: ∀l. EMP(l) = emp. Like that
in the GPS logic, propositions in GPS++ are lower bounds
of the described states:

∀R ∈ JPKρ . ∀R′#R.R⊕R′ ∈ JPKρ

The interpretations for GPS++ propositions are also lifted
to the ResMap-based model. To check if a resource map
R satisfies a ‘‘basic’’ proposition P (an assertion that does

not contain knowledge, shareable, or waiting-to-be-acquired
parts) only its local component is concerned. For instance,
R ∈ J ` : s τ Kρ ⇔ ∃S. R(L).5(`) = at(τ, S) ∧ s ∈ S.
For knowledge, (restricted/unrestricted) shareable, and
waiting-to-be-acquired assertions, the resources under par-
ticular labels are picked out and checked:

R ∈ J�PKρ ⇔ |EMP[L 7→ R(L)]| ∈ JPKρ

R ∈ J〈P〉Kρ ⇔ EMP[L 7→ R(S)] ∈ JPKρ

R ∈ J〈P〉sKρ ⇔ EMP[L 7→ R(s)] ∈ JPKρ

R ∈ J�PKρ ⇔ EMP[L 7→ R(A)] ∈ JPKρ

Note that the stripping operation on a resource map |R| is a
point-wise lifted GPS stripping, that is:

|R| , R′ ∧ ∀l.R′(l) = |R(l)|.3

Note also that,R[l 7→ r] represents a new resource map that
is generated from R by updating R(l) to r . The third defini-
tion gives the semantics for our newly introduced restricted-
shareable-assertions. Intuitively, it states thatR satisfies 〈P〉s
if the resource indexed by its s label contains the information
needed by P. The semantics for other special assertions is
defined in a similar way. By defining the semantics like this,
we can securely rule out the undesirable nesting of special
assertions. For instance, one can not construct aR that satis-
fies �〈P〉 where P is not emp.

Composed propositions like the separating conjunction are
straightly lifted to the resource map based model:

R ∈ JP1 ∗ P2Kρ ⇔ ∃R1,R2.R = R1 ⊕R2 ∧

R1 ∈ JP1Kρ ∧R2 ∈ JP2Kρ

The semantics for other types of assertions is left in
appendix.

1) MODELLING PHYSICAL LOCATIONS
In GPS/GPS+ na(V ) is used to represent a non-atomic
resourcewith valueV assigned to a non-atomic location in the
physical location map5. A na(V ) resource is not duplicable
as it is only compatible with the empty resource ⊥. As we
now support fractional permissions to non-atomic locations,
we use na(V , f ) to represent a non-atomic resource where
f ∈ [0, 1]. We have the composition of non-atomic resource
defined as:

na(V , f )⊕⊥ , na(V , f )

na(V , f1)⊕ na(V , f1) , na(V , f1 + f2) if f1 + f2 ∈ (0, 1]

Following GPS/GPS+, an atomic location’s value is mod-
elled as at(τ, S) instead of some concrete values. The τ is
the protocol the location follows, and S is a trace (totally
ordered set) of states it has gone through. One atomic value is
compatible with another if they follow the same protocol and
the union of their traces remains to be a well-formed trace.
For atomic values, we have following shorthand definitions:

at(τ, S) vτ at(τ, S ′) , ∀s ∈ S. ∃s′ ∈ S ′. s vτ s′

π ≡τ π
′ , π vτ π

′
∧ π ′ vτ π
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FIGURE 19. Rely conditions for actions.

Intuitively, the first definition depicts the fact that the
atomic value at(τ, S ′) is newer than at(τ, S). In practice,
if a thread holding at(τ, S) for an atomic location ` dis-
covers that the environment has changed their copy of ` to
at(τ, S ′); then it may update ` to the new value as well. The
second definition depicts the situation that two states under
the same protocol aremutually transferable. This usually hap-
pens when two unsynchronised threads are going to change
a same atomic location to different states. Therefore, the two
states must be defined as mutually transferable to cope the
unpredictable scheduling.

A physical location can also be uninitialised uninit or
unallocated ⊥.

2) GHOST MOVES
Similar to that in GPS/GPS+, the semantics for our ghost
moves are given by resource-level ghost moves:

ρ |H PV Q , ∀R ∈ JPKρ .RV JQKρ .

The difference is that resource maps are now used at the
resource-level for greater expressiveness. For example, our
new ghost move [UNSHARE-R] 〈P〉s V P is validated by the
following resource-level rule:

R′[L] = R[L]⊕ r l ∈ {S} ∪ S R′[l]⊕ r = R[l]
∀l ′ 6= L ∨ l.R′[l ′] = R[l ′]

RV bR′c
Intuitively, it states that a resource map R can move some

resource r from one of its shareable components (unrestricted
shareable component L or restricted shareable component
indexed by one of the labels in S) back to its local component.

The resource-level ghost move rules are designed to avoid
modifying physical states; therefore, the ghost moves are
guaranteed to only change auxiliary/logical computation
states. The rest of the resource-level ghost move rules are left
in appendix.

3) RELY/GUARANTEE DEFINITIONS
Following GPS/GPS+, we provide an instrumented seman-
tics for all actions allowed in our model in a rely/guarantee
style. But unlike GPS/GPS+ instrumented semantics which

are built on resources or resource triples, our actions manip-
ulate more expressive resource maps, which gives us the
flexibility to depict the subtle differences between all kinds
of actions including their interactions in release-sequences.
A full definition of the rely and guarantee conditions are
presented in Fig. 19 and Fig. 20.

First we introduce the definition of environment moves
envMv(R, `,V ), which depicts a set of resources that could
be acquired4 by reading the location ` with value V .

rrf ∈ envMv(R, `,V )
, ∃τ, s. EMP[L 7→ rrf] ∈ interp(τ )(s,V ) ∧
∀l.R(l)#rrf ∧R(L)[`] vτ rrf[`] ≡τ at(τ, {s})

The resource that could be acquired is depicted by
interp(τ )(s,V ), which is described by the state interpretation
of the state read s, i.e. Jτ (s,V )Kρ . The R in the definition is
the resource map the current thread holds. It is used to limit
the values can be read as in a well-behaving environment
it is impossible to perform a write operation that requires
resources incompatible withR.
For an action α and its precondition represented byR, the

rely condition rely(R, α) describes which kind of resource
mapsRrely (with potential environment changes taken under
consideration) can be accepted for α to be safely executed.
To help the readers understand the rely conditions defined
in Fig. 19, we interpret them in an intuitive way below.
First, a non-atomic read relies on its current resource map’s
local component to have the expect value to read and the
permission for the designated memory location is greater
than zero. A relaxed read relies on the condition that there
is some environment move to be read from and then the
resource retrieved can be put into the local resource map’s
waiting-to-be-acquired component. Meanwhile, an acquire
read can put the retrieved resource directly into the resource
map’s local component. Note that only knowledge can be
retrieved for read operations. The rely conditions for the
atomic update operations are similar to the read operations
with corresponding memory order, except that they can
retrieve non-knowledge resource.

4 Recall that resources can be transmitted when a thread reads an atomic
location written by another thread.
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A guarantee condition guar(Rpre,R, α) signifies that the
action α guarantees to generate some resources (Rsb, rrf),
in which the resourcemapRsb is left for its sb successors and
the resource rrf could be passed to its potential readers. Note
that the action’s precondition is represented byRpre; however
the action is actually executed with R due to the possible
environment moves. We use at to represent atomic memory
orders (rel or rlx for writing orders; acq or rlx for read-
ing orders), when it is unnecessary to specify which particular
order is concerned. Intuitively, a skip action guarantees that it
gives nothing if some action tries to read from it; and leaves
everything to its sb successor. An allocation action leaves its
sb successor a resource map with newly allocated locations.
The read actions guarantee that the resource map left for their
sb successor contains some non-trivial information about the
location read. A non-atomic write requires full permission for
the target location (or the location is uninitialised) in R and
leaves the location with updated value in the resource map
for its sb successor. The guarantee conditions for relaxed
and release write will be compared below. Atomic update
operations have the same guarantee conditions with the write
operations having the same memory order. For release fence,
it can move resource between the resource map’s local and
shareable components; and the acquire fence may move
resource between the resource map’s local and waiting-to-be-
acquired components.

With the support from resource map based model, our new
rely/guarantee definitions can depict the subtleness of the
C11 release-sequence behaviours. For instance, both relaxed
and release write can send some information to their potential
readers; but their guarantee definitions are very different. A
relaxed write who changes the target location to state s can
only send out the information made shareable by previous
release fences or valid release heads, which is represented
using s′ in the following definition:

validS(s) ,

 s′ | ∃τ. s′ vτ s ∧ sameThread(s, s′) ∧
∀s′′. s′ vτ s′′ vτ s⇒ sameThread(s, s′′)
∨ isCAS(s′′)


Therefore, from R′ (the resource map after the writing
takes effect), a relaxed write can take a rrf that satisfies
its state interpretation from the labels valid for it to share
(rrf ≤⊕l∈validS(s)R′(l)), and leave everything else (Rsb)
to its sb successor. Note that we ensure that the internal
participation of Rsb is consistent with R′ (no fragment of
resources is misplaced under a different label) by requir-
ing: ∀l.Rsb(l) ≤ R′(l). On the other hand, a release write
can directly use the resource under its local label,5 i.e.
rrf ≤ R′(L). In addition, a release write can make some
resource (r2) restricted shareable to the following writes in its
release-sequence. The relaxed and release atomic updates are
similar to the corresponding writing actions only that they can
use the resource from their reading sources (rin) to fulfil their

5If a resource under a shareable label is demanded, it can be moved to
local via ghost move first.

target states’ interpretations, as they can be always considered
as a part of release-sequences.

VII. SOUNDNESS
In this section, we formulate the soundness of our proposed
program logic. As in GPS/GPS+, our reasoning framework is
compositional. That is, triples can be proved individually and
then a bigger proof can be generated by connecting the proved
triples with the let and fork rules provided. To bridge
the gap between the localised reasoning and the threads’
global interactions and non-sequential-consistent behaviours,
we formulate the notions of local safety and global safety and
provide the soundness proof in both layers.

A. LOCAL SAFETY
The rely-guarantee reasoning [15], [29] is deeply rooted in
the soundness of GPS++. As GPS/GPS+, we formulate
local safety to indicate that given a thread’s rely-condition
respected by other threads’ guarantee-conditions, it confirms
to its own guarantee. However, resource maps are used as the
base model in our proofs to capture the subtle C11 synchro-
nisation features such as release-sequences.

Based on the rely and guarantee definitions we have intro-
duced in the previous section, we define LSafen(e,8) as the
set of resource maps on which the command e can safely exe-
cute for n steps and end up with8, which is the interpretation
of triple’s postcondition with the return value filled in place
holders, being satisfied:

R ∈ LSafe0(e,8) , always

R ∈ LSafen+1(e,8) , If e ∈ Val thenRV J8(e)Kρ

If e = K [fork e′] then

R ∈ LSafen(K [0],8) ∗ LSafen(e′, true)
If e

α
−→ e′ then ∀RF #R. ∀Rpre V rely(R⊕RF , α).∃P′.

Rpre ∈ JP′Kρ ∧ ∀R′ ∈ JP′Kρ . (Rpre,R′) ∈ wpe(α)
H⇒ ∃Rpost . (Rpost ⊕RF ,−) ∈ guar(Rpre,R′, α)
∧Rpost ∈ LSafen(e′,8)

It is worth noting that with the possible environment moves
taken under consideration, the expression e actually works on
some R′ that follows the action’s rely condition. Note also
that the wpe provides a sanity check to rule out the obvious
problematic environment changes.

α (Rpre,R′) ∈ wpe(α) if
A(`1..`n) ∀i. 1 ≤ i ≤ n⇒ R′(`i) = ⊥
W(`,−,at) Rpre(L)[`]=at(−) ∧R′(L)[`]=at(−) ⇒

∃RE ∈ envMv(Rpre, `,−).
RE (L)[`]=R′(L)[`]

U(`,−,−,−) Rpre(L)[`]=at(−)⇒R′(L)[`]≡Rpre(L)[`]

Intuitively, the definitions above state that a memory allo-
cation action will only allocation fresh locations; an atomic
write may observe its target location at a state other than
the state in its precondition, while this is not allowed for an
atomic update action.
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FIGURE 20. Guarantee conditions for actions.

As that in GPS and GPS+, we formulate the local sound-
ness definition as:

ρ � {P} e {x.Q} ,∀n,R ∈ JPKρ .RV LSafen(e, λx. JQKρ).

The local soundness provides semantics for our Hoare triples.
It states that starting from any computation state R in the
triple’s precondition P, it is safe for the expression e to
execute as many steps as necessary; and when e terminates,
we can expect that all its possible result states satisfies the
triple’s postcondition λx. JQKρ , where x is e’s return value.
Ghost moves and corollary inference rules also play an

important role in our reasoning system. To validate the (local)
soundness of our reasoning system, we first demonstrate the
correctness of our ghost move and corollary inference rules
introduced in §IV.

Our reasoning system is featured with new corol-
lary inference rules (in the form of P⇒ Q), namely
[SEPARATION-R], [SEPARATION-F], [SEPARATION-
1. . . 2], and [KNOWLEDGE-MANIPULATION-1. . . 7], to
deal with the newly introduced types of assertions. These
rules’ correctness is ensured by the enhanced resource model
and is formalised in Corollary 1 (whose proof is left in the
appendix).

Corollary 1 (Soundness of Corollary Inference Rules):
Our corollary inference rules are semantically sound. That
is, given an inference rule allowing P⇒ Q, we have
∃R. bRc ∩ JPKρ ⊆ JQKρ

In our reasoning system we support ghost moves depicted
by rules [UNSHARE-R] and [GHOST-MOVE-1. . . 8]. A
ghost move is a transition that only modifies auxiliary/logical
computation states. This is ensured by the resource-level
ghost moves and formalised in Corollary 2 (whose proof is
left in the appendix).
Corollary 2 (Soundness of Corollary Inference Rules):

Our ghost move rules are semantically sound. That is,
given a ghost move rule allowing PV Q, we have
∀R ∈ JPKρ .RV JQKρ .

Then we formalise the two of our structural rules below.
Theorem 1 (Consequence Rule): Given ρ � P′ V P,

ρ � {P} e {x. Q}, and ∀x. ρ � QV Q′, we can prove that
ρ �

{
P′
}
e
{
x. Q′

}
.

Proof: From the first premise of the theorem, we have
the following property ∀R ∈ JP′Kρ .RV JPKρ .
From the second premise of the theorem, we have the fol-

lowing property ∀n,R ∈ JPKρ .RV LSafen(e, λx. JQKρ).
According to [GHOST-MOVE-3] rule (ghost transitive

rule), we have the proof obligation transformed to the form
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(1) ∀n,R ∈ JP′Kρ .RV LSafen(e, λx. JQKρ). So far, the
precondition strenthning is proven.

In (1), we choose an arbitrarily large n, and unfold LSafe
by its definition. For an e that is terminating, the proof obliga-
tion can be reduced to ∀n,R ∈ JP′Kρ .RV λx. JQKρ . From
the third premise, we have ∀x. ∀R ∈ JQKρ .RV JQ′Kρ . By
putting them together the consequence rule is proven. �
Theorem 2 (Frame Rule): Given ρ � {P} e {x. Q},

we have ρ � {P ∗ R} e {x. Q ∗ R}.
Proof: From the premise of the theorem, we have

the following property: ∀n,R ∈ JPKρ .RV LSafen(e, λx.
JQKρ).

With this, we are going to prove the term that
∀n,R ∈ JP ∗ RKρ .RV LSafen(e, λx. JQKρ) ∗ JRKρ .
According to the definition of separation assertions, the

proof obligation can be transformed into:

∀n,R1,R2.R1#R2 ∧R1 ∈ JPKρ ∧R2 ∈ JRKρ ⇒ R1 V

LSafen(e, λx. JQKρ) ∧R2 ∈ JRKρ

By simplification, we can translate the formula above into
the form ∀n,R1 ∈ JPKρ .R1 V LSafen(e, λx. JQKρ), which
matches the premise.

The frame rules is proven. �
Finally, we formalise the local soundness of our reasoning

system as shown below.
Theorem 3 (Local Soundness): Our verification logic is

locally sound. That is, if {P} e {x. Q} is provable, then for all
closing ρ we have ρ � {P} e {x. Q}.

Proof: The expression e may be a single expression
or a series of expressions connected by let-binding. We first
prove that given a single expression e, our reasoning rules are
locally sound. Then we prove by structural induction that our
reasoning system is locally sound for e with arbitrary layers
of let-binding.

For the rule [PURE-REDUCTION-1], where e is a value v
(or an arithmetic term that results in v), we are going to prove
that ∀n,R ∈ JtrueKρ .RV LSafen(v, λx. Jx = vKρ). The
case n = 0 holds trivially. In the case that n > 0, as e ∈ Val
we have: RV LSafen(v, λx. Jx = vKρ) , RV λx.
Jx = vKρ v, which can be derived from R ∈ JtrueKρ that
is given by the precondition. The proof for [PURE-
REDUCTION-1] is finished.

For the rule [PURE-REDUCTION-2], where e is a rela-
tional statement v == v′, we are going to prove that for all n
andR ∈ JtrueKρ :
RV LSafen((v == v′), λx. Jx = 1⇔ v = v′Kρ). Accord-
ing to the event-step rules in our semantics, the expression
v == v′ will be evaluated as 1 if v = v′ and 0 other-
wise. Therefore, in the case v = v′ we have that the term
RV LSafen((v == v′), λx. Jx = 1⇔ v = v′Kρ) is seman-
tically equivalent to R ∈ J1 = 1⇔ v = v′Kρ), which can be
further reduced to R ∈ JtrueKρ that is given by the precon-
dition. Similarly, in the case v 6= v′, we have that the term
RV LSafen((v == v′), λx. Jx = 1⇔ v = v′Kρ) is seman-
tically equivalent toR ∈ J0 = 1⇔ falseKρ) which can be

derived from R ∈ JtrueKρ that is given by the precondition.
The proof for [PURE-REDUCTION-2] is finished.

For the [FORK] rule, where e = fork e′, we are going
to prove that ∀n,R ∈ JP ∗ QKρ .RV LSafen((fork e′),
JPKρ), with the premise ∀n,R ∈ JQKρ .RV LSafen(e′,
JtrueKρ). The case n = 0 is trivial. In the case n > 0, accord-
ing to the definition of local safety, the proof obligation

R ∈ LSafen((fork e′), JPKρ)

is equivalent to the

R ∈ LSafen−1(0, JPKρ) ∗ LSafen−1(e′, JtrueKρ),

and this formula can be further reduced to the follow-
ing form according to the definitions of the local safety:
R ∈ JPKρ ∗ LSafen−1(e′, JtrueKρ). According to the defini-
tion of separation assertions we have:

∀R ∈ JP ∗ QKρ . ∃R′,R′′.R = R′ ⊕R′′

∧R′ ∈ JPKρ ∧R′′ ∈ JQKρ .

By putting together with the premise, we have

∀R ∈ JP ∗ QKρ . ∃R′,R′′.R = R′ ⊕R′′

∧R′ ∈ JPKρ ∧R′′ ∈ LSafen−1(e′, JtrueKρ),

which implies the proof obligation. The proof for [FORK] is
finished.

For the rules: [ALLOCATION], [INITIALISATION-1
. . . 2], [ACQUIRE-LOAD], [RELAXED-LOAD], [NON-
ATOMIC-LOAD], [RELEASE-STORE], [RELAXED-
STORE], [NON-ATOMIC-STORE], [ACQ-REL-CAS],
[RLX-REL-CAS], [ACQ-RLX-CAS-1], [ACQ-RLX-
CAS-2], [RLX-RLX-CAS-1], [RLX-RLX-CAS-2], [RELE-
ASE-FENCE], and [ACQUIRE-FENCE], where e is allo-
cation, initialisation, read, write, CASes, or fence. The
event-step used would be e

α
−→ v, where α could be

A,R,W,U, or F. We prove the soundness of the triple by
unfolding the rely (Fig. 19), guarantee (Fig. 20), and wpe
definitions corresponding to action α; then it is trivial to
check that

∀n > 0,R ∈ JPKρ .RV LSafen(e, Jx.QKρ)
where RV LSafen(e, Jx.QKρ) ,

∀RF #R. ∀Rpre V rely(R⊕RF , α).

∃P′.Rpre ∈ JP′Kρ ∧ ∀R′ ∈ JP′Kρ .
(Rpre,R′) ∈ wpe(α)⇒
∃Rpost . (Rpost ⊕RF ,−) ∈ guar(Rpre,R′, α)
∧Rpost ∈ J8(v)Kρ

We have also discussed that when n = 0, the local safety
holds by definition. Therefore the aforementioned rules are
locally sound.
For the case e = if v then e1 else e2 in the rule of

[CONDITIONAL], we prove that:

∀n,R ∈ JPKρ . RV LSafen((if v then e1 else e2), λx. JQKρ ).
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In the case v 6= 0, we can add the pure assertion to triple’s
precondition according to the semantics for assertions, i.e.
∀R.R ∈ JPKρ ⇒ R ∈ JP ∧ t 6= 0Kρ = JP ∗ v 6= 0Kρ ; then
the triple is validated by the first premise. Similarly, in the
case of v = 0, the triple is validated by the second premise.
The proof for [REPEAT] is finished.
For the [REPEAT] rule, where e = repeat e′end,

we prove that ∀n,R ∈ JPKρ .RV LSafen((repeat e′

end), λx. JQKρ). In the case that e′ is evaluated as some
non-zero value v, The proof obligation is reduced to
∀n,R ∈ JPKρ .RV λx. JQKρ , which is validated by the
premise. Otherwise according to the event-step semantics
for repeat and conditional expressions, the definition of local
safety, the rely/guarantee conditions for S action, this proof
obligation can be reduced to that for all n > 0 andR ∈ JPKρ
RV LSafen−1((repeat e′end), λx. JQKρ) This transfor-
mation can be recursively performed until e′ is evaluated
as non-zero or it reaches LSafe0, which holds trivially. The
proof for [REPEAT] is finished.
For the [LET-BINDING] rule, where e = (let x =

e′ in e′′), we prove that:

∀n,R ∈ JPKρ .RV LSafen((let x = e′ in e′′), λy. JRKρ)

by using structural induction. We first prove triples with
single layer let-binding, that is e′ is one of the aforementioned
expresses and does not contain let-binding,6 as the base case.
For e = (let x = fork e′ in e′′), we have following

premises:

ρ � {P ∗ Q} fork e′ {x. P} and ρ � ∀x. {P} e′′
{
y. P′

}
.

We are going to prove that ρ � {P ∗ Q} e′′[0/x]
{
y. P′

}
.

From the first premise, we have:

∀n,R ∈ JP ∗ QKρ .R ∈ LSafen(fork e′, Jx. PKρ),

which can be unfolded to the following from according to the
definitions of local safety:

∀n,R ∈ JP ∗ QKρ . R ∈ LSafen(JP[0/x]Kρ ) ∗ LSafen(e′, true).

From the second premise, we have ρ � ∀x. {P} e′′
{
y. P′

}
and thus:

∀n,R′∈JP[0/x]Kρ .R′∈LSafen(let x=0in e′′, Jy. P′Kρ)
= LSafen(K [0], Jy. P′Kρ).

Therefore, we can derive that:

∀n,R ∈ JP ∗ QKρ .
R ∈ LSafen(K [0], Jy. P′Kρ) ∗ LSafen(e′, true).

For other single expressions let us assume that e′

can be reduced to numerical value v. According to the
event-step definition for let-binding and the corresponding

6 Technically speaking, composed expressions like conditional expres-
sion, fork expression and the repeat expression may contain let-binding.
However, as long as they terminate with numerical values we can treat them
as ‘‘single expressions’’.

rely/guarantee definitions, the proof obligation can be trans-
formed into ∀n,R ∈ JPKρ .RV LSafen(e′′[v/x], λy. JRKρ).
At the same time the first premise can be simplified as
∀R ∈ JPKρ .R ∈ JQKρ ; together with the second premise, the
proof obligation is met.

Then we move on to the inductive case. Let us
assume ρ � {P} e′ {x. Q}, where e′ = (let x = e1 in e2),
and prove ρ � {P} let x = e′ in e′′ {x. Q}. According to
the event-step definition for evaluation context, we need
to evaluate e′ first. According to the assumption, e′

can be savely executed as many steps as possible until
it is reduced to a numerical value v. Then we have
∀R ∈ JPKρ .R ∈ JQKρ ; together with the second premise
∀n, v,R ∈ JQKρ .R ∈ LSafen(e′, λy. JRKρ), the soundness
of the triples:

∀n,R ∈ JPKρ .R ∈ LSafen(e′[v/x], λy. JRKρ)

is proven. �

B. GLOBAL SAFETY AND THE FINAL SOUNDNESS
THEOREM
As our target programs assume a concurrent environment,
in addition to their local safety, it is also necessary to
demonstrate that given the triple {P}e{x.Q} provable the exe-
cutions of e are free from data races, memory errors, nor dan-
gling reads under all possible threads interleaving. Therefore,
we formulate the global soundness of the proposed program
logic similar to its predecessors GPS/GPS+. However the
new logic provides full support to C11 release-sequences,
whichmakes it much trickier to prove some critical properties
such as data-race-freedom.

Before we can formally define global soundness, we first
provide definition for program execution (with an arbitrary
number of steps) execs(e) and the semantics for C11 pro-
grams JeK in Fig. 21 on top of the machine-step semantics
discussed earlier in §II.

The definitions indicate that the result of a program e is
either some value that can be validated by a legal execution
or an error state if e allows race conditions or memory errors
in its execution.

With these preparations, we define the global soundness as:

if ` {true} e {x.P} then JeK ⊆ {V | JP[V/x]K 6= ∅}.

Intuitively, this definition requires that a provable Hoare triple
about a close program e must precisely predict the result of
e regarding to its executions under the C11 memory model.
To demonstrate the global soundness of our proposed Hoare
triples, a property called global safety is defined as below:

GSafen(T ,G,L) ,
valid(G,L,N )=N∧compat(G,L)∧conform(G,L,N )∧

∀a∈N . L(sb, a,⊥)=⊕{R | ∃i. Tins(i)= (a,−,R,−)} ∧
∀i. Tins(i) = (a, e,R,8) H⇒ R ∈ LSafen(e,8)
where

N ,dom(G.A) ∧Tins∈ IThreadMap, {N→ (a, e,R,8)}
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FIGURE 21. Semantics for program execution.

We annotate/label the edges in our execution graphs with
the computation resources they carry from one node to
another and a labelling maps L is used to record that
information. The Tins is an instrumented thread pool, in
which all threads are depicted in tuples like (a, e,R,8).
We have a as a thread’s last generated event in the graph,
e as the thread’s continuation, R as the resource map
the thread currently holds (representing the thread’s com-
putation state), and the postcondition expected after the
execution of the thread is depicted by 8. The instru-
mented thread pool Tins can be down casted to a machine
thread pool T (recall §II-B) using erase(Tins), where
∀i. Tins(i) = (a, e,R,8)⇒ erase(T )(i) = (a, e). The pred-
icate valid signifies that a set of nodes and with their edges
properly labelled. By requesting N , dom(G.A), the global
safety definition requires all nodes in the graph are prop-
erly labelled. The compat(G) indicates that for any group
of hb-independent edges in the event graph G, the sum of
resources they carried is defined. We call a group of edges
are hb-independent if for any pair of the edges (a, a′) and
(b, b′) we have ¬hb=(a′, b). Note that, we only consider
the compatibility of the resource maps’ local components,
which should be sufficient as the local components are the
actual resources involved in computation. We also show in
our proofs that when the resources under other labels merged
to local, the compatibility keeps preserved. The conform
states that themo order for all atomic writes is consistent with
the predefined state transitions.

Intuitively, the global safety definition GSafen(T ,G,L)
indicates that based on an event graph G and with the resource
maps recorded in L, it is safe for any thread from the thread
pool T to execute n steps. We aim to demonstrate that this
global safe property is to be preserved during the entire execu-
tions of legal programs allowed in our logic. To achieve this,
we introduce the method we used to update the labellingL for
the event graph when a new node (i.e., a new event) is added.
The labelling process is then formalised into five lemmas
which will demonstrate the restoration of the global safety
for the event graph with the new node added. In this section,
we focus to convey the high-level ideas about this process
leaving the lemmas’ proof and the detailed definitions to the
appendix.

When adding a node the the event graph, its sb incoming
edge is to be labelled first. Suppose that the node to be added
is b and a is its sb predecessor in the event graph. Initially,
node a’s sb outgoing edge points to a sink node, i.e., sb(a,⊥),
and is labelled with the resource map Rsb which will be
passed to a’s sb successor. If a is followed by a fork command
and b is the first event in the forked thread, part of the Rsb,
namelyR, is taken and used to label the sb(a, b) edge, while

the remaining resourceRrem is left in a’s sb sink edge for a’s
local thread. If there is no new thread involved and b is from
the same thread as a, the entire Rsb should be used to label
sb(a, b). Note that we assume there is a S node with all its
outgoing edges labelled as empty in the initial event graph;
therefore if b is the first event generated in the program, for
generality it will take that skip node as its sb predecessor.
We illustrate this process in Fig. 22 and formalise it as the
following lemma.
Lemma 1 (Step Preparation):

if consistentC11(G)
∧consistentC11(G′)
∧dom(G′.A) = dom(G.A) ] b
∧L(sb, a,⊥) = R⊕Rrem

∧dom(G.A) ⊆ valid(G,L,dom(G.A))
∧compat(G,L) ∧ conform(G,L,N )

∧∀c ∈ dom(G.A). G.A(c) = G′.A(c)
∧G′.sb = G.sb ] [a, b)
∧∀c ∈ dom(G.A). G.rf(c) = G′.rf(c)
∧G′.mo ⊇ G.mo

then ∃L′. dom(G.A) = valid(G′,L′,dom(G.A))
∧compat(G′,L′)
∧conform(G′,L′,dom(G′.A))
∧L′(sb, a,⊥) = Rrem

∧in(L′, b, sb) = R
∧in(L′, b, rf) = EMP

∧in(L′, b,esc) = EMP

∧∀a′ 6= a. L′(sb, a′, b) = EMP

∧out(L′, b,all) = EMP

∧∀a′ 6= a. L′(sb, a′,⊥) = L(sb, a′,⊥)

Note that the shorthand notations in(L, a, t) and
out(L, a, t) correspondingly stand for the sum of resource
maps labelled with a’s incoming or outgoing edges of type t.

Next, the new node’s rf incoming edge will be labelled.
Note that this labelling process is for atomic reading
actions and CASes. A non-atomic load simply returns the
value recorded in its thread-local resource map. Meanwhile,
an atomic load (or a CAS) is able to read from any writer with
respect to the C11 memory model consistentC11. Initially,
a writing event’s rf outgoing resource, which can be referred
to as rrf, is associated to its rf sink edge. When the new
node reads from that write, their rf edge is labelled following
four different approaches according to the read event’s type
(atomic read or CAS) and the memory order used (relaxed
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FIGURE 22. Labelling event b’s sb incoming edge.

or acquire). If the new event is a relaxed read, its rf incoming
edge is labelled with a resource map EMP[A 7→ |rrf|], indicat-
ing that it can retrieve some knowledge from the write but the
knowledge is ‘‘waiting-to-be-acquired’’. If the new event is
an acquire read, the retrieved knowledge is directly put under
the local label: EMP[L 7→ |rrf|]. The labelling for the CASes
is similar, but for CASes the information can be retrieved is
not limited to knowledge. Note that, we always left |rrf| in the
writer’s rf sink edge for other readers to read. This process is
illustrated in Fig. 23. By labelling the new rf edge in this way,
the following lemma can be proved.
Lemma 2 (Rely Step):

if G.A(a) = α
∧dom(G.A) = N ] a

∧N ∈ prefix(G) ∧ N ⊆ valid(G,L,N )

∧in(L, a,all) = out(L, a,all) = EMP

∧compat(G,L) ∧ conform(G,L,N )

∧consistentC11(G)
∧in(L, a, rf) = EMP ∧ in(L, a,esc) = EMP

∧out(L, a,all) = EMP

then ∃L′. N ⊆ valid(G,L′,N )

∧compat(G,L)
∧conform(G,L,N )

∧in(L′, a, sb)⊕ in(L′, a, rf) ∈ rely(in(L′, a, sb), α)
∧in(L′, a,esc) = out(L′, a,all) = EMP

∧∀b, c. L′(sb, b, c) = L(sb, b, c)
∧∀b. L′(sb, b,⊥) = L(sb, b,⊥)

When a piece of resource R is packed into an escrow
by event a, R is removed from a’s working resource map
and put into a’s esc sink edge for safe keeping. Another
event b owning the resource R′ that is required to open the
escrow may retrieve R through a new escrow edge created
associating a and itself. ThenR′ is dumped to b’s escrow sink
edge. This process (and other local ghost moves) is depicted
in Fig. 24 and is formalised in the following lemma.
Lemma 3 (Ghost Step):

if dom(G.A) = N ] a ∧ N ∈ prefix(G)
∧N ⊆ valid(G,L,dom(G.A))
∧compat(G,L[(esc,−, a,⊥) = L(esc,−, a,⊥)⊕R])

∧conform(G,L,N ) ∧ consistentC11(G)

∧Rbefore , in(L, a, sb)⊕ in(L, a, rf)⊕ in(L, a,esc)

∧Rafter , R⊕ out(L, a,esc)⊕ out(L, a, cond)

∧Rbefore VI Rafter ∧ |Rbefore| ≤ R ∧RV P
∧∀c. L(esc,−, a, e) = EMP

∧∀(σ,RE ) ∈ I. interp(σ ) = (Q,Q′)⇒ RE ∈ Q′

∧L(esc, a,⊥) =

⊕

RE |

(σ,RE ) ∈ I,RE ∈ Q′,
interp(σ ) = (Q,Q′),
(6 ∃b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)


then ∃L′,I ′,R′,R′before,R

′
after∈P .N ⊆ valid(G,L′,dom(G.A))

∧compat(G,L′[(esc,−, a,⊥) := L′(esc,−, a,⊥)⊕R′])
∧conform(G,L′,N )

∧R′before , in(L′, a, sb)⊕ in(L′, a, rf)⊕ in(L′, a,esc)

∧R′after , R′ ⊕ out(L′, a,esc)⊕ out(L, a, cond)

∧R′before VI′ I ′R′after
∧∀b. L′(sb, b,⊥) = L(sb, b,⊥)

∧∀b. L′(rf, b,⊥) = L(rf, b,⊥)
∧∀b, c. L′(sb, b, c) = L(sb, b, c)

∧∀b, c. L′(rf, b, c) = L(rf, b, c)
∧∀c. L′(esc,−, a, e) = EMP

∧∀(σ,RE ) ∈ I ′. interp(σ ) = (Q,Q′)⇒ RE ∈ Q′

∧L(esc, a,⊥) =

⊕

RE |

(σ,RE ) ∈ I ′,RE ∈ Q′,
interp(σ ) = (Q,Q′),
(6 ∃b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)


The following lemma demonstrates that by labelling the

graph in the way we have described, the new node’s all
incoming resource map will satisfy its wpe requirements.
Lemma 4 (Protocol Equivalence for Writes):

if dom(G.A) = N ] a ∧ N ∈ prefix(G)
∧N ⊆ valid(G,L,dom(G.A))
∧compat(G,L[(esc,−, a,⊥)
:= L(esc,−, a,⊥)⊕R])

∧conform(G,L,N ) ∧ consistentC11(G)
∧in(L, a,all)VI R⊕out(L, a,esc)⊕out(L, a, cond)
∧|in(L, a, sb)⊕ in(L, a, rf)| ≤ R

then (in(L, a, sb)⊕in(L, a, rf), in(L, a,all))∈wpe(G.A(a))

Finally, the new node’s outgoing edges (sb and rf) will be
labelled in guarantee step, using the corresponding resource

173896 VOLUME 8, 2020



M. He et al.: Program Logic for Reasoning About C11 Programs With Release-Sequences

FIGURE 23. Labelling event a’s rf incoming edge.

FIGURE 24. Labelling event b’s escrow incoming edge.

map and resource (Rsb, rrf) derived from the action’s guar-
antee definition. These resources are initially assigned to the
corresponding sink edges of the new node, until the node’s
future sb and rf successors are added to the graph and take the
resources for the labelling of the corresponding edges. Note
that, as annotation for read-from sink edge, rrf, is a resource
instead of resource map, we require it to be compatible
with other resource maps’ local component at the compat
checking.
Lemma 5 (Guarantee Step):

if G.A(a) = α ∧ dom(G.A) = N ] a ∧ N ∈ prefix(G)
∧N ⊆ valid(G,L,dom(G.A))
∧compat(G,L[(esc,−, a,⊥) := L(esc,−, a,⊥)⊕R])

∧conform(G,L,N ) ∧ consistentC11(G)
∧Rpre = in(L, a, sb)⊕ in(L, a, rf)
∧in(L, a,all)VI R⊕ out(L, a,esc)⊕ out(L, a, cond)

∧Rpre ∈ rely(−, α) ∧ |in(L, a,all)| ≤ R
∧∀(σ,RE ) ∈ I. interp(σ ) = (Q,Q′)⇒ RE ∈ Q′

∧L(esc, a,⊥) =

⊕

RE |

(σ,RE ) ∈ I,RE ∈ Q′,
interp(σ ) = (Q,Q′),
(6 ∃b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)


∧out(L, a, sb) = out(L, a, rf) = EMP

∧(Rsb, rrf)∈guar(Rpre,R, α)∧wpe(α,Rpre, in(L, a,all))

then ∃L′. dom(G.A) = valid(G,L′,dom(G.A))
∧compat(G,L′) ∧ conform(G,L′,dom(G.A))
∧∀b 6= a. L′(sb, b,⊥) = L(sb, b,⊥) ∧ L′(sb, a,⊥)=Rsb

In what follows we formulate the Theorem Instrumented
Execution. Intuitively, this theorem states that is a program

is globally safe to be executed for n+ 1 steps from the
current machine configuration, an arbitrarily scheduled move
will lead to a new machine configuration, based on which
the rest of the program will be global-safely for another
n steps.
Theorem 4 (Instrumented Execution): If we have

GSafen+1(Tins,G,L) ∧ 〈erase(Tins);G〉 −→ 〈T ′;G′〉 then
∃T ′ins,L′. erase(T ′ins) = T ′ ∧GSafen(T ′ins,G′,L′).

Proof: Starting from GSafen+1(Tins,G,L), a machine
step transforms the graph into G′ with a new event b and the
thread pool into T ′, leaving n more locally safe steps for the
active thread.

By applying Lemma 1, we have that there exists a
labelling L1 derived from the original labelling L with
in(L1, b, sb) = R ∧ L1(sb, a,⊥) = Rrem, which ensures:

dom(G.A) = valid(G′,L1,dom(G.A))
∧ compat(G′,L1 ∧ conform(G′,L1,dom(G′.A)).

By applying Lemma 2, we have that there exists L2
updated from L1 with the new node’s rfincoming label and
maintains the valid set.

By applying Lemma 3, we have that there exists L3
updated from L2 with escrow incoming and outgoing edges
taken under consideration. With the new labelling, the
compat and conform properties are recovered.
By applying Lemma 4, we have that with L3, the sum

of new event’s incoming resource maps satisfies its wpe
definitions.

By applying Lemma 5, we have that there is a labelling
L′ with the new event’s outgoing edges updated. The valid,
compat, and conform along with other properties are pre-
served for the new graph and labelling. Therefore, the new
graph is GSafen(T ′ins,G′,L′). �
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Now we present one more lemma, whose proof is left in
the appendix, to demonstrate that all possible executions are
free from data-race, memory errors, and uninitialised reads.
Lemma 6 (Error Free): If we have GSafen(Tins,G,L)

then ¬dataRace(G),¬memErr(G), and there is no dangling
reads.

Ultimately we give the global soundness Theorem
Adequacy.
Theorem 5 (Adequacy): If we have ` {true} e {x.P} then

JeK ⊆ {V | JP[V/x]K 6= ∅}.
Proof: From ` {true} e {x.P}, we can derive that from

true the program e is locally safe for an arbitrarily large
number of steps. We assume e terminates in n steps. That
is, according to the step-level semantics e will be reduced to
some pure value, which can be referred to as V , after n steps.
We assert LSafen+1(e, Jx.PK), based on which we construct:

GSafen+1

 [0 7→ (start, e,emp, Jx.PK)],
([start 7→ S],∅,∅,∅),
[(sb, start,⊥) 7→ EMP] ] [(rf, start,⊥) 7→ EMP]

 .
By repeatedly applying the Theorem Instrumented Execu-

tion for n times, we can derive:
∃T ′ins,R. GSafe1(T ′ins ] [ 0 7→ (−, V ,R, J x.PK)],−,−).
From this condition we can imply that RV JP[V/x]K and
thus we can conclude that JP[V/x]K 6= ∅. �

VIII. RELATED WORK
Our work is closely related to the GPS logic [6] and
the RSL logic [5]. RSL can be used to reason about
release-acquire synchronisations in the style of Concurrent
Separation Logic (CSL) [16]. Following up work, FSL and
FSL++ [8], [11], provide support to C11 fences and part
of the release-sequence feature. GPS framework integrates
ghost states, protocols and separation logic, which are the
most handy tools for reasoning about concurrent program
advocated by the state-of-the-art literature [15], [17]–[26].
Tassarotti et al. [7] demonstrated the power of GPS by apply
it to real world Linux synchronisations algorithms. Following
up work GPS+ [9], [10] provides support to C11 fences and
based on which our work provides the full support to C11
release-sequences and fractional permissions.

There are some recent works aiming at providing automa-
tions in the verification of C11 weak memory programs.
With the Iris [26] semantics supported, [30] provides the first
mechanical verification tool for a subset of C11 programs
with the GPS and RSL style reasoning. [31] encodes the
line of RSL works [5], [8], [11] into the Viper verification
infrastructure [32]. Similar automatic implementations would
be one of our future interests.

Semantics-wise, we follow the axioms-based approach
like that introduced by [4]. Similar axioms-based approach
is also used for the Java memory model [33]. For various
hardware memory models, operational semantics are also
used [34]–[36]. Some recent works about the ‘‘promising’’
semantics [36], [37] propose a relatively more economi-
cal way to eliminate the ‘‘thin-air-read’’ problem without

sacrificing too many possible optimisations. Its usefulness
has been demonstrated in the formalisation of the ARMv8
memory model [38]. It is yet to be proved how handy it could
be in supporting weak memory program logics.

IX. CONCLUSION
To the best of our knowledge, our proposed program logic
GPS++ is the first one that provides the support to the
reasoning about fully featured C11 release-sequences. Built
on top of the GPS+ logic, our work is extended with the
powerful restricted shareable assertions 〈P〉s, an enhanced
per-location protocol model, and a set of new verification
rules. In addition, GPS++ also has the support to fractional
permission, which makes it more practical than its predeces-
sors, as now the reasoning about concurrent non-atomic reads
is allowed.

In our future work, we aim to bring more memory orders,
e.g., the consume read, into our reasoning framework. We
also aim to apply GPS++ to more real-world C11 pro-
grams and develop reasoning aids with certain degrees of
atomisation.

APPENDIX
MORE DEFINITIONS AND PROOF OF LEMMAS
In this section we present the less interesting yet indispens-
able definitions used in our reasoning system and semantic
framework, and the proof the lemmas and corollaries we have
discussed in the main text.

Our reasoning system is featured with new types of asser-
tions and the corresponding inference rules to reason about
them. We first present the semantics for our assertions; and
then prove the soundness of our inference rules with the form
P⇒ Q.

R R ∈ JRKρ iff

(1) t = t ′ JtKρ = Jt ′Kρ

(2) t vτ t ′ JtKρ vτ Jt ′Kρ

(3) uninit(t) R(L).5(JtKρ) = uninit

(4) t
f
7→ t ′ R(L).5(JtKρ) = na(Jt ′Kρ, f ) ∧ f ∈ (0, 1]

(5) t : t ′ τ ∃S.R(L).5(JtKρ) = at(τ, S) ∧ Jt ′Kρ ∈ S
(6) t : t ′ µ R(L).g(µ)(JtKρ) ≥ Jt ′Kρ

(7) [σ ] σ ∈ R(L).6
(8) P ∧ Q R ∈ JPKρ ∩ JQKρ

(9) P ∨ Q R ∈ JPKρ ∪ JQKρ

(10) P⇒ Q bRc ∩ JPKρ ⊆ JQKρ

(11) ∀X . P R ∈
⋂

d∈sort(X )JPKρ[X 7→d]

(12) ∃X . P R ∈
⋃

d∈sort(X )JPKρ[X 7→d]

(13) P1 ∗ P2 R ∈ JP1Kρ ∗ JP2Kρ

(14) �P |EMP[L 7→ R(L)]| ∈ JPKρ

(15) 〈P〉 EMP[L 7→ R(A)] ∈ JPKρ

(16) 〈P〉s EMP[L 7→ R(s)] ∈ JPKρ

(17) �P EMP[L 7→ R(A)] ∈ JPKρ
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Corollary 1 (Soundness of Corollary Inference Rules):
Our corollary inference rules are semantically sound. That
is, given an inference rule allowing P⇒ Q, we have
∃R. bRc ∩ JPKρ ⊆ JQKρ

Proof: For the [SEPARATION-R] rule: 〈P ∗ Q〉s ⇔
〈P〉s ∗ 〈Q〉s, from left to right by the definition (16), we have
R ∈ J〈P ∗ Q〉sKρ , EMP[L 7→ R(s)] ∈ JP ∗ QKρ . According
to the definition (13), the term can be transformed into:

∃r1, r2.R(s) = r1 ⊕ r2 ∧

EMP[L 7→ r1] ∈ JPKρ ∧ EMP[L 7→ r2] ∈ JQKρ,

which implies the right hand side term. Similarly, we can do
it from right to left. The proof of this rule is finished.

For the [KNOWLEDGE-MANIPULATION-1] rule:
�P⇒ P, according to definition (14) the semantic for its
left hand side is R ∈ �P , |EMP[L 7→ R(L)]| ∈ JPKρ . As
|EMP[L 7→ R(L)]| ≤ R, R is also in JPKρ . The proof of this
rule is finished.

Next we prove the rule [KNOWLEDGE-MANIPUL-
ATION-2]: �P⇒ ��P. Start from the rule’s left hand side,
we have |EMP[L 7→ R(L)]| ∈ JPKρ . Therefore, ||EMP[L 7→
R(L)]|| ∈ JPKρ . The proof of this rule is finished.
For [KNOWLEDGE-MANIPULATION-3]:�P ∗ Q⇔ �

P ∧ Q, as �P is knowledge, the semantic definition (8)
J�PKρ ∩ JQKρ is equivalent to (13) J�PKρ ∗ JQKρ in terms
of evaluation results. Therefore, the rule is proven.

For [KNOWLEDGE-MANIPULATION-4. . . 7], they are
semantically sound as according to the definition of stripping
operation and their corresponding semantic definitions ((7),
(5), (1), and (6)) the resource representing these assertions
does not change after stripping. Therefore they are able to be
transformed into knowledge form.

For [SEPARATION-1]: γ : t µ ∗ γ : t ′ µ ⇔

γ : t ·µ t ′ µ , starting from the rule’s left hand side, we have:

R ∈ J γ : t µ ∗ γ : t ′ µ Kρ ,

∃R1 ∈ J γ : t µ Kρ,R2 ∈ J γ : t ′ µ Kρ .R = R1 ⊕R2,

which is equivalent to the semantics of the rule’s right hand
side. The rule is proven.

For the [SEPARATION-2] rule: ` : s τ ∗ ` : s′ τ ′ ⇒
τ = τ ′ ∧ (s vτ s′ ∨ s′ vτ s), starting from the rule’s left
hand side, we have:

R ∈ J ` : s τ ∗ ` : s′ τ ′ Kρ ,

∃R1 ∈ J ` : s τ Kρ,R2 ∈ J ` : s′ τ ′ Kρ .R = R1 ⊕R2.

Given R1#R2, according to the definition of protocol com-
positions, the right hand side is implied. The rule is proven.

For [ASSERTION-PROPERTY-1. . . 7], we prove that
special assertions can not be nested. According to the defi-
nition (14-17), the nesting shown on the left hand side results
in an empty resource map that is used to be checked with the
original assertion P, which implies false unless P is emp. The
proof is finished. �

A ghost move is a transition that only changes aux-
iliary/logical computation states. This is ensured by
our resource-level ghost moves. We first present our
resource-level ghost moves below:

(1)
R ∈ JPKρ

RV JPKρ
(2)

R0 ∈ JPKρ ∀R ∈ JPKρ . RV JP′Kρ

R0 V JP′Kρ

(3)
m ∈ JµK

RV bRc ∗ {EMP[L 7→ (⊥, [µ 7→ [i 7→ m]],∅)]}

(4)
∀gF#g. gF#g′

EMP[L 7→ (5, g, 6)]V bEMP[L 7→ (5, g′, 6)]c

(5)
interp(σ ) = (JPKρ , JP′Kρ ) R′ ∈ JP′Kρ R[L] = (5, g, 6)

R⊕R′ V bR[L 7→ (5, g, 6 ∪ {σ })]c

(6)
interp(σ ) = (JPKρ , JP′Kρ ) σ ∈ R[L].6 R ∈ JPKρ

R0 ⊕RV bR0c ∗ JP′Kρ

(7)

R′[L] = R[L]⊕ r l ∈ {S} ∪ S R′[l]⊕ r = R[l]

∀l′ 6= L ∨ l. R′[l′] = R[l′]

RV bR′c

Corollary 2 (Soundness of Ghost Moves): Our ghost move
rules are semantically sound. That is, given a ghost move rule
allowing PV Q, we have ∀R ∈ JPKρ .RV JQKρ .

Proof: We prove the ghost move rules one by one.
For the [GHOST-MOVE-1] rule, we are going to prove

that∀R ∈ JPKρ .RV JQKρ, with the premise that is given
as ∀R. bRc ∩ JPKρ ⊆ JQKρ . The premise can be simplified
as JPKρ ⊆ JQKρ . Therefore, we have ∀R ∈ JPKρ .R ∈ JQKρ .
By using the resource level ghost move (1), we have
∀R ∈ JPKρ .RV JQKρ . [GHOST-MOVE-1] is proven.
For the [GHOST-MOVE-2] rule, we are going to prove that
∀R ∈ JP ∗ RKρ .RV JQ ∗ RKρ . According to the definition
of separation assertions, it can be transformed to:

∀R ∈ JPKρ,R′ ∈ JRKρ .
R⊕R′ V {R1 ⊕R2 | R1 ∈ JQKρ ∧R2 ∈ JRKρ}.

According to the premise, we have ∀R ∈ JPKρ .RV
JQKρ . We can check that the proof obligation is valid for
all possible ghost moves allowed by the resource-level ghost
move rules. [GHOST-MOVE-2] is proven.

For the [GHOST-MOVE-3] rule, initially we have the
following property: ∀R ∈ JPKρ .RV JQKρ ∧ ∀R ∈ JQKρ .
RV JRKρ, and we are going to prove that ∀R ∈ JPKρ .RV
JRKρ . From the first premise ∀R ∈ JPKρ can be transformed
into some resource in JQKρ for all possible ghost moves.
Together with the second premise, the rule is proven.

The [GHOST-MOVE-3] and [UNSHARE-R] can be
proved by moving the resource under the shareable labels to
the resource maps’ local component, which is allowed by the
resource level ghost move (7).

For the [GHOST-MOVE-4] rule, we are going to prove that

∀R ∈ JtrueKρ .RV J∃γ. γ : t1 µ Kρ, which can be done
by applying the resource level ghost move (3).
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The [GHOST-MOVE-5] is a corollary of the resource level
ghost move (4), while the [GHOST-MOVE-6] is a corollary
of the resource level ghost move (5), and [GHOST-MOVE-7]
is a corollary of the resource level ghost move (6). �
Nowwe present the proofs of the labelling lemmaswe have

discussed for our reasoning system’s global safety with the
following definitions (which has been informally discussed
in the main text):

RVI R′ , ∃g. R′ = (R.5 ∪ {σ |(σ,−) ∈ I})
N , dom(G.A)

a ∈ valid(G,L,N ) , ∃,R,I.
L ∈ labelling(G)
in(sb)⊕ in(rf)⊕ in(esc)VI R⊕ out(esc)⊕ out(cond)

(out(sb),out(rf)) ∈ guar(in(sb)⊕ in(rf),R,G.A(a))
(∀b ∈ N . isUpd(b) ∧ rf(b) = a) H⇒ (L(rf, a, b) = out(rf))

(6 ∃b ∈ N . isUpd(b) ∧ rfb = a) H⇒ (L(rf, a,⊥) = out(rf))

|L(rf, a,⊥)| = |out(rf)|

∀(σ,RE ) ∈ I. interp(σ ) = (P,P ′) H⇒ RE ∈ P ′

L(esc, a,⊥) =

⊕

RE |

(σ,RE ) ∈ I,RE ∈ P ′,
interp(σ ) = (P,P ′),
(6 ∃b. hb=(a, b) ∧ L(cond, b,⊥) ∈ P)


where, in(x) ,⊕{L(x, b, a) | (x, b, a) ∈ dom(L)}

out(x) ,⊕{L(x, a, c) | (x, a, c) ∈ dom(L)}
compat(G,L) , ∀ε ⊆ dom(L).
6 ∃e1, e2 ∈ ε. G.hb∗(target(e1), source(e2))

H⇒⊕η∈εL(η)defined

conform(G,L,N ) , ∀`. ∀a, b ∈ N .

G.mol,at(a, b) H⇒ out(L, a, rf)[`] vat out(L, b, rf)[`]

Lemma 1 (Step Preparation):

if consistentC11(G)
∧consistentC11(G′)
∧dom(G′.A) = dom(G.A) ] b
∧L(sb, a,⊥) = R⊕Rrem

∧dom(G.A) ⊆ valid(G,L,dom(G.A))
∧compat(G,L) ∧ conform(G,L,N )

∧∀c ∈ dom(G.A). G.A(c) = G′.A(c)
∧G′.sb = G.sb ] [a, b)
∧∀c ∈ dom(G.A). G.rf(c) = G′.rf(c)
∧G′.mo ⊇ G.mo

then ∃L′. dom(G.A) = valid(G′,L′,dom(G.A))
∧compat(G′,L′)
∧conform(G′,L′,dom(G′.A))
∧L′(sb, a,⊥) = Rrem

∧in(L′, b, sb) = R

∧in(L′, b, rf) = EMP

∧in(L′, b,esc) = EMP

∧∀a′ 6= a. L′(sb, a′, b) = EMP

∧out(L′, b,all) = EMP

∧∀a′ 6= a. L′(sb, a′,⊥) = L(sb, a′,⊥)

Proof: Firstly, we prove the compat property. Notice
that for all edges in that are hb-independent with the
edge sb(a, b), they are hb-independent with the sb(a,⊥)
edge as well. Suppose the sum of the resources carried
under their local label r is incompatible with L(sb, a, b)(L),
i.e., ¬r#L(sb, a, b)(L). According our labeling rule
L(sb, a, b)(L) ≤ L(sb, a,⊥)(L). That is there exists some r ′

that makes L(sb, a,⊥)(L) = L(sb, a, b)(L)⊕ r ′. Therefore
we can deduce the following property ¬r#L(sb, a,⊥)(L)
as r ⊕ L(sb, a,⊥)(L) = r ⊕ L(sb, a, b)(L)⊕ r ′ which has
undefined result. However ¬r#L(sb, a,⊥)(L) contradicts
with the premise where the compat(G,L) property holds.
Therefore, the sum of the resources carried by all the edges
hb-independent with sb(a, b) is compitable with its resource,
and we can derive that compat(G′,L′)

To prove the conform property, notice that the atomic loca-
tions are unchanged in this step’s labelling process. There-
fore conform(G′,L′,dom(G′.A)) is essentially equivalent to
conform(G′,L′,dom(G′.A)). To prove the valid property and
the validity of the updated labelling, we unfold the corre-
sponding definitions and check the requirements with our
labelling results. �
Lemma 2 (Rely Step):

if G.A(a) = α
∧dom(G.A) = N ] a

∧N ∈ prefix(G) ∧ N ⊆ valid(G,L,N )

∧in(L, a,all) = out(L, a,all) = EMP

∧compat(G,L) ∧ conform(G,L,N )

∧consistentC11(G)
∧in(L, a, rf) = EMP ∧ in(L, a,esc) = EMP

∧out(L, a,all) = EMP

then ∃L′. N ⊆ valid(G,L′,N )

∧compat(G,L)
∧conform(G,L,N )

∧in(L′, a, sb)⊕ in(L′, a, rf) ∈ rely(in(L′, a, sb), α)
∧in(L′, a,esc) = out(L′, a,all) = EMP

∧∀b, c. L′(sb, b, c) = L(sb, b, c)
∧∀b. L′(sb, b,⊥) = L(sb, b,⊥)

Proof: We first focus on the compat property. For
non-update reading actions, we argue that only knowledge is
taken into the new node and knowledge is always compatible
with the environment. For an relaxed atomic update, the
resource taken in from its rf edge is left to be acquired, there-
fore the local resources are still compatible. For an acquire
atomic update, which can take non-duplicable resource to its

173900 VOLUME 8, 2020



M. He et al.: Program Logic for Reasoning About C11 Programs With Release-Sequences

local resource, we notice that there must be a nearest release
action b that made the resource shareable. Therefore we
have b happens before a, which does not break the compat
property.

We assert that conform(G′,L′,dom(G′.A)) is essentially
equivalent to conform(G′,L′,dom(G′.A)) as there is no
changes to atomic locations in this labelling step. To prove the
valid property and the validity of the updated labelling, we
unfold the corresponding definitions and check the require-
ments with our labelling results. �
Lemma 3 (Ghost Step):

if dom(G.A) = N ] a ∧ N ∈ prefix(G)
∧N ⊆ valid(G,L,dom(G.A))
∧compat(G,L[(esc,−, a,⊥) := L(esc,−, a,⊥)⊕R])

∧conform(G,L,N ) ∧ consistentC11(G)
∧Rbefore , in(L, a, sb)⊕ in(L, a, rf)⊕ in(L, a,esc)

∧Rafter , R⊕ out(L, a,esc)⊕ out(L, a, cond)

∧Rbefore VI Rafter ∧ |Rbefore| ≤ R ∧RV P
∧∀c. L(esc,−, a, e) = EMP

∧∀(σ,RE ) ∈ I. interp(σ ) = (Q,Q′)⇒ RE ∈ Q′

∧L(esc, a,⊥) =

⊕

RE |

(σ,RE ) ∈ I,RE ∈ Q′,
interp(σ ) = (Q,Q′),
(6 ∃b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)


then ∃L′,I ′,R′,R′before,R

′
after∈P .N ⊆ valid(G,L′,dom(G.A))

∧compat(G,L′[(esc,−, a,⊥) := L′(esc,−, a,⊥)⊕R′])
∧conform(G,L′,N )

∧R′before , in(L′, a, sb)⊕ in(L′, a, rf)⊕ in(L′, a,esc)

∧R′after , R′ ⊕ out(L′, a,esc)⊕ out(L, a, cond)

∧R′before VI′ I ′R′after
∧∀b. L′(sb, b,⊥) = L(sb, b,⊥)

∧∀b. L′(rf, b,⊥) = L(rf, b,⊥)
∧∀b, c. L′(sb, b, c) = L(sb, b, c)

∧∀b, c. L′(rf, b, c) = L(rf, b, c)
∧∀c. L′(esc,−, a, e) = EMP

∧∀(σ,RE ) ∈ I ′. interp(σ ) = (Q,Q′)⇒ RE ∈ Q′

∧L(esc, a,⊥) =

⊕

RE |

(σ,RE ) ∈ I ′,RE ∈ Q′,
interp(σ ) = (Q,Q′),
(6 ∃b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)


Proof: To prove the compat property, firstly we assert

that the escrowed resource a retrieved must have been put
under escrow by an event that happens before a. This is
because our labelling process ensures that the escrowed
resource is initially attached to the creator’s escrow sink edge,
and can only appear in a node’s local component if that node
is in a chain of (sb ∪ sw)+ following the creator. Then we
assert that the compat property holds for the updated graph
following the same argument as that used in the compat proof

for the Lemma Rely Step. We also assert that the conform,
valid properties and the new labelling are valid for the same
reasons discussed in the proof for the previous lemma. �
Lemma 4 (Protocol Equivalence for Writes):

if dom(G.A) = N ] a ∧ N ∈ prefix(G)
∧N ⊆ valid(G,L,dom(G.A))
∧compat(G,L[(esc,−, a,⊥) := L(esc,−, a,⊥)⊕R])

∧conform(G,L,N ) ∧ consistentC11(G)
∧in(L, a,all)VI R⊕ out(L, a,esc)⊕ out(L, a, cond)

∧|in(L, a, sb)⊕ in(L, a, rf)| ≤ R
then (in(L, a, sb)⊕ in(L, a, rf), in(L, a,all)) ∈ wpe(G.A(a))

Proof: We prove this lemma by firstly unfold the def-
initions of valid, compat, andconform. Then we do case
analysis based on the type of a and check the corresponding
wpe definitions. �
Lemma 5 (Guarantee Step):

if G.A(a) = α ∧ dom(G.A) = N ] a ∧ N ∈ prefix(G)
∧N ⊆ valid(G,L,dom(G.A))
∧compat(G,L[(esc,−, a,⊥) := L(esc,−, a,⊥)⊕R])

∧conform(G,L,N ) ∧ consistentC11(G)
∧Rpre = in(L, a, sb)⊕ in(L, a, rf)
∧in(L, a,all)VI R⊕ out(L, a,esc)⊕ out(L, a, cond)

∧Rpre ∈ rely(−, α) ∧ |in(L, a,all)| ≤ R
∧∀(σ,RE ) ∈ I. interp(σ ) = (Q,Q′)⇒ RE ∈ Q′

∧L(esc, a,⊥) =

⊕

RE |

(σ,RE ) ∈ I,RE ∈ Q′,
interp(σ ) = (Q,Q′),
(6 ∃b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)


∧out(L, a, sb) = out(L, a, rf) = EMP

∧(Rsb, rrf)∈guar(Rpre,R, α)∧wpe(α,Rpre, in(L, a,all))

then ∃L′. dom(G.A) = valid(G,L′,dom(G.A))
∧compat(G,L′) ∧ conform(G,L′,dom(G.A))
∧∀b 6= a. L′(sb, b,⊥) = L(sb, b,⊥) ∧ L′(sb, a,⊥) = Rsb

Proof: For the new node a’s sb outgoing edge, we first
proved the proof for its compat property. Suppose there is
an edge ξ that is hb-independent with the new node a’s
sboutgoing edge sb(a,⊥) and the resource map it carries
is incompatible with L(sb, a,⊥). Supposing a is not an
acquire action, i.e. the incompatibility is not caused by mov-
ing resources from the current resource map’s A component
to its local component, we use case analysis to demonstrate
that the action’s guarantee condition would not introduce new
incompatibility; however if the incompatibility is not newly
introduced, it would appear in one of the incoming edges,
which violates the compat property in the premise. If a is an
acquire action, which could move resources from the A com-
ponent to L, we argue incompatibility can not be introduced
in this process by contradiction. Assuming the incompatible
resource originally in A is r , there must be another node,
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say b that moves r from L to a shareable component and
thereafter r could be loaded to A in a’s thread, according to
our labeling method. According to the C11 memory model,
we derive that b happens before a. If there exists an edge
ξ that is hb-independent with L′(sb, a,⊥) and carries the
incompatible resource r , it also hb-independent with one of
a’s incoming edges that carries r (the case that r is created by
a is trivial), which violates the compat(G,L). With the same
argument used for the release fence case, we argue that the
compat property holds for a’s rf outgoing edge.

For the new graph’s conform property, we prove by
exhaustion on all possible type of actions, and check unfolded
conform definitions against the guarantee conditions for the
corresponding type of actions. Same to that for previous
lemmas the proof for the valid property and the validity of
the updated labelling, can be demonstrated by unfolding the
corresponding definitions and check the requirements with
our labelling results. �
Lemma 6 (Error Free): IfGSafen(Tins,G,L) then we have
¬dataRace(G),¬memErr(G), and all reads are initialised.

Proof: We first prove that an event graph supporting
safe executions is free from race conditions using proof by
contradiction. Suppose event a and b in G cause a data
race, by the definition of race condition we can deduce that
¬hb(a, b) ∧ ¬hb(b, a). Also, we can derive that there is a
location ` that appears in both a and b’s incoming edges that
holds some non-trivial (not ⊥) non-atomic values. However,
given that a’s incoming edges are hb-independent with that of
b’s the appearance of the non-atomic resource about location
` in both groups violates the compatproperty in the global
safety definitions. Therefore, there are no two events in G that
could raise a data race.

To prove the graph is free from memory errors, i.e., there
is no memory access to unallocated memory locations, first
notice that ensured by our instrumented semantics to manip-
ulate a location `, an event bmust have the information about
` in one of its incoming edge’s local component. Then we
define a recursive search procedure to find the action that
allocates ` and demonstrate that the memory accesses to `
are error free.

Firstly, we search backwards following the sb+ edges in
the graph starting from b, until we reach an event a where
the information about ` is not in one of its incoming edge’s
local component. In the case that a is an allocation action
and it allocates `, the search ends. In the case that a is an
acquire fence and it moves ` from the waiting-to-be-acquired
component in one of its incoming edge to the local component
in its outgoing resource maps, we assert that there exists an
read or update event a0 with relaxed memory order prior to a
in the sb+ relation according to our labelling process, and the
information about ` appears in a0’s read-from incoming edge
under the waiting-to-be-acquired label. Then we recursively
perform this search procedure starting with the write event
that a0 reads from until we find the right allocation action. If
it is not the cases aforementioned, we check if a’s immediate
sbsuccessor a′ is a read or update event with acquire memory

order. If so, we recursively perform this search procedure
starting with the write event that a′ reads from. We assert
these are all the cases needed to be considered as any other
case violates the global safety definitions according to our
labelling process. Therefore, a globally safe event graph is
error free. �

REFERENCES
[1] Lamport, ‘‘How to make a multiprocessor computer that correctly exe-

cutes multiprocess programs,’’ IEEE Trans. Comput., vol. C-28, no. 9,
pp. 690–691, Sep. 1979.

[2] Information Technology–Programming Language–C, Standard ISO/IEC
9899:2011, 2011.

[3] Information Technology–Programming Language–C++, Standard
ISO/IEC 14882:2011, 2011.

[4] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, ‘‘Mathematizing
C++ concurrency,’’ ACM SIGPLAN Notices, vol. 46, no. 1, pp. 55–66,
Jan. 2011.

[5] V. Vafeiadis and C. Narayan, ‘‘Relaxed separation logic: A program logic
for C11 concurrency,’’ in Proc. OOPSLA, 2013, pp. 867–884.

[6] A. Turon, V. Vafeiadis, and D. Dreyer, ‘‘GPS: Navigating weak mem-
ory with ghosts, protocols, and separation,’’ in Proc. OOPSLA, 2014,
pp. 691–707.

[7] J. Tassarotti, D. Dreyer, and V. Vafeiadis, ‘‘Verifying read-copy-update in
a logic for weak memory,’’ in Proc. PLDI, 2015, pp. 110–120.

[8] M. Doko and V. Vafeiadis, ‘‘A program logic for C11 memory fences,’’ in
Proc. VMCAI. New York, NY, USA: Springer-Verlag, 2016.

[9] M. He, V. Vafeiadis, S. Qin, and J. F. Ferreira, ‘‘Reasoning about fences
and relaxed atomics,’’ in Proc. PDP, Feb. 2016, pp. 520–527.

[10] M. He, V. Vafeiadis, S. Qin, and J. F. Ferreira, ‘‘GPS++: Reasoning about
fences and relaxed atomics,’’ Int. J. Parallel Program., vol. 46, no. 6,
pp. 1157–1183, Dec. 2018.

[11] M. Doko and V. Vafeiadis, ‘‘Tackling real-life relaxed concurrency with
FSL++,’’ in Proc. ESOP, H. Yang, Ed. Berlin, Germany: Springer, 2017,
pp. 448–475.

[12] J. Boyland, ‘‘Checking interference with fractional permissions,’’ in Proc.
10th Int. Conf. Static Anal. (SAS). Berlin, Germany: Springer-Verlag, 2003,
pp. 55–72.

[13] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson, ‘‘Permission
accounting in separation logic,’’ in Proc. 32nd ACM SIGPLAN-SIGACT
Symp. Princ. Program. Lang. (POPL), New York, NY, USA, 2005,
pp. 259–270.

[14] M. He, S. Qin, and J. Ferreira, ‘‘Towards a program logic for C11
release-sequences,’’ in Proc. Int. Symp. Theor. Aspects Softw. Eng. (TASE),
Aug. 2018, pp. 28–35.

[15] V. Vafeiadis and M. Parkinson, ‘‘A marriage of rely/guarantee and sepa-
ration logic,’’ in Proc. CONCUR. New York, NY, USA: Springer-Verlag,
2007.

[16] P. W. O’Hearn, ‘‘Resources, concurrency, and local reasoning,’’ Theor.
Comput. Sci., vol. 375, nos. 1–3, pp. 271–307, Apr. 2007.

[17] X. Feng, ‘‘Local rely-guarantee reasoning,’’ in Proc. POPL, 2009,
pp. 315–327.

[18] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis, ‘‘Deny-guarantee
reasoning,’’ in Proc. ESOP. New York, NY, USA: Springer-Verlag, 2009,
pp. 363–377.

[19] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies, ‘‘VCC: A practical system for
verifying concurrent C,’’ in Proc. TPHOLs. New York, NY, USA:
Springer-Verlag, 2009, pp. 23–42.

[20] K. R. Leino, P. Müller, and J. Smans, ‘‘Verification of concurrent programs
with chalice,’’ inFoundations of Security Analysis andDesign V, A. Aldini,
G. Barthe, and R. Gorrieri, Eds. Berlin, Germany: Springer-Verlag, 2009,
pp. 195–222.

[21] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis, ‘‘Concurrent abstract predicates,’’ in Proc. ECOOP, 2010,
pp. 504–528.

[22] A. Turon, D. Dreyer, and L. Birkedal, ‘‘Unifying refinement and
hoare-style reasoning in a logic for higher-order concurrency,’’ in
Proc. 18th ACM SIGPLAN Int. Conf. Funct. Program. (ICFP), 2013,
pp. 377–390.

173902 VOLUME 8, 2020



M. He et al.: Program Logic for Reasoning About C11 Programs With Release-Sequences

[23] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco, ‘‘Communi-
cating state transition systems for fine-grained concurrent resources,’’ in
Proc. ESOP. New York, NY, USA: Springer-Verlag, 2014, pp. 290–310.

[24] K. Svendsen and L. Birkedal, ‘‘Impredicative concurrent abstract pred-
icates,’’ in Proc. ESOP. New York, NY, USA: Springer-Verlag, 2014,
pp. 149–168.

[25] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner, ‘‘TaDA: A logic for
time and data abstraction,’’ in Proc. ECOOP, 2014, pp. 207–231.

[26] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer, ‘‘Iris: Monoids and invariants as an orthogonal basis for
concurrent reasoning,’’ in Proc. POPL, 2015, pp. 637–650.

[27] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang,
‘‘Views: Compositional reasoning for concurrent programs,’’ in Proc. 40th
Annu. ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang. (POPL),
2013, pp. 287–300.

[28] R. Ley-Wild and A. Nanevski, ‘‘Subjective auxiliary state for
coarse-grained concurrency,’’ ACM SIGPLAN Notices, vol. 48, no. 1,
pp. 561–574, Jan. 2013.

[29] R. G. Babb, ‘‘Issues in the specification and design of parallel programs,’’
in Proc. 6th Int. Workshop Softw. Specification Design (IFIP), vol. 83,
1983, pp. 321–332.

[30] J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis, ‘‘Strong
logic for weak memory: Reasoning about release-acquire consistency in
iris,’’ inProc. 31st Eur. Conf. Object-Oriented Program. (ECOOP), vol. 74,
P. Müller, Ed. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, pp. 17:1–17:29.

[31] A. J. Summers and P. Müller, ‘‘Automating deductive verification for
weak-memory programs (extended version),’’ Int. J. Softw. Tools Technol.
Transf., pp. 1–20, Mar. 2020.

[32] P. Müller, M. Schwerhoff, and A. J. Summers, ‘‘Viper: A verification
infrastructure for permission-based reasoning,’’ in Proc. Int. Conf. Ver-
ification, Model Checking, Abstract Interpretation. Cham, Switzerland:
Springer, 2016, pp. 41–62.

[33] W. Pugh, ‘‘Fixing the Java memory model,’’ in Proc. ACM Conf. Java
Grande (JAVA), New York, NY, USA, 1999, pp. 378–391.

[34] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M. O. Myreen, and J. Alglave, ‘‘The semantics of x86-CC multiprocessor
machine code,’’ in Proc. 36th Annu. ACM SIGPLAN-SIGACT Symp. Princ.
Program. Lang. (POPL), New York, NY, USA, 2008, pp. 379–391.

[35] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams, ‘‘Under-
standing POWER multiprocessors,’’ in Proc. 32nd ACM SIGPLAN Conf.
Program. Lang. Des. Implement. (PLDI), New York, NY, USA, 2011,
pp. 175–186.

[36] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon,
and P. Sewell, ‘‘Modelling the ARMv8 architecture, operationally: Con-
currency and ISA,’’ in Proc. 43rd Annu. ACM SIGPLAN-SIGACT Symp.
Princ. Program. Lang. (POPL), New York, NY, USA, 2016, pp. 608–621.

[37] S.-H. Lee, M. Cho, A. Podkopaev, S. Chakraborty, C.-K. Hur, O. Lahav,
and V. Vafeiadis, ‘‘Promising 2.0: Global optimizations in relaxed memory
concurrency,’’ in Proc. 41st ACM SIGPLAN Conf. Program. Lang. Design
Implement., Jun. 2020, pp. 362–376.

[38] C. Pulte, J. Pichon-Pharabod, J. Kang, S.-H. Lee, and C.-K. Hur,
‘‘Promising-ARM/RISC-V: A simpler and faster operational concurrency
model,’’ in Proc. 40th ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), 2019, pp. 1–15.

MENGDA HE received the Ph.D. degree in com-
puter science from Teesside University, in 2018.
He is currently a Research Associate with the
School of Computing, Engineering, and Digital
Technologies, Teesside University. His research
interests include formal methods, program log-
ics and software verification, concurrent program-
ming, and memory models. Particularly, he has
been working on the C11 memory model related
problems since his Ph.D., using separation logic,

rely-guarantee logic, and various techniques for concurrent semantics.
He contributed several papers to this field.

SHENGCHAO QIN (Senior Member, IEEE)
received the Ph.D. degree in applied mathemat-
ics from Peking University. He also worked as
a Postdoctoral Research Fellow at the National
University of Singapore, under the Singapore-MIT
Alliance program, before moving his job to U.K.
While in U.K., he worked as a University Lec-
turer at Durham University, and as a Reader in
Teesside University, before he was promoted to
Professor (Chair) of Computer Science in 2011.

His research interests include formal methods, software engineering, and
programming languages, in particular, formal specification and modeling,
program analysis and verification, theories of programming, and program
logic such as separation logic. Until now, he has published over 120 papers
in international journals and peer-refereed international conferences. He is
a Senior Member of the ACM. He serves as a full member of EPSRC Peer
Review College and a member of the UKRI Future Leaders Fellowship Peer
Review College.

ZHIWU XU received the Ph.D. degree in computer
science from University Paris Diderot - Paris 7 and
University of Chinese Academy of Sciences, under
the joint cultivation, in 2013. He is currently an
Associate Professor with ShenzhenUniversity. His
research is in the area of program analysis and veri-
fication, type systems, software security, automata
theory and logic, and machine learning.

VOLUME 8, 2020 173903


