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ABSTRACT The key step of bearing fault diagnosis is to select a suitable resonance frequency band, so as
to filter out interference components to the maximum extent and retain fault information in the resonance
band. Kurtogram algorithm can locate the resonance frequency band well, which has been widely researched
and applied in recent years, and has produced many derivative algorithms. The statistical indicators used by
these methods to identify frequency band features are divided into time domain indicators and frequency
domain indicators. Time domain indicators are more sensitive to a single accidental impact components,
while frequency domain indicators are easily affected by harmonics in the time domain, that is, single
or several frequency extremes in the frequency domain. In order to overcome the impact of non-periodic
transient impulse components and modulation harmonic components, this article proposes a new method.
This method uses wavelet packet transform (WPT) to divide the frequency band plane, and adopts 3 iterations
1.5-dimensional spectrum (1.5D spectrum) method, which can eliminate the impulse interference that has
no coupling relationship in the time domain and frequency domain. Based on the above process, the
KI−1.5Dgram method is constructed, which can realize more accurate positioning of the fault information.
Finally, through simulated and experimental analysis, the effectiveness of the proposed method is verified.

INDEX TERMS Bearing diagnosis, kurtogram, WPT, iterative 1.5D spectrum.

I. INTRODUCTION
As the joint of rotating machinery, rolling bearing is one
of the most widely used parts in rotating machinery, with
high failure rate and large life span. Carrying out rolling
bearing condition monitoring and fault diagnosis research is
of great significance for evaluating the operating status of
rotating machinery and ensuring the safe and stable operation
of the equipment [1]–[3]. For bearing failure analysis, many
scholars have proposed effective signal processing methods,
and the representative one is the Kurtogram.

Antoni and Randall [4] and Antoni [5] uses tree filter
banks or short-time Fourier transform (STFT) to segment
the frequency band plane, and then uses kurtosis index to
evaluate the impulse information components in the sub-band
signal. By this method, the optimal filtering frequency band
can be selected, and the fault characteristic frequency can
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be extracted by further envelope spectrum (ES) analysis of
the filtered signal. Since then, many scholars have proposed
improved methods to overcome the shortcomings of kur-
togram, and obtained many kurtogram derivative algorithms.
Notably, the improvements of these kurtogram derivative
algorithms are mainly concentrated in two aspects.

On the one hand, it is to ensure the compactness and
sparsity of the filter design as much as possible, and the fre-
quency band plane division is more reasonable, so as to max-
imize the fault information in a relatively complete sub-band.
Lei et al. [6] introduced the wavelet packet transform (WPT)
into the Kurtogram algorithm, replacing the STFT and tree
filter bank in the original algorithm as a frequency band
segmentation method. On the basis of Lei, Wang et al. [7]
introduced the dual complex wavelet transform to the
improvement of Kurtogram, and constructed the sub-band
average kurtosis to replace the original time domain kurtosis.
Wang and Tsui [8] applied dynamic Bayes to the optimization
of WPT parameters, which can more accurately locate the
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center frequency and bandwidth, thereby achieving more
accurate fault feature extraction. Qin et al. [9] constructed
an improved Morlet wavelet that strictly satisfies the allow-
able conditions, which is very helpful for sparsely separating
signal components. By using the improved Morlet wavelet
dictionary and Fourier dictionary, transient components can
be extracted by solving the sparse problem. And they use an
improved kurtosis calculation method as a band positioning
indicator. Gao et al. [10] constructed a new Kurtogram algo-
rithm usingMorlet wavelet filtering and alpha-stable distribu-
tionmodel, and used simulations and experiments to show the
stability of the method against non-Gaussian features of gear
faults. Xu et al. [11] proposed an adaptiveKurtogrammethod,
which uses a step statistical filter to estimate and divide the
effective modal components in the spectrum to replace the
kurtosis calculation process.

On the other hand, it is necessary to design statistical
indicators with specific sensitivity to fault information, so as
to ensure the ability to identify fault characteristic sub-bands.
The drawback of the kurtosis index is that it is too sensi-
tive to occasional impacts and strong Gaussian noise in the
time domain. To solve this problem, Barszcz and Jablon-
ski [12] proposed a Protrugram method, which replaces the
time domain kurtosis by calculating envelope spectral kur-
tosis. In the case of compound faults of bearing and gear
meshing, Kurtogram method is difficult to distinguish the
fault factors in the resonance frequency band. To solve this
problem, Wang et al. [13] proposed a method combining
spectral kurtosis and MRgram to isolate compound faults of
bearing and gear. Moshrefzadeh and Fasana [14] proposed
an Autogram method, which uses square envelope unbiased
autocorrelation instead of time domain signals. Through this
operation, the uncorrelated interference components can be
discarded. Bao et al. [15] constructed a new index named
envelope spectrum L-kurtosis. This index can suppress shock
interference and harmonic interference in the time domain,
making periodic fault components more specific. In order to
solve the problem that it is difficult to extract the weak pulses
masked by strong background noise in the fault diagnosis of
rolling bearings, Li et al. [16] proposed an enhanced fault
detection method based on the cyclic statistical character-
istics of defective bearing vibration signals, combined with
sparse code shrinkage denoising and fast spectral correlation.
Furthermore, Antoni et al. [17] introduced entropy into the
improvement of Kurtogram. By calculating the square enve-
lope (SE) entropy in the time domain, the square envelope
spectrum (SES) entropy in the frequency domain, and the
combination of the two indicators, SE infogram, SES info-
gram and SE1/2/SES1/2 infogram were constructed respec-
tively. Subsequently, many scholars conducted research on
the application and improvement of infogram. Feng et al. [18]
extended the infogrammethod to the fault diagnosis of plane-
tary gearboxes. Li et al. [19] proposed amulti-scale clustering
gray infogram by using multi-scale clustering to combine two
negative entropies in a gray method. In order to solve the
instability of Shannon entropy, Xu et al. [20] proposed the

multiscale fractional order entropy (MSFE). With the help of
MSFE infogram, the complexity and nonlinear characteris-
tics of vibration signals can be evaluated by quantifying the
spectral entropy on a series of scales in the fractional domain.

These studies improve the compactness of band seg-
mentation and the accuracy of band selection to a certain
extent. However, when dealing with extreme signals, such
as when the processing signal contains non-periodic transient
impulse components and modulation harmonic components,
the processing capability of the algorithm faces challenges.
Aiming at this problem, this article proposes an iterative
1.5-dimensional spectral kurtosis method, which can sup-
press the components that do not have a coupling relationship
in the signal and avoid the influence of these components
on the statistical feature indicators, thereby improving the
accuracy of frequency band selection.

The outline of this article is as follows. Section 2 reviews
the typical Kurtogram constructionmethod and its limitations
in dealing with non-periodic transient impulse components
and modulation harmonic components. Section 3 introduces
the iterative 1.5D spectral kurtosis construction method and
its superiority in signal periodic feature extraction. two sets
of experimental data are adopted, which respectively verify
the effectiveness of the proposed method. Section 4 verifies
the effectiveness of the proposed method with the aid of two
sets of typical experimental data.

II. REVIEW OF KURTOGRAM AND ANALYSIS OF ITS
LIMITATIONS
A. CONSTRUCTION METHOD OF KURTOGRAM
BASED ON WPT
In this study, the WPT-based sub-band construction method
proposed in 2011 was discussed as a typical Kurtogram
method [7]. The construction process of this method and its
limitations in dealing with signals with uncoupled interfer-
ence are reviewed.

For a non-stationary signal x (t), suppose its response is
y (t), which can be expressed as Equation (1).

y (t) =
∫
+∞

−∞

e2π fjtH (t, f ) dx (f ) (1)

where H (t, f ) is the transfer function and dx (f ) is the
spectral increment.

The second-order spectral moment of y (t) can be defined
as Equation 2.

S2ny (t, f ) = E
{∣∣∣H (t, f ) dX (f )2n∣∣∣} /df

= |H (t, f )|2n · S2nx (2)

When 2n = 2, Equation 2 can be abbreviated as Equation 3:

S2y (t, f ) = E
{∣∣∣H (t, f )2∣∣∣} · σ 2

x (3)

Further, The fourth-order spectral cumulant can be defined as
Equation 4:

C4y (f ) = S4y (f )− 2S22y (f ) (4)
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The fourth-order normalized cumulant can be used to define
the spectral kurtosis, as shown in Equation 5:

Kx =
C4y (f)
S2
2y
(f )
=
S4y (f )− 2S22y (f )

S2
2y
(f )

=
S4y (f )
S2
2y
(f )
− 2

=

〈
|H (t, f )|4

〉〈
|H (t, f )|2

〉2 − 2 (5)

WPT can continuously decompose the high-frequency and
low-frequency components of the signal at the same time, and
can adaptively determine the resolution of different frequency
bands, which greatly improves the signal time-frequency
local analysis ability, and is widely used. The wavelet packet
transformation process can be expressed by Equation 6.

WPT can continuously decompose the high-frequency and
low-frequency components of the signal at the same time, and
can adaptively determine the resolution of different frequency
bands, which greatly improves the signal time-frequency
local analysis ability. The wavelet packet transformation pro-
cess can be expressed by Equation 6.

xi,j =
√
2

K∑
n=0

Lnxi−1,j+n

xi,j+1 =
√
2

K∑
n=0

Gnxi−1,j+n

(6)

where xi,j represents the j-th sub-band signal of the i-th layer
(i = 1, 2, . . . , I where I is the number of decomposition lev-
els; j = 1, 2, . . . , J , where I is the number of decomposition
levels, J is the number of signals of the corresponding layer,
and J = 2I ); Ln and Gn are the low-pass filter and high-pass
filter of the wavelet packet, respectively.

The signal is decomposed by wavelet packet, and then
the spectral kurtosis value of each sub-band signal is cal-
culated separately, and the kurtosis distribution of the entire
frequency band plane can be obtained, as shown in Figure 1.

FIGURE 1. Kurtogram based on WPT.

B. LIMITATIONS OF THE ALGORITHM
The limitations of theKurtogram algorithm aremainly caused
by its statistical characteristics. As we all know, kurtosis can
capture transient information, so it can detect fault impact
information. However, in some cases, some abnormal shock
components will affect the recognition of the kurtosis index.
Kurtosis index is very sensitive to non-periodic transient
impulse components. Abnormal vibration and accidental

shock of equipment will cause non-periodic transient impulse
components, which will lead to the failure of kurtosis index
in time domain. In addition, the harmonic components of
vibration signal will form non-periodic transient components
in envelope spectrum (frequency domain), which will lead to
the failure of kurtosis index of frequency domain. In order
to illustrate this point, a simulated signal defined as Equa-
tion (7) is used for analysis. The simulated signal consists
of four parts: y1 represents periodic impulse components,
y2 represents non-periodic transient impuls components, y3
represents modulation harmonic components, n(t) represents
a certain degree of noise, and Y is the composite signal of
four components.

y1 =
n∑
i=1

Ae−ξ [t−qi(t)/fouter ]
2
· sin(2π fot)

y2 = A1e[−b1×(t−t1)] · sin [2π f1 · (t − t1)]
+A2e[−b2×(t−t2)] · sin [2π f2 · (t − t2)]

y3 = A3 · sin (2π fmesht + β1) (1+ A4 sin (2π fht + β2))
Y = y1 + y2 + y3 + n(t)

(7)

where A = 2 is the amplitude of the periodic impulse
components, A1 = 3 and A2 = 6 are the amplitudes of the
non-periodic transient impulse components, A3 = A4 = 0.6
are the amplitudes of themodulation harmonic components. ξ
is the damping ratio, fo is the natural frequency of the system,
fouter is the characteristic frequency of the periodic impulse
components. b1 = 260, b2 = 360, t1 = 0.2, t2 = 0.3, and
f1 = f2 = 3600Hz are damping parameters, time parame-
ters, and natural frequencies of non-periodic transient impuls
components, respectively. n (t) is the noise (SNR= −12dB).
The parameters of the simulated signal are listed in TABLE 1.

TABLE 1. Parameters of the simulated signal.

Figure 2(a) is the time domain waveform of peri-
odic impulse components, Figure 2(b) is the time domain
waveform of non-periodic transient impulse components,
Figure 2(c) is the time domain waveform of modulation
harmonic components, and Figure 2(d) is the time domain
waveform of noise components, Figure 2(e) is the composite
signal of four components, Figure 2(f) is the spectrum of
Figure 2(e). It can be found from Figure 2(f) that the peri-
odic impulse components information in the time domain
is mainly concentrated near the resonance frequency band
of 2100Hz, and the modulated harmonic components have
a large amplitude in the spectrum (360Hz), so it can be
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FIGURE 2. (a) Time domain waveform of periodic impulse components
(y1 ), (b) time domain waveform of non-periodic transient impulse
components (y2), (c) time domain waveform of modulation harmonic
components (y3), (d) time domain waveform of noise components (n

(
t
)
),

(e) composite signal of four components (Y ), and (f) spectrum of (e).

considered that the modulated harmonic is a non-periodic
transient impulse in the frequency domain.

Figure 3 is the envelope spectrum of the composite signal
in Figure 2(e). It can be seen from Figure 3 that the spectral
line of harmonic frequency components are prominent, while
the spectral lines of fault characteristic frequency and its
multiple frequency components are almost covered.

FIGURE 3. Envelope spectrum of the composite signal (Y ).

The spectral kurtosis defined in time domain (Ksegram)
and spectral kurtosis defined in frequency domain (Ksesgram)
are applied to the composite signal components (Y ) respec-
tively. The results are shown in Figure 4. It is found from
Figure 4(a) that the optimal frequency band found by
Ksegram is in the 15th sub-band of the fourth layer, which is
close to the frequency of the non-periodic transient impulse
components (3600Hz), while the optimal frequency band
found by the s algorithm is in the second sub-band of the
fourth layer, which is close to the carrier frequency of the
modulation harmonic components (360Hz). The correspond-
ing sub-bands are analyzed in time domain, and the results are
shown in Figure 4(c) and Figure 4(d) respectively. The non-
periodic impulse components and the modulated harmonic
components are obtained.

The results show that neither the Ksegram algorithm
defined in time domain nor the Ksesgram algorithm defined
in frequency domain can accurately locate the sub-band of
periodic impulse components.

III. ITERATIVE 1.5D SPECTRAL KURTOSIS ALGORITHM
In order to solve the non-periodic transient impulse interfer-
ence in the time domain and the harmonic singular line inter-
ference in the frequency domain at the same time, an iterative
1.5D spectral kurtosis processing method is proposed.

A. TEAGER ENERGY OPERATOR
Teager energy operator (TEO) is a nonlinear operator that can
strengthen the transient impulse components in the signal,
and capture the characteristic components related to the fault
impulse in the signal. For a signal x (t), its TEO(ϕ) can be
expressed as follow:

ϕ [x (t)] = [ẋ (t)]2 − x (t) ẍ (t) (8)

where ẋ (t) and ẍ (t) are the first and second order differen-
tials of x (t), respectively.
For an undamped vibration system composed of a mass of

m block and a spring of stiffness k , the following differential
equation can be established.

mẍ (t)+ kx (t) = 0 (9)

where x (t) can be regarded as the displacement of the mass
block, and ẍ (t) can be regarded as the acceleration of the
mass block, then the solution of the differential equation can
be expressed as Equation (10).

x (t) = A cos (ωt + ϕ) (10)
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FIGURE 4. (a) Ksegram of the simulated signal (Y ), (b) time domain
waveform of 15th sub-band of the fourth layer, (c) Ksesgram of the
simulated signal (Y ), (d) time domain waveform of second sub-band of
the fourth layer.

Correspondingly, the first-order differential can be expressed
by Equation (11), and the second-order differential can be
expressed by Equation (12).

ẋ (t) = −Aω sin (ωt + ϕ) (11)

ẍ (t) = −Aω2 cos (ωt + ϕ) (12)

where A is amplitude,ω = (k/m)1/2 is natural frequency, and
ϕ is initial phase. At any time, the mechanical energy of the
vibration system can be expressed as the sum of the spring
potential energy and the mass kinetic energy, which can be

expressed in terms of Equation (13) as follows:

E =
1
2
k [x (t)]2 +

1
2
m [ẋ (t)]2 (13)

Further, Equation (14) can be obtained as follows:

E =
1
2
mA2ω2 (14)

Equation (14) establishes the relationship between the total
instantaneous energy of vibration and the amplitude and
frequency of vibration. Then the TEO (ϕ) defined in Equa-
tion (8) is applied to the simple harmonic oscillation, which
can be expressed as Equation (15).

ϕ [x (t)] = ϕ [A cos (ωt + ϕ)] = A2ω2 (15)

Equation (15) shows that TEO is the product of the square of
the amplitude and the square of the instantaneous frequency.
Compared with the traditional energy definition, the relation-
ship between TEO calculation value and frequency can be
improved.

B. ITERATIVE 1.5D SPECTRAL KURTOSIS
The diagonal slice of the third-order cumulant
R3x(τ1, τ2) (τ1 = τ2 = τ) of the stationary signal can be
defined as follows [21], [22]:

For a signal x (t), the diagonal slice of the third-order
cumulant R3x(τ1, τ2) (τ1 = τ2 = τ) can be expressed by
Equation 16.

R3x(τ, τ ) = E {x (t) x (t + τ) x (t − τ)} (16)

where E {·} represents mathematical expectation.
The 1.5D spectrum of the original signal x (t) can be

obtained by performing Fourier transform on the three diag-
onal slices.

B (ω) =
∫
∞

−∞

R3x (τ, τ ) e−jωτdτ (17)

According to demodulation of the time domain signal with
TEO, instead of envelope demodulation of the original time
domain signal, B1 (ω) can be obtained as follows:

The TEO (ϕ) is used to replace the original signal x (t),
and the 1.5D spectrum of the energy operator is obtained as
shown in Equation 18.

B1 (ω) =
∫
∞

−∞

W3ϕ (τ, τ ) e−jωτdτ (18)

B1 (ω) is regarded as a discrete sequence, and then 1.5D
spectrum analysis is carried out to obtain the second iteration
spectrum. In the same way, B2 (t) is regarded as a discrete
sequence, and then the 1.5D spectrum analysis is carried out
to obtain the third iteration spectrum.

B2 (t) =
∫
∞

−∞

R3B1 (ω, ω) e
−jωτdω (19)

B3 (ω) =
∫
∞

−∞

R3B2 (τ, τ ) e
−jωτdτ (20)
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The spectral distance of the three iteration spectrum discrete
sequence is calculated and brought into Equation (5), and the
spectral kurtosis value K 3

I-1.5D of the three iteration spectral
distance is obtained.

KI-1.5D =

〈∣∣B3 (t, f )∣∣4〉〈∣∣B3 (t, f )∣∣2〉2 − 2 (21)

Each sub-band of the wavelet packet is operated separately to
obtain the 1.5D spectral kurtosis distribution in the frequency
plane, as shown in Figure 4. Thus, the optimal sub-band
can be selected, that is, the sub-band with the most fault
information.

FIGURE 5. Paving of KI−1.5Dgram.

FIGURE 6. Flow chart of the proposed algorithm.

The steps of the proposed method are shown in Figure 6 as
follows:

First, the time domain sequence of the collected signal
is decomposed by 4-layer WPT. Each sub-band signal after
decomposition is reconstructed, and the TEO of the time
domain sequence of the reconstructed signal is calculated.

This step is to enhance the impact characteristics in the
signal. Then, the TEO of each reconstructed sub-band is
computed by iterative 1.5D spectral kurtosis. The specific
process is: calculate the 1.5D spectrum for the time domain
sequence to obtain the frequency domain sequence, per-
form the iterative 1.5D spectrum operation on the frequency
domain sequence to restore the time sequence, and then
iterate the 1.5D spectrum on the time sequence to obtain the
frequency domain sequence. The iterative 1.5D spectrum can
suppress the components which have no coupling relationship
in the time domain and frequency domain sequences. Finally,
the normalized kurtosis values of the iterated 1.5D spectral
sequences of all subbands are calculated and the KI−1.5Dgram
is obtained, so that the optimal subband can be selected.
By analyzing the optimal subband, the fault characteristic
frequency can be obtained.

C. SUPERIORITY OF ITERATIVE 1.5D SPECTRAL KURTOSIS
The 1.5D spectrum has three characteristics: one is to make
the spectrum energy incline to the low-frequency part, so as
to capture the fault characteristic frequency; the second is to
suppress the Gaussian noise to make the noise spectrum line
tend to zero; the third is to suppress the spectrum line without
coupling relationship, which can avoid the interference of
single harmonic spectrum line in frequency domain.

(1) For a real harmonic signal x (t) with a mean value of
0 and a fundamental frequencyω0, when there are frequencies
|ωm| and |ωm| and |ωm| < |ωl|, then:

B (ωm) > B (ωl) ,

ωm = mω0, m = ±1, ± 2, . . . , ± n,
ωl = lω0, l = ±1, ± 2, . . . , ± n.

This characteristic shows that the signal energy in the 1.5D
spectrum tends to lower harmonic frequencies, especially the
fundamental frequency, which enhances the low-frequency
components in the signal and makes them easy to extract.

(2) Assuming that n is Gaussian white noise with a mean
value of 0, then its 1.5D spectrum B (ω) = 0.

B (ω) =
∫
∞

−∞

R3n(t) (τ, τ ) e−jωτdτ = 0

This means that the 1.5D spectrum can suppress Gaussian
noise.

(3) For a harmonic signal x (t) containing three frequency
components (ω1, ω2, and ω3), and ω1 > ω2 > ω3. If the
three frequency components have no coupling relationship,
that is, ω1 6= ω2 + ω3, then their 1.5D spectrums tend to
0 (B (ω1) = 0, B (ω2) = 0, and B (ω3) = 0). If the three
frequency components have a coupling relationship, that is,
ω1 = ω2+ω3, then B (ω1) 6= 0, B (ω2) 6= 0, and B (ω3) 6= 0.
The above process shows that the 1.5D spectrum can suppress
the non-coupling components in the signal and enhance the
coupling components, and the harmonics in the fault pulse
have a coupling relationship. In other words, the 1.5D spec-
trum can enhance the fault characteristics in the frequency
domain.
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Because of the three characteristics of 1.5D spectrum, the
accidental interference and Gaussian noise without coupling
relationship are eliminated in the time domain and frequency
domain during the three iterations.

FIGURE 7. (a) 1.5D spectrum (B1 (ω)) of the TEO of the original signal
(Y ), (b) second iteration 1.5D spectrum (B2 (

t
)
), (c) third iteration 1.5D

spectrum (B3 (ω)).

In order to illustrate the process of iterating 1.5D spec-
trum and its suppression effect on uncoupled components
in time and frequency domain, the simulated signal defined
in Equation (7) is analyzed. The teager energy operator of
the composite signal (Y ) is calculated, and then the 1.5D
spectrum operation is performed on the discrete sequence.
Figure 7(a) is the result. Compared with the envelope spec-
trum in Figure 3, it can be found that the 1.5D spectrum
can suppress the noise better, and the fault characteristic
frequency with coupling relationship can be obtained, and
the harmonic components are suppressed to a certain extent.
Then perform the second iteration on the 1.5D spectrum,
the result is shown in Figure 7(b). It can be found that in
the time domain waveform, the periodic impulse compo-
nents with the coupling relationship are more prominent,
but the non-periodic transient impulse components without
the coupling relationship are suppressed. Similarly, the third
iteration 1.5D spectrum is performed again, and the result is
shown in Figure 7(c). The results show that the non-periodic
transient impulse components and harmonic components that
do not have a coupling relationship in the time and fre-
quency domains have been eliminated, and only the periodic
impulse components with the coupling relationship have been
retained.

The above method is used to construct an iterative 1.5D
spectral kurtosis index, which is applied to the selection of

FIGURE 8. (a) KI−1.5Dgram of the original signal (Y ), (b) time domain
waveform of ninth sub-band of the fourth layer, (c) envelope spectrum
of (b).

optimal sub-bands. Firstly, the original signal is decomposed
into four layers of wavelet packets, and then the iterative 1.5D
spectral kurtosis value of eachwavelet sub-band is calculated.
The results are shown in Figure 8. It can be found from
Figure 8(a) that the optimal sub-band is in the ninth sub-band
of the fourth layer, which coincides with the frequency band
where the periodic impulse components is located (2100Hz).
Furthermore, periodic impulse characteristics can be obtained
in the time domain, and fault characteristic frequencies can be
obtained in the envelope spectrum.

FIGURE 9. Bearing fault experimental equipment of CWRU.

IV. EXPERIMENTAL ANALYSIS
A. CASE 1: EXPERIMENTAL DATA WITH NON-PERIODIC
TRANSIENT IMPULSE COMPONENTS
In order to verify the effectiveness of the proposed method,
the bearing vibration signal data of CWRU was analyzed.
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TABLE 2. Parameters of the simulated signal.

TABLE 3. Theoretical fault characteristic frequency of bearings.

The experimental equipment is shown in Figure 9. The bear-
ing model is JEMSKF6023-2RS, and the relatively early fault
data (0.007 inch) are selected for analysis. The sampling
frequency is 12000 Hz and the spindle speed is 1730 rpm.
The structural parameters of the bearings used are shown
in TABLE 2. Based on the bearing parameters, the theoret-
ical fault characteristic frequency of the bearings shown in
TABLE 3 can be calculated.

FIGURE 10. Time domain waveform of the experimental signal.

The time domain waveform of the experimental signal is
shown in Figure 10. It can be seen that the experimental data
contains obvious impact interference, and part of the data
(6-6.3s) is selected for analysis.

The above-mentioned experimental signal is analyzed by
the traditional Kurtogram method defined in the time domain
(Ksegram), and the results are shown in Figure 11. From
Figure 11(a), it can be found that the determined optimal sub-
band is the ninth sub-band of the fourth layer. By analyzing
this sub-band, a significant impact interference can be found
from the time domain (Figure 11(b)). This shows that the
Kurtogram method defined by the time domain kurtosis has
poor ability to deal with accidental impact interference and is
susceptible to this type of interference.

The KI−1.5Dgram defined by the iterative 1.5D spectral
kurtosis mentioned in this article is used to process the above
experimental signals, and the results are shown in Figure 12.
From Figure 12(a), it is found that the twelfth sub-band of the

FIGURE 11. (a) Ksegram of the experimental signal, (b) time domain
waveform of ninth sub-band of the fourth layer.

fourth layer is the optimal frequency band. By analyzing this
sub-band, more obvious impulse information can be obtained
from the time domain waveform (Figure 12(b)), and there are
obvious fault features in the envelope spectrum.

FIGURE 12. (a) KI−1.5Dgram of the experimental signal, (b) time domain
waveform of twelfth sub-band of the fourth layer, (c) envelope spectrum
of (b).
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FIGURE 13. Bearing fault experimental equipment of QPZZ-II.

B. CASE 2: EXPERIMENTAL DATA WITH MODULATION
HARMONIC COMPONENTS
In order to further verify the effectiveness of the proposed
method, the data of the QPZZ-II rolling bearing failure test
bench is used for analysis. The structure of the experimental
platform is shown in Figure 13. The test bench uses a single
drive motor as the power source, and the belt drives the shaft
for synchronous rotation. EDM is used to cause local damage
to the outer ring of the bearing (the fault is a groove with a
depth of 1.5mm and awidth of 0.2mm), and the faulty bearing
is placed in the bearing seat. The eddy current sensor is used
to measure the vibration displacement in the horizontal and
numerical directions of the rotating shaft, and the vibration
acceleration sensor is used to measure the vibration of the
bearing seat. In this experiment, the speed is set to 1440rpm,
the rotation frequency of the shaft is 24Hz, and the sampling
frequency is 12800Hz. The bearing signal is N205 cylin-
drical roller bearing, its structural parameters are shown in
TABLE 4, and the fault characteristic frequency obtained by
theoretical calculation is shown in TABLE 5.

TABLE 4. Parameters of the simulated signal.

The data of the eddy current sensor is used for analysis.
The time domain waveform is shown in Figure 14. It can be
found that due to the imbalance of the rotating shaft, there is
a large low frequency in the displacement signal, but the high
frequency vibration characteristics are not obvious. Envelope
spectrum analysis is directly performed on the original sig-
nal. Obvious spectral transition lines can be extracted from
the envelope spectrum, but the fault characteristic frequency
cannot be extracted.

Kurtogram algorithm defined by the frequency domain
(Ksesgram) is used to analyze the experimental signal. It can
be seen that the optimal frequency band is the first sub-
band of the fourth layer (Figure 15(a)). From the time
domain waveform (Figure 15(b)) and envelope spectrum
(Figure 15(c)), it can be found that the sub-band corresponds
to the frequency band where the harmonic components of the
frequency conversion are located, and the fault characteristic
information cannot be extracted.

TABLE 5. Theoretical fault characteristic frequency of bearings.

FIGURE 14. (a) Time domain waveform of the experimental signal,
(b) envelope spectrum of (a).

FIGURE 15. (a) Ksesgram of the experimental signal, (b) time domain
waveform of first sub-band of the fourth layer, (c) envelope spectrum
of (b).

The method proposed in this article is used to analyze
the original experimental signal. The result is shown
in Figure 16. From Figure 16(a), it can be found that the
optimal filtering frequency band located is the sixth sub-band
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FIGURE 16. (a) KI−1.5Dgram of the experimental signal, (b) time domain
waveform of sixth sub-band of the fourth layer, (c) envelope spectrum
of (b).

of the fourth layer. The time domain analysis and enve-
lope spectrum analysis are performed on this sub-band, and
the results are shown in Figure 16(b) and 16(c). The fault
characteristic frequency and its multiplier components can
be extracted, indicating the accuracy of the frequency band
location of the proposed method.

V. CONCLUSION
In order to solve the feature recognition problem caused
by the time domain statistical indicators being too sensitive
to the non-periodic transient impulse components and the
frequency domain statistical indicators being too sensitive
to the modulation harmonic components, this article pro-
poses an improved method based on iterative 1.5D spectrum.
First, WPT is perform on the signal, and then the iterative
1.5D spectral kurtosis of the decomposed sub-bands is calcu-
lated to identify the best filtering frequency band. Through
simulated and experimental analysis, it is verified that the
proposed method can effectively suppress interference com-
ponents that do not have a coupling relationship in the time
domain and the frequency domain.
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