IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 18, 2020, accepted September 14, 2020, date of publication September 18, 2020, date of current version October 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3024671

Software Architecture Degradation in Open
Source Software: A Systematic Literature Review

AHMED BAABAD -2, HAZURA BINTI ZULZALIL “', SAADAH HASSAN',

AND SALMI BINTI BAHAROM'

! Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang

43400, Malaysia

2Department of Management Information Systems, Administrative Sciences, Hadhramout University, Mukalla, Yemen

Corresponding author: Hazura Binti Zulzalil (hazura@upm.edu.my)

This work was supported in part by the Universiti Putra Malaysia (UPM).

ABSTRACT Software architecture (SA) has a prominent role in all stages of system development. Given the
persistent evolution of software systems over time, SA tends to be eroded or degraded. Such phenomenon
is called architectural degradation. In light of this phenomenon, the current study focuses on problems of
architectural erosion in the open-source software (OSS). There has been a significant research activity on the
OSS over the last decade. Nonetheless, the architectural degradation problems in the OSS are still scattered
and disorganized. In addition, there has been no systematic attempt made on existing studies to provide
evidence, insight and better understanding for researchers and practitioners. The main objective of the present
study is to provide a profound understanding and to review the existing studies on the architectural erosion
of the OSS. In this study, we conduct a systematic literature review (SLR) to gather, organize, classify, and
analyze the architectural degradation of previous papers published until the year 2020. The data for this study
were collected from eight major online databases (ACM, Springer, ScienceDirect, Taylor, IEEE Explorer,
Scopus, Web of Science, and Wiley). A total of 74 primary studies were identified as the final samples of this
research. The results indicated that rapid software evolution, frequent changes, and the lack of developers’
awareness are the most common causes occurred in architecture degradation. Meanwhile, the prominent
key indicators of architectural erosion symptoms are code smells and architectural smells. Additionally, the
results indicated the most commonly used of the proposed solution for addressing architectural erosion is
the metrics-based strategy. Acknowledging the limitations of the current study, more studies are needed that
focus on determining other causes that are still ambiguous and improving the other solutions to provide
better results in the precision and effectiveness of addressing architectural erosion.

INDEX TERMS Software architecture, architectural degradation, architectural erosion, open-source, OSS,

systematic literature review.

I. INTRODUCTION

Modern societies have considerably been relying on large-
scale systems, which have a huge effect on our daily living,
education, finance, healthcare, communication, transporta-
tion, entertainment, commerce, security, and defense [1].
Nonetheless, there is an increasing fragility in these sys-
tems, leading to cascading failures because of the nature of
operating interdependent connected ecosystems [2]. Accord-
ingly, a NATO workshop had been conducted to identify the
software crisis as early as in 1968 [3]. Consequently, the

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Luca Bernardi

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

software architecture (SA) domain has been broadly adopted,
however, with only mere attention [4] as a significant subfield
of software engineering from the past decade, particularly in
research and industry [5] as well as software development [6].

SA is considered the basic structure block for establish-
ing any system, as it is the crucial and important factor in
defining, succeeding, and developing systems design [7] as
well as quality criteria [8], which makes it one of the most
fundamental issues in designing and developing software
today.

Furthermore, SA has a prominent role in each stage of
the system development stages from understanding, analyz-
ing, building, managing, reusing, and requirements to its

173681

https://orcid.org/0000-0001-5298-1451
https://orcid.org/0000-0002-1596-4828
https://orcid.org/0000-0002-3223-7032

IEEE Access

A. Baabad et al.: SA Degradation in OSS

deployment and maintenance [9], [10]. SA deals with
the framework and interactions of a system. Interestingly,
the utmost fundamental construction blocks of the structure
of SA are components and the interconnection among the
components.

Given the continuous development of software systems
over time, SA tends to be eroded or degraded as a result of the
requirement change, new features [11], corrections or archi-
tectural design change decisions, leading to a considerable
systems diverge between the implemented architecture and
intended architecture [12]-[14]. The phenomenon of archi-
tecture degradation usually takes place when the concrete
architecture of a software system deviates from its conceptual
architecture. Hence, the sustainability of software architec-
ture will be threatened by the architectural degradation that
represents the erosion and drift phenomena [15].

Typically, architectural erosion appears when the design
structure of architecture is not properly identical with the
source code in terms of the predefined mapping and accom-
plishing by the architecture engineer. The architectural drift
usually occurs when the design decisions of the system
are not included in the intended architecture [15]. Both
phenomena are generated by several problems such as the
undocumented, unforeseen, unplanned, random, scattered,
and confused architectural design decisions. Furthermore,
the unintentional addition, elimination, and modification
occur frequently. These problems will affect even more,
specifically in the maintenance and development systems life
cycle [16]. It is worth noting that SA is the highest level of
abstraction and basic reasoning in taking the consideration for
producing software, whether this software is an open source
or closed source (proprietary source). Accordingly, this study
focuses on the problems of eroded architecture in the open
source software (OSS).

Over the last decade, research on the OSS has acquired
considerable activity, as the commercial use of the OSS com-
ponents keeps extending [17]. Besides, the OSS has become
one of the most debatable themes among users and practition-
ers. Therefore, several studies have focused on evolutional
aspects of the OSS development in response to long-ranged
viability and sustainability concerns of software projects
based on community [18].

A number of studies have presented the software architec-
tural structure degradation and its deviation from its initial
planned (intended) architecture in the OSS. These studies
have investigated several possible causes of the architectural
degradation occurrence of the intended architecture and the
symptoms that introduce a share in the degradation of the
architectural design within the OSS environment. Addition-
ally, SA degradation reflects negatively on software qual-
ity, leading to the collapse of the entire architecture or a
redesign of the system from scratch. Several studies have
also addressed the evaluation of degradation by conducting
many experimental studies on the OSS to identity, avoid, min-
imize or repair architectural degradation. Many studies have
suggested the use of some tools, models or measures, which

173682

contribute to identifying the architectural degradation and
divergence that deviate from the intended architecture and
understanding of erosion in its first stages. Such suggestions
were made in order to preserve the rest of the architecture
and proper redirection towards the stability and constancy
for architecture. Conclusively, these efforts yielded a set of
abundant results in research, which refer to the need for more
recent comprehensive overviews and literature reviews that
outline and build upon past findings; a set of current knowl-
edge and future directions for researchers and practitioners in
the field.

Nevertheless, as mentioned earlier, the concept of archi-
tectural degradation in the OSS is still scattered and disorga-
nized. To our best knowledge, no efforts have systematically
been made to analyze, summarize, arrange, and structure the
existing studies to further provide evidence and better com-
prehension for researchers and practitioners. However, it is
significant to indicate that there are some systematic literature
reviews (SLRs) that may be related to the area of bad smells.
Sabir et al. [19] concentrated on smell’s growth, modern
approaches, and research trends in object-oriented (OO) and
service-oriented systems (SO). Rattan et al. [20] focused on
code clone and software clone detection through methods and
tools in the OO. Zhang et al. [21] conducted an identification
aim what currently known is for code bad smells. In this
study, we further provide a detailed analysis of architectural
decay reasons and key symptom indicators of overall archi-
tectural erosion, covering symptoms other than bad smells in
open-source software. In addition, we investigate the solu-
tions that address architectural degradation and how effective
the superiority of solutions is to provide better results through
several different aspects. Therefore, we conducted a system-
atic study with the aim of gathering, classifying, investigat-
ing, summarizing, and synthesizing information about the
precision and significance of the previous papers published
until 2020. The study aims to provide a comprehensive report
on the actual contribution of the empirical and thorough
results of the current study including studies on this topic.

Generally, the current study presents three-fold contribu-
tions to the domain. Firstly, we identified 74 primary studies
that detect architectural degradation within the OSS domains,
which can be used as a beginning point to widen the knowl-
edge on the topic. Secondly, we conducted wide explanations
and profound understanding to provide the knowledge about:
(i) potential causes, (ii) symptoms of degradation, (iii) pro-
posed solutions to reduce the degradation, and (iv) evaluation
of the effectiveness of the solutions. Thirdly, we identified
the list of existing research in architectural erosion within the
OOS to understand the current research trend based on our
findings, to support further exploration in this domain.

The descriptions that follow present the structure of the rest
of the study. A background of the software architecture, soft-
ware architecture degradation and open-source software are
presented in Section 2. The research methodology applied is
discussed in Section 3. The results of the study are presented
in Section 4. The discussion of the key findings is explained in

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

Section 5. The threats to the validity of this study are clarified
in Section 6. The conclusion is outlined in Section 7.

Il. BACKGROUND

This section presents a concise overview and the definition of
the SA term along with the software architecture degradation
and the OSS to sum up the basic definitions. The details are
clarified in the subordinate subsections.

A. SOFTWARE ARCHITECTURE

Over the recent decades of the last century, SA has emerged
as the initial comprehension of the large-scope structures of
software systems. SA is a collection of the primary design
decision made throughout the period of development. Archi-
tecture is regarded as a core of software engineering that most
accurately specifies the heart of software systems design and
development [9]. Accomplishing non-functional and func-
tional requirements is one of the most widely provided parts
by SA since it is an integral part of the life-cycle of software
evolution [22].

There are several SA definitions, but most terms and com-
mon definitions revolve around the concepts of components,
modules, and interconnection among the components [23].
For instance, Bass et al. [24] characterized SA as the frame-
work of the system that consists of entities, properties, and
relationships that are externally visible among them. This def-
inition remarkably indicates that the internal characteristics
of the system structure for each entity have no prominent
role in SA [23]. On the other hand, Perry and Wolf [15]
defined SA through the characterizing of three parts of archi-
tectural aspects: processing aspect, data aspect, and connec-
tion aspect. The processing aspect is responsible for the data
aspect to process the information by connection aspect, which
connects the system parts to each other. In a different light,
Crispen and Stuckey [25] described SA as distribution and
planning strategies. The distribution strategy describes the
systems partition into components or (composed of compo-
nents). The planning strategy describes the interface of the
system components with each other.

B. SOFTWARE ARCHITECTURE DEGRADATION

SA degrades as the system evolves [26]. Interestingly,
the eroded architecture impulses the system to complex-
ity, difficulty, and frequent changes than before [27]. The
repeated architectural decay leads to a shortening lifetime
of the system or rather affects the architecture entirely,
resulting in redesigning the architecture of the system
from scratch [28]. As a consequence, the SA of system
erode over time. This phenomenon is known as architec-
tural degeneration [23], [29], design erosion [30], archi-
tectural erosion [11], [23], [31], drift [15], [23], [32],
mismatch [33], architectural decay [34], design decay [35],
code decay [12], [27], software entropy [36], architec-
ture erosion (or decay) [37], software architecture degrada-
tion [9], [15], [38] or software aging [11].

VOLUME 8, 2020

Although there are many definitions for SA degradation,
most definitions and concepts revolve around the imple-
mented architecture and the intended architecture. For exam-
ple, Taylor et al. [9] as well as Perry and Wolf [15]
described the architectural degradation as a process of the
persistent inconsistency between the descriptive software
architecture as implemented and the prescriptive software
architecture as intended. Gurp and Bosch [30], Lindvall and
Muthig [39], as well as Dong and Godfrey [40] described the
architectural degradation as a gradual gap usually detected
between the actual and planned architecture software, which
is implemented by its source code. Macia et al. [41],
Bertran et al. [42], and Macia et al. [43] described the archi-
tecture degradation as a direct outcome of the gradual injec-
tion of code anomalies in the low-level of the systems as the
software evolves. Accordingly, the architectural degradation
occurs within the systems when implemented software archi-
tecture deviates that represents the source code or low-level
far from the intended software architecture that represents the
high level or the conceptual model of architecture design.

C. OPEN SOURCE SOFTWARE
The term open-source software (OSS) points out something
the community can change and participate in because its
design is available to everyone.

With the increased interest in the OSS, several researchers
and practitioners targeted to explore and study the evolu-
tion and design of the OSS and identify some risks such as
sustainability [44], making the OSS of significant interest
today as a viable alternative to the closed-source develop-
ment [45]. The OSS is based on a methodology in estab-
lishing its projects, which completely differs from the used
method in commercial systems [46] such as the source code
available to the public, the price associated with the value
of the system and modification of the software to individual
needs. The OSS systems studies are classified into three
categories according to the success factors of OSS: The first
category explores the successful OSS projects Apache [47],
FreeBSD [48], OpenBSD [49] and Debian GNU/Linux [50].
The second category addresses the similarities that contribute
to the composition of the process used in successful OSS
Apache, Mozilla [51], fifteen OSS Projects [52] as well as
Arla and Mozilla Projects [53]. The third category focuses
on the general public aspect of OSS projects [54], [55].
The success of OSS projects has resulted in the reasoning
stabilization of many researchers and experts that OSS may
extremely contribute to resolving software crises, which in
turn, some advocates believe that future software will either
be the OSS or not at all [56].

IIl. RESEARCH METHODOLOGY

The architectural degradation needs a full detail of the
selected studies to understand how architectural degradation
occurs within OSS projects. Therefore, it was necessary to
conduct an organized systematic study that depends on a
specific protocol and follows the standards and guidelines by

173683

IEEE Access

A. Baabad et al.: SA Degradation in OSS

SLR protocol process

<(Identifying the Research Cluestions)

(Planning Process

Farmulating Review Pratocol)

Generating Search Strateqy
and Study Selection Process

'(Identifying Inclusion and Exclusion Criteria)

(Selecting Primary Studies)

Conducting Process)

(Stuchy Cuality Assessment)

|,(Oata Extraction and Monitorng)
(Fepaorting Frocess)—

FIGURE 1. SLR Protocol processes and activities.

Kitchenham and Charters [57], gather all running evidence
for the research question, and provide the protocol of instruc-
tions based on the evidence for practitioners [58].

Such a process enables the method to identify and aggre-
gate the sources of primary papers, include and exclude the
papers in consonance with the previously identified criteria,
investigate the data and synthesize the papers in a systematic
manner. Accordingly, four main questions were formulated
and defined to achieve the purpose of the current study. These
questions specified the planning of search strategies, which
in turn, lead to the extraction of the data that answered the
research questions of the current study.

The SLR protocol as used by Kitchenham and Char-
ters [57] aims at conducting a comprehensive study and
examining the profound detail in a specific part of a topic
to identify the gaps and future trends in the current research,
contributes to introducing a deep view that helps researchers
to fill the gaps.

The SLR process consists of three main parts that are
considered as indispensable principles in conducting a reli-
able research process: (1) planning, (2) conducting, and
(3) documentation (reporting). Each part has other activities
that settle down within parts that are outlined with its activi-
ties (as shown in Fig. 1). The sections that follow explain the
steps in the SLR protocol.

A. PLANNING PROCESS
The most significant part of the planning process is
defining the research question(s), formulating the review

173684

(Data Syrthesis)

protocol, and identifying the inclusion and exclusion criteria
that should be subject to a particular SLR Protocol. The
following sub-sections describe the SLR planning process.

1) RESEARCH QUESTIONS

Essentially, the identification and construction of the research
question are one of the most important steps, on which the
SLR protocol processes are built. It is considered the basic
idea, in which the researcher intensely realized the need
to identify the details of the previously published studies.
Concretely, this research question consists of four questions,
in relation to the motivation for each question as demon-
strated in Table 1.

2) DEVELOPING A REVIEW PROTOCOL
To conduct a review systematically, Kitchenham and Char-
ters [S57] as well as Kitchenham [65] specified a protocol
method to reduce the probability of bias in the research. With-
out a protocol, the selection of the sample studies would be
individually adapted by the researcher’s

expectations. This would result in missing studies that
should have been included among the sample studies that are
needed in order to provide a profound investigation and broad
understanding of the phenomenon.

The stages of a protocol review are clarified by the
following processes: (i) identifying research questions,
(ii) generating search strategy (iii) studying selection cri-
teria and procedures, (iv) studying quality assessment pro-
cedures, (v) implementing data extraction strategy, and

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

TABLE 1. Research questions.

No Research question Motivation

RQ1 What are the possible reasons for the occurrence of architectural — This question triggers an exploration of the causes that assist in
degradation? architectural degradation emergence within OSS projects.

RQ2 What are the key indicators that have a prominent role in the This question triggers the identification of the main indicators that
permanence of architectural degradation symptoms? contribute to negatively increasing the architectural degradation symptoms,

which lead to generating problems such as deteriorating software
performance [59, 60], increasing software maintainability costs [61, 62],
and software architecture quality degradation [63, 64].

RQ3 Are there proposed solutions that contribute to This question triggers the identification of the offered solutions and its
identifying/addressing/minimizing/avoiding/predicting contribution in addressing architectural degradation by contrast symptoms
architectural degradation? of the intended indicators.

RQ4 How effective are the utilization of the proposed solutions in the This question triggers to identify the effectiveness of solutions provided by

studies?

the suggested studies and also determine the extent of the impact in
addressing architectural decay in a negative or positive manner.

(vi) synthesizing of the extracted data. The stages of protocol
review for this research are illustrated in Fig. 2.

3) INCLUSION AND EXCLUSION CRITERIA

Performing inclusion and exclusion criteria in the research
process for the selected published studies constantly aims
at ensuring that the primary chosen studies are reasonably
related to the research questions and suitable in response
to the defined questions in the SLR. Throughout the search
process, several research articles were found (journals, books,
chapters of books, conferences, workshops, symposiums and
other research articles). Fig. 3 shows the process to conduct
the initial comprehensive search process in line with the key
search string in the given resources.

We selected only research articles written in the English
language while research articles written in languages other
than English were excluded. Another selection criterion of the
articles was that the articles are related to the identification
of the topic of architectural decay in the OSS community that
has a direct or indirect association to answer the respective
research question of the study. On the other hand, articles
that were irrelevant and not clear in addressing the research
questions of the study were excluded. In addition, articles
which are less than four pages were also excluded because
of its insufficiency to introduce a profound understanding
and evaluation of the specific topic. Concerning the tim-
ing of the SLR procedure in our study, the beginning date
of the search for the published articles was not specified
since no efforts have been made for architectural degradation
in the OSS, only the final time was specified, which was
March 31, 2020. This date was the closing up for the search
process and the starting time point for the data synthesis
process.

Table 2 summarizes the inclusion and exclusion of the
selected paper criteria in the study.

VOLUME 8, 2020

TABLE 2. Inclusion and exclusion criteria.

Inclusion Exclusion

The article is written in
English

The article is presented in
languages other than English.

The article must have
relevance to architectural
decay in OSS directly.

The study in the article does not
clearly address architectural decay
in OSS.

The article has an association
with the defined research
questions.

The article does not correlate with
the defined research questions.

The article is more than or
equal to 4 pages (>4).

The article is less than 4 pages
(<4).

B. CONDUCTING PROCESS

Once the protocol has been defined in the planning process,
the conducting process starts with the review proper, which
involves identification of the search strategy, study selection
process and selection of the primary studies as well as the
quality assessment. The sub-sections that follow explain the
SLR conducting process.

1) SEARCH STRATEGY

Defining an accurate and comprehensive search strategy will
provide satisfactory results with a wide coverage of pub-
lished studies regarding the topic, which is identified by
the researchers. Kitchenham and Charters [57] presented the
search mechanism that identifies the following search strat-
egy for primary studies including search string identifica-
tion and resources to be searched. Fig. 2 demonstrates the
search strategy mechanism, including manual and automatic
searches. The section that follows clarifies the search strategy
mechanism.

173685

lEEEACC@SS A. Baabad et al.: SA Degradation in OSS

Generating Research Questions

!

Search Strategy:

[“Architectural erosion” OR "Architectural degradation” OR "Architectural Smell” OR "Architectural anomaly” OR
"Architectural drift” OR "Architectural decay” OR "Architectural inconsistency”™ OR "Architectural problem™ OR "Architectural
violation" OR "Architectural change" OR "Architectural inefficiencies” OR "Architectural debt” OR "Architecture degradation”
OR "Architecture decay” OR "Architecture erosion” OR "Architecture drift” OR "Technical sustainability problem”) AND
["open-source” OR "open source” OR "055" OR "0SP")

! b b ! ! I

))))
Taylor Wiley Scopus IEEE Explore wWos ScienceDirect ACM SpringerLink

17 43 276 22 25 4 27 413

v

Required articles after applying inclusion and exclusion criteria

The scan: 827 - 230 = 597

v

/— Removed Duplicates and Unrelated Remove replicated \
studies
Screen out Title and Full Text Einal Included
Duplication | Abstract scan —w Reading | Set
597-62=535 J | 535-371= 164 4 | 164-98=66 4 1 66 -5=61
., Y, o, .

Search Alert after saving a string strategy within each search engine & applying the above criteria = 2

|/
1 -

The primary studies total Quality assessment, Full Searching inreferences &
- 74 (1), Partial (0.5), No [0) citations for included
80-6=74 studies=17

!

Data Extraction . Data Synthesis
FIGURE 2. The stages of Review Protocol.
a: IDENTIFICATION OF SEARCH STRING by Kitchenham [65], which are: a) getting the derivation
To compose relevant search string, we follow the guidelines ~ of key terms from the research questions; b) looking for
stated by Kitchenham and Charters [57] and the procedures all the key terms in synonyms, alternative spellings, and

173686 VOLUME 8, 2020

A. Baabad et al.: SA Degradation in 0SS I E EEACC@SS

Sparch weihun resul: n PurPage: 28w Expord = | Sei Search Mleits Seatch Hatory

R
[Architd o Chlan™ OR "Architactural degr Mnﬁ QR'IHGN“WMW OR “Architactural IWHITT'UR'NCHII-IWF“M OR "Architestural

ay” OR hitectural inconsistency™ OR hitectural problem™ OR “Architectural violation™ OR “Architectural change™ OR "Architectural
inafficiencios™ OR “Architectural debt” OR “Anchitectune degradation” OR "Anthitectre 6-_3 OR “Architectare srosion” OR "Architecture drift” OR
“Technical sustalnabllity probiem =) AMD (“cpsn-source™ OR “open source™ OR “053" OR "05P")) =
Coniferences (21) Courses (1)

» Sighwp i Logim Englth + Academ edion +

& Springer Link
("Architectural erosion” OR "Architectural dec Hermr Spasch n *

Home + BooksA-Z + JoumalsA-Z + Videos + Libranans

ke P O, or "("Architectural erosion” OR "Architectural degradation™ OR 3
“Ere

FEpE, { [Eciural Smell” OR "Architectural anemaly” OR "Architectural drift” OR
Page 1 ol 1

Search Tools » Searches and alerts «

'l:m Sortby: Date IF TimesCited Usage Count Relevance Mome w
ieoers Wieh of Sokence Core Caflection)

You searched for: (T5={"Archatectur = e 2
al evorsion® OR “Architectural degradat Seloct Page | A Export || Aedd to Marked Lt |
on™ OR "Architectiral Smell™ OR "Anc T -)
hlbctlur.ﬂammnly OR “Architectural

DIGITAL SR VL
ACM & LIBRARY (“Architectural eraon” OR “Architecturs| [LLGel

Searched for (TArchitectural erosson” OF. “Architectural degradation” OR “Architectural Smell” OR “Architectural anoenaly™ OR “Architectural drift™ OR “Architectural decay” OR
“Architectural inconsistency” OR “Architectural problem” OR “Architectural violation” OR, "Architectural change” OR “Architectural inefficiencies™ OR “Architectural debt™ OR
“Architecturt degradation” OR “Architecture decay™ OR "Architacture erosion” OR “Architecture drift™ OR "Technical sustainabilty problem ™) AND (Topen-source” OF “open
source” OR 055" OR "05F") [new search] [edit/save query] [advanced search]

Searched The ACM Full-Teat Coection: 573,946 records [Expand your search to The ATM Guidé to Computing Literatune: 2,876,552 records] T

=37 resuits found 3 Export Rieesults: bibtex | endnote | acmref | cov

Bfﬂpl.‘ﬁ Search Sources Alerts Lists Help « Loivial Create > Sign in s P

276 document results - e s 0 sabaat rems
“Architectural erosion’ “Architectyeal degradation” “Architectural Smell™ “Architectaral anomaly™ OF “Rachibectural dift™ OF “Aechitecharal decay™ “Rachitectural inconsistency”
“Arckizectural problem” “hrchibectural vislation” “Archibectoral change” “Aerchivectaral imeificencie™ “Aechibecturs] debt® O “Architecture degradation” Wechiteetng
decay” OF "Architecturs erosion” 0% “Architecture drifi” “Techmical sustainability problem ™) A “open-source” “opan source” 055 ey
Edit B Sam O Setalet B Seifeed
WHG]" Online Lih’ar! ("Architectural erosion” OR “Archi E Login f Reg

{"An:hitectural erosion” OR "Architectural degradation” OR
"Architectural Smell” OR "Architectural anomaly” OR "Architectural drift" OR
"Architectural decay"” OR "Architectural inconsistency” OR "Architectural
problem™” OR "Architectural violation” OR "Architectural change" OR
"architectural inefficiencies” OR "Architectural debt" OR "Architecture
degradation” OR "Architecture decay” OR "Architecture erosion” OR
"Architecture drift” OR "Technical sustainability problem ") AND ("open-
source” OR "open source” OR "0S5" OR "OS5P")" 2

Fe SAVE SEARCH R RSS

FIGURE 3. Initial results of the search process.

VOLUME 8, 2020 173687

IEEE Access

A. Baabad et al.: SA Degradation in OSS

abbreviations; c¢) checking through matching the keywords
in any relevant research study for the stated previous steps;
d) using the Boolean operators “OR”, “AND”, whereas
“AND” operator employed to associate with the key terms,
“OR” employed to link synonyms, alternative words, and
abbreviations to each other; e) incorporating the key terms
to compose the final search string.

To better design the key terms, the researchers identified
the question structure based on the population, intervention,
outcome, and experimental design, as stated below:

« Population: Software architecture, OSS.

« Intervention: Architectural degradation estimation.

o Outcomes: Architectural decay detection, improved
software quality.

o Experimental Design: Empirical studies, experimental
studies, and case studies.

After conducting and completing the previous steps to form
the keywords and after making sure that some tests are con-
ducted by the search string on the selected libraries, the fol-
lowing inclusive search terms were adopted in our study:
[(““Architectural erosion”” OR “Architectural degradation”
OR ““Architectural Smell” OR “‘Architectural anomaly”” OR
“Architectural drift” OR “‘Architectural decay” OR “‘Archi-
tectural inconsistency”” OR “‘Architectural problem” OR
“Architectural violation” OR “Architectural change” OR
“Architectural inefficiencies” OR ‘‘Architectural debt” OR
“Architecture degradation” OR ‘“‘Architecture decay” OR
“Architecture erosion” OR “‘Architecture drift” OR ““Tech-
nical sustainability problem”) AND (‘“‘open-source” OR
“open source” OR “OSS” OR “OSP”)].

The search string was investigated in the digital libraries
through the keywords, abstract, and title of each study except
for SpringerLink and web of science libraries, the search
string was investigated through the full text since it is not easy
to use the advanced search by keywords, title, and abstract.

b: RESEARCH RESOURCES

The selection of the research resources has a crucial role in
the identification of an efficiency result of the SLR. Accord-
ingly, the researchers must identify relevant and appropri-
ate research resources to conduct their research as well as
research resources that are public and inclusive to most
research. Fig. 2 shows the research resources in this study
that had been identified. In some research resources, there
may be a need to refine and reformulate the search string due
to the difference in its search engine structure from others.
Moreover, there is a divergence of the grammars from one
search engine to another. For instance, the search in Sci-
enceDirect engine requires up to 8 operators whether “OR”’,
“AND”, or integrate them. If the search terms are more
than 8 operators, it must be divided into parts, considering
the attention to link the operators among them. The search
process of conducting the SLR is accomplished by two steps.
The first step is an automatic search by searching eight online
databases (repositories) as shown in Table 3. The second step

173688

TABLE 3. Online databases.

Name URL

IEEE Xplore http://ieeexplore.ieee.org

Springer Link http://link.springer.com.
Science Direct http://www.sciencedirect.com
Scopus https://www.scopus.com

ACM Digital Library
Web of Science

Wiley Online Library
Taylor & Francis Online

http://dl.acm.org
http://www.webofknowledge.com

https://onlinelibrary.wiley.com/
https://www.tandfonline.com/

is a manual search by the backward-forward search approach
to identify the relevant studies among the selected primary
studies [66]. Google Scholar search engine was used to deter-
mine the citation of relevant studies in the chosen primary
studies.

2) STUDY SELECTION PROCESS AND SELECTION OF
PRIMARY STUDIES

The preliminary list of studies was extracted from the initial
search process, containing 827 (as shown in Fig. 2). The
study selection process was conducted by one author and
the other two authors checked the selection process. In the
case Many steps were conducted to exclude the articles that
were irrelevant to the topic, and at the same time to include
related articles by following the guidelines and procedures
by Kitchenham and Charters [57], Kitchenham [65], and
based on some recommendations to detect the relevant stud-
ies for conducting the SLR and developing search strate-
gies [66], [67]. In the first step, the inclusion and exclusion
criteria (as illustrated in Table 2) were applied to obtain the
final studies from this stage, which resulted in 597 articles.
In the second step, the duplicate studies, found in many
database resources during the search process were removed
by using the Endnote reference manager, resulting in 535 arti-
cles. In the third step, the abstract and title were considered
and assessed, whether or not it is related to the topic and
the defined research question, yielding 164 articles. In the
fourth step, reading the full text to evaluate and consider in-
depth in order to issue the final decision to be included or
excluded, producing 66 articles. In addition to articles that
have two duplicates in this stage, the journal article has to be
included rather than the conference paper, provided that it is
up to date as in our study, resulting in five articles. In the fifth
step, a snowballing search strategy was employed for tracing
citations and references of the included studies to identify the
relevant missing articles, resulting in 15 articles in the first
iteration. In the second iteration, 15 articles were analyzed
and no additional studies were found. The search alert was
utilized for all the search resources presented in Table 3 to
determine the related published articles after the date of the
initial research process, producing two articles. In the final
step, at the same time as reading the full text, the quality of the
articles was evaluated, and six studies were excluded. After
applying the criteria for exclusion and inclusion, the total

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

14 (9
12
0 10
10 1 9
s (=
8
[5 5
4 3 3 3
il U [ID“ L

2015 2018 2017 2016 2015 2014 2013 2012 2011 2010 2005 2006 2000

FIGURE 4. Initial studies over the year.

201% 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2006 2000

=T T S R ¥ R Y - -]

mlournal m conference

FIGURE 5. Initial studies per publication source.

of the primary studies was identified in this proposed study,
involving 74 primary studies (as shown in Fig. 2). The pri-
mary studies are demonstrated in Appendix A. The classifi-
cation of the primary studies is illustrated over the years in
Fig. 4. The classification of the primary studies is described
per publication source in Fig. 5.

3) STUDY QUALITY ASSESSMENT

Based on the inclusion criteria for primary studies as stated
in [57], [65], an evaluation of the study quality was also
applied in order to review and reconsider according to the
assessment criteria that are more accurate and more detailed
(as shown in Table 4). The evaluation of the study quality
aimed at making the final decision for the included studies to
ensure the quality in each study before the data extraction for
analysis.

The quality assessment process was performed by one
author and another author verified the selected studies for
quality assessment. In addition, a discussion was also held at
the point of disagreement. The study quality assessment was
divided into three levels, which are high, medium, and low.
Then, the scores for each question were identified in three
parts. In the first part, number 1 means an accomplishment of
the quality criteria entirely and clearly. In the second part,
number 0 means does not meet anything from the stated
quality assessment criteria. In the last part, number 0.5 means
achieving the stated criteria partially.

VOLUME 8, 2020

Low, 5
Low
- MR
High, 52
High

Medum

FIGURE 6. Distribution of study quality assessment levels.

TABLE 4. Quality assessment criteria.

QAID Quality checklist questions Marked Score

QA1 Is the goal(s) of the research
clearly stated?

Does the research add well-

QA2 motivated value to software The score “Yes” =1/
architecture degradation in the OSS ~ “No” =0/ “partial”
community? =05

QA3 Is the methodology (research
design) well-defined and
deliberate?

QA4 Is the study assessment explicitly
reported?

QAS Does the study provide a

description of any one of the
defined research questions?

After applying assessment quality criteria, the scores of
five criteria were collected for quality assessment. The range
of the three levels was determined in the quality evaluation.
If the range is between the score 4.5 — 5.0, it denotes a high
level, and if the scope of score is between 3.5 - 4.0, it denotes
amedium level, and if the range is between the score 2.5 — 3.0,
itdenotes a low level. Most of the scores are represented from
the high level, while six studies were excluded since they did
not meet the specified criteria. In Fig. 6, the distribution of
studies is illustrated after applying the quality criteria for the
three levels. The results of the quality assessment criteria for
primary studies are described in Appendix B.

C. REPORTING PROCESS

Once the conducting process had been identified, the out-
comes of a systematic review could be carried out adequately
by extracting the appropriate data in line with the defined
research questions. Then, the data were synthesized to iden-
tify the final view of the research and a conclusion was made
on what revolves around the scope of this research in the
current time and future research.

1) DATA EXTRACTION

Once the primary studies had been selected to be utilized
for SLR, the data extraction proceeded to precisely record
the information to address the defined research questions.

173689

IEEE Access

A. Baabad et al.: SA Degradation in OSS

TABLE 5. Data extraction items of the primary studies.

Data extracted item

Description

Study ID

The publication year

Study type

Study title

Study aim

Focus of study

Constraints and limitations

Study designs / Research method used for data collection

Obtained results

Datasets
Degradation of software architecture

The unique identifier number for each study.

The identification of published paper date until the year 2020.

Describe the publication type such as journal, conference, a chapter of the
book.

The main goal of the document per each paper, which appears in the search
stage.

Outlining the main goal of each study

Essential topic scope, concepts, motivation/possible reasons,
solutions, and descriptions of the degradation symptoms indicators.
Determining restrictions and downsides in the application of an approach along
with the specified domain for future plans and recommendations in the
research.

Qualitative/Quantitative/mixed/empirical, along with method design such as
experimental, case study, survey, review.

Demonstrates the key finding per each study and extent the effectiveness of
realized outcomes.

The list of the OSS projects on which the study has been applied.

Characterize what specifically erodes in the system architecture

proposed

In order to facilitate the data extraction process, data design
forms according to guidelines in [57] were used from the
chosen studies based on their relevance to the research ques-
tions. Appendix A demonstrates the details of the primary
studies references (SID, title, author, year publication, and
publication source). Finally, the data extraction form design
was implemented on 74 primary studies with a brief descrip-
tion of all the extracted data items presented in Table 5, which
was considered as the main source of data synthesis. The
data extraction was saved in the MS Excel spreadsheets and
Endnote reference manager.

2) DATA SYNTHESIS

By tabulating the extracted data for the required items in
the MS Excel Spreadsheets and the Endnote reference man-
ager, it is possible to synthesize the data with the aims to
summarize and collect the results of the extracted items for
the selected primary studies to answer the defined research
questions [57]. Besides, it is important to determine whether
the results obtained from the primary articles are identical or
inconsistent to one another. The data synthesis can include the
descriptive data (non-quantitative), along with a descriptive
synthesis and sometimes it is possible to involve a quan-
titative synthesis. In our study, the data were extracted to
encompass descriptive data (e.g., causes of the decay, the
proposed solutions of addressing the degradation, a list of
the erosion indictors symptoms) and quantitative data (e.g.,
the value of obtained results accuracy, which contributes to
the extent of effectiveness of the suggested solutions).

IV. RESULTS

This section presents the results of the review to answer the
defined research questions outlined in Table 1. The research
questions have been answered by the final sample of the
primary studies, which was restricted after applying the

173690

stated general and quality criteria between the year 2000 to
March 2020, in which the research process ended, and fol-
lowed by the inception for synthesis and report of the final
data.

A. RQ1) WHAT ARE THE POSSIBLE REASONS FOR THE
OCCURRENCE OF ARCHITECTURAL DEGRADATION?

This question identifies the possible causes that contribute to
architectural degradation in the OSS community. The results
of the first research question show several reasons, which
differ in terms of the actual contribution to the occurrence
of architectural erosion.

The results indicated that most of the causes of architec-
tural degradation, which have a significant actual impact, are
the rushed evolution of systems, recurring changes, lack of
developer’s awareness, time pressure and accumulation of
design decisions. In the rushed evolution, numerous archi-
tectural problems, such as smells, tend to increase through
successive system versions. In recurring changes, there are
escalated risks on software architecture in making mistakes
whenever the systems become more complex due to the fre-
quent changes. For example, adapting new functionalities and
features, new technologies, irresponsible or unintended addi-
tion, uncontrolled and unsuitable changes in its implemen-
tation or removal, and modification of architectural design
decisions. In relation to the lack of the developer’s awareness,
there are problems with a high level of severity, which are not
introduced to identify the level of architecture decay sever-
ity by developers due to lack of an explicit understanding
of architectural basic knowledge, insufficiency of business
knowledge, adopting and selecting the inexperienced devel-
opers, absence of long-term developer commitment to the
project, writing unsuitable and improper code, or the practice
and training to generate OSS projects as a distraction or
hobby. In time pressure, it may affect the introduction of tem-
porary solutions by the developers under a deadline pressures

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

TABLE 6. Potential reasons for the occurrence of the architecture DECY.

Reference / study

Potential reasons

[SO17T, [S14].

[S03], [S04], [S55], [S45], [S39], [S41], [S27], [S28], [S31], [S33],
[S20], [S21], [S10], [S14], [S72], [S56].
[S06], [S36], [S28], [S67].

[S07], [S74], [S71], [S43], [S46], [S401, [S28], [S30], [S17], [S23],
[S67].
[S08].

[S09], [S46].
[S70], [S31].

[S68], [S57], [S55], [S32].

]
[S661,[601, [S55], [S43], [S45], [S48], [S40], [S25], [S26], [S33], [S19],
[820], [S21], [S72], [S59].
[S62], [S30], [S32], [S33].
1
]

[
[S53], [S47], [S51
[S43], [S46], [S28], [S30], [S17], [S23], [S24], [S51].
[S46].
[S46].
[S38].
[s10].
[S08], [S61], [S54], [S44], [S25], [S17], [S24], [S59].

Scarcity of traceability of history and analysis of software systems
architecture.
The rush of software evolution.

Violations of the original Architecture rules.

Lack of developer’s awareness.

Ignoring quality attributes.
Insufficient development tools.

Unresolved differences between and concrete software

architecture.
Structural complexity.

conceptual

The recurring change.

Lack of architecture documentation.

The poor quality of the architecture design solutions.
Time pressure.

Inconsistent requirements.

Organizational environment

Accumulating architectural debts.

Connection of the bug-prone files.

Accumulation of architectural design decisions.

or time constraints and workloads, which contributes to accu-
mulating architectural debts affecting software architecture
over time.

In the accumulation of design decisions, architectural
design decisions occur consciously or unconsciously, nega-
tively influencing the quality attributes especially maintain-
ability and evolvability.

Furthermore, there are other reasons such as structural
complexity, lack of architecture documentation, poor qual-
ity of the architecture design solutions, organizational envi-
ronment, insufficient development tools, violations of the
original architecture rules, scarcity of traceability of history
and analysis of software architecture, inconsistent require-
ments, accumulating architectural debts, the connection of
the bug-prone files, and ignoring quality attributes demon-
strating in Table 6.

The results also indicated the extent to which the frequency
of the causes occurrence according to their statement and
impact on the case study in the chosen primary studies at
a different ratio. The rush evolution of the systems scored
19.77 %, the recurring changes 18.60 %, the lack devel-
oper’s awareness 12.79 %, the time pressure and accumula-
tion of architectural design decisions 9.30 %, the violation
of the original architectural rules and structural complexity
4.65 %, the poor quality of the architecture design solutions
3.49 %, the scarcity of traceability of history and analysis
of software systems architecture, insufficient development
tools, and unresolved differences between conceptual and

VOLUME 8, 2020

concrete software architecture 2.33 % and ignoring quality
attributes, inconsistent requirements, organizational environ-
ment, accumulating architectural debts, and connection of the
bug-prone files 1.16 %. Fig. 7 shows the frequency for the
cause occurrence according to their statement in the chosen
primary studies.

B. RQ2) WHAT ARE THE KEY INDICATORS THAT HAVE A
PROMINENT ROLE IN THE PERMANENCE OF THE
ARCHITECTURAL DEGRADATION SYMPTOMS?

In the first research question, we identified the potential
reasons, which clarified the occurrence of architectural degra-
dation. In this question, we specified the prominent key
indicators of the architecture degradation symptoms, which
appear as a result of the presence of the possible causes.

We found the four key indicators (as illustrated in Table 7),
which are code smell, architectural smells, architecture
technical debt, and the violation of the architectural con-
straints. As earlier stated, the key indicators of architectural
degradation symptoms are classified. To illustrate, firstly,
the code smells were divided into two groups; the code
smells individual and the code smells agglomerations (as
shown in Table 8). Secondly, the architectural smells were
divided into three groups; architectural hotspots, architec-
tural bad smells/architecture anti-patterns, and architectural
change/instability (as shown in Table 9). Thirdly, architec-
tural constraints violation was divided into three groups;

173691

IEEE Access

A. Baabad et al.: SA Degradation in OSS

Accumulation of architectural design...
Accumulating architectural debts
nconsstent requirements

The poor quality of the architecture design...

The recurring change

Unresolved differences between...
lgnoring quality attributes

Violations of the original Architecture rules

Scarcity of traceability of history and...
o 5 10 15 20 25

FIGURE 7. Frequency of the cause occurrence in chosen primary studies.

TABLE 7. Key indicators of the architecture degradation symptoms.

Reference / study Key indicators

[S03], [S44], [S39], [S15], [S18], Code smells
[S07], [SO8], [S61], [S62], [S57],
[S58], [S52], [S47], [S311,[S16],
[S171,[S23], [S24L[[S64],[S42],

[S691,[S34], [S50], [S51].

[S52], [S47], [S29], [S21], [S11],
[S12], [S13], [S10], [S14], [S65],
[S01], [S68], [S60], [S20], [S45],
[$50], [S19].

Architectural smells

TABLE 9. Architecture smells groups.

Reference / study

Architectural smells group

[S651, [S14].

[S52], [S29], [S21], [S11], [S12],
[S13] [S47], [S10].

$451, [S50], [S19], [SO1], [S68],
[S60], [S20],

Architectural hotspots

Architectural bad smells /
Architecture anti-patterns

Architectural change/ instability

TABLE 10. Group of the architectural constrain’s violation.

Reference / study

Architectural violation group

[SO8], [S68].

[S08], [S63], [S46], [S47], [S36],
[S28], [S72], [S67].

[S04], [S09], [S74], [S70], [S43].

Internal attributes’ violation

Violation of object-oriented
design characteristics

Architecture inconsistencies

[S07], [S54], [S38], [S41].

[S04], [S09], [S74], [S70], [S47],
[S43], [S36], [S28], [S08], [S63],

Architectural technical debts

Breaking of the architectural
constraints

[S46], [S47], [S28], [S72], [S67].

TABLE 8. Code smells groups.

Reference / study Code smells group

[S07], [S08], [S61], [S62], [S57], Code smells individual
[S58], [S52], [S47], [S31], [S16],

[S171,[S231, [S24], [S64], [S42],

[S691, [S34], [S50], [S51].

[S03], [S44], [S39], [S15], [S18]. Code smells agglomeration

internal attributes’ violation, violations of object-oriented
design characteristics, and architecture inconsistencies (as
shown in Table 10).

The results show the extent to which the frequency of the
key indicators appearance of the architectural decay symp-
toms as reported by conducting an empirical case study in
the chosen primary studies at a different ratio. The code
smells obtained 40.00 %, the architectural smells 28.33 %,
the breaking of the architectural constraints 25.00 %, and
the architectural technical debts 6.67 % (as demonstrated
in Fig. 8).

According to each group of the key indicators groups
of degradation symptoms, the results indicate that in code

173692

—
=]

30
25
20
15
° -

Code smels Architectural Architectural Breaking of the
smells technical debts architectur a
constraints

FIGURE 8. Frequency of key indicators appearance of the architectural
decay symptoms in chosen primary studies.

an
-
60
50
40
30
20
10

Code smelk individua! Code smelk agglomeration

FIGURE 9. Frequency of the appearance key indicators of code smells
group.

smells group, code smells individual obtained 79.17 %,
while the code smells agglomeration obtained 20.83 %
(as illustrated in Fig. 9). In architectural smells group,

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

45
a0
35
30
5
20
15
10

5

o

Architectural bad
smells/ & chitecture
anti-patterns

Architectural hotgpots Architectural change/

instability

FIGURE 10. Frequency of the appearance key indicators of architectural
smells group.

60
50
40
30
20
-

Violation of object-
oriented desgn
characteristics

Architecture
inconsistencies

Internalattributes’
violation

FIGURE 11. Frequency of the appearance key indicators of Group of the
architectural constraint’s violation.

architectural hotspots obtained 11.76 %, architectural bad
smells/architecture anti-patterns 47.06 %, and architectural
change/instability 41.18 % (as stated in Fig. 10). In a group of
the architectural constraints violation, the internal attributes
violation obtained 13.33 %, violation of object-oriented
design characteristics 53.34 %, and architecture inconsisten-
cies 33.33 % (as shown in Fig. 11).

C. RQ3) ARE THERE PROPOSED SOLUTIONS THAT
CONTRIBUTE TO IDENTIFYING / ADDRESSING /
MINIMIZING / AVOIDING / PREDICTING ARCHITECTURAL
DEGRADATION?

The second question discusses the key indicators of architec-
tural decay symptoms and resulting problems as well as the
risks for OSS projects. Based on the findings, this question
presents the proposed solutions for symptoms of the key
indicators in each primary study.

The results showed many solutions that vary in terms
of strategies of the used solutions such as models, mea-
surements, approaches, algorithms, tools, techniques, and
methods, that may integrate more than one instrument
and strategy according to the proposed solution (as shown
in Table 18).

VOLUME 8, 2020

proposing HIST

quantifying the diffusenes

proposing an approach for tracking
Developing technigues

Analyzing stinkier code

investigating the relationship

Analysis and monitoring inherent complexity

proposing various spproachesfor...

investigation and addressing of ..

architectural anomaly prioritization

Metrics- based detection strategy

=
un

10 15 20 25

FIGURE 12. Proportion of used solutions to detect architectural decay in
studies.

20
) - L |
0

ldentiying Avoiding Addressing Minimizing Predicting

FIGURE 13. Classification proportion of proposed solutions type.

The most important of these solutions are the metrics-based
detection strategy, prioritization of architectural anomalies,
investigating and addressing of architectural rules violations,
applying refactoring strategy, applying architectural recov-
ery strategy, and other proposed solutions (as illustrated
in Table 11). These stated solutions are originally considered
general solutions. Hence, the most important used solutions
have been detailed into more clarified solutions as shown in
the following tables. For example, metrics-based detection
strategy is shown in Table 12, prioritization of architectural
anomalies is clarified in Table 13, investigation and address-
ing of architectural rules violations are indicated in Table 14,
applying refactoring strategy is illustrated in Table 15 and
applying architectural recovery strategy is shown in Table 16.
The proposed solutions are also categorized according to the
stated mechanism, whether this mechanism is the identifica-
tion, avoidance, addressing, reduction, or prediction of archi-
tectural degradation within the environment of OSS projects.
Table 17 shows the classification of presented solutions
types.

The results also indicated that the most suggested solutions
to be used are the metrics-based detection strategy obtained
20.27 %, investigation and addressing of architectural rules
violations 17.57 %, architectural anomaly prioritization 12.16
%, architectural recovery strategy 9.46 %, refactorings strat-

173693

IEEE Access

A. Baabad et al.: SA Degradation in OSS

TABLE 11. Proposed solution of architectural decay.

Reference / study

Proposed solutions

[SO1], [S04], [S61], [S52], [S54], [S43], [S35], [S39], [S26], [S20], [S50],

[S13], [S44], [S60], [S57].
[S02], [S10].

[S03], [S58], [S48], [S31], [S16], [S17], [S13], [S41], [S42],
[S05].
[S06], [S63], [S55], [S47], [S33], [S72], [S74], [S67], [S38], [S56], [S36],

[S28], [S32].
[S097, [S49], [S29], [S64], [S34].

[S701, [S71], [S37], [S25], [S22], [S59], [S70].
[S68], [S65].
[S66].

[S62], [SI8].
[S45].

[S30], [SO8], [S62], [S46], [S23], [S53].
[S15].

[S40].
[S19].

[S21], [S11].
[S12].

[S14].

[S24].

[S69].

[S51].

Metrics-based detection strategy.

Exploring the architectural impact of the bug-proneness and change-
proneness that violates the design principles by connections among files.
Prioritization of critical architecturally smells and code anomalies
relevant to the architectural problems.

Code-based multilevel analysis method to detect erosion points by
detecting the changed pairs of each level.

Investigation and addressing of architectural rules violations.

Proposing various approaches for automatic detection, repair of
architectural problems, and support software developers during the
development in Java projects.

Applying architectural recovery strategy.

Analysis and monitoring inherent complexity.

Presenting the graph kernel approach to calculate the structural distance
of architecture between two revisions of a software system.

Investigating the relationship between code anomalies and architecture
problems.

Identifying causes of architecture changes between developers through
intermediary media by using a top-down and a bottom-up approach.
Applying refactoring strategy

Analyzing stinkier code rather than smells occurring in isolation based on
the semiotic Engineering theory
Detecting architectural tactics to understand underlying design decisions

Developing techniques for identifying and predicting architectural
changes by using the readily available information in the issue and code
repositories of software systems

Proposing a prediction model for identifying architectural smells link
prediction (LP) and historical AS data

Proposing an approach for tracking the individual smell instances along
with system evolution

Proposing a novel model, Active Hotspot (AH) for detecting and
monitoring the emergence and evolution of software degradation by
tracking how files and their relations are changed within each issue
Quantifying the diffuseness of the problem in term of how frequently
code smells occur together

Proposing DEtection & CORrection (DECOR), a method for the
specification and detection of code and design smells using a unified
vocabulary and domain-specific language (DSL)

Proposing an approach, named HIST (Historical Information for Smell
detection), to detect smells based on the change in history information
mined from the versioning systems

egy 8.11 %, proposing various approaches for automatic
detection 6.76%, exploring the architectural impact, analysis
and monitoring of inherent complexity, proposing a predic-
tion model 2.70 %, code-based multilevel analysis, presenting
the graph kernel approach, identifying causes of architecture
changes, analyzing stinkier code, detecting architectural tac-
tics, developing techniques, proposing an approach for track-
ing, proposing active hotspot, quantifying the diffuseness,
proposing Detection, and proposing HIST 1.35 % as shown
in Fig. 12.

Additionally, the results of the proposed solution type
classification showed that identifying mechanism obtained
52.83%, addressing mechanism 25.47 %, avoiding and mini-
mizing mechanism 7.55 %, and predicting mechanism 6.60%
as demonstrated in Fig. 13. The proposed solutions were
classified based on the introduced solution strategies in those

173694

primary studies. Fig. 14 demonstrates the proposed solutions
taxonomy of the architectural decay of OSS projects.

D. RQ4) HOW EFFECTIVE ARE THE PROPOSED USED
SOLUTIONS IN THE PRIMARY STUDIES?
The previous question about identifying proposed solutions
to handle architectural degradation within the OSS projects
environment has been earlier clarified. This question deter-
mines the extent to which the solutions are effective and
efficient as well as to what extent these proposed solu-
tions can achieve the contributions to address architectural
degradation.

Since the proposed solutions are divided according to spe-
cific mechanisms, therefore, the effectiveness of the solutions
is identified as previously stated in the mechanisms. There

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

TABLE 12. Detail solutions for the metrics strategy.

Reference / study

Details solutions of the metrics-based detection strategy

[S01], [S20].
[S04], [S52].
[S61].

[S54].
[S43], [S26].

[S35].

[S44], [S39].

[S13].

[S50].

[S60].

[S57],

Measuring the instability or stability to identify software components in
developing future versions of evolving software systems.
Exploring/estimating the effectiveness and effort of suitable code source
metrics to reveal architecturally-relevant code anomalies.

Improving the automatic detection of code anomalies by exploiting the
extracted information based on a set of static code metrics

Defining ATD indicators by modularity metrics.

Characterizing the packages by maximizing cohesion and minimizing
coupling in the hope that optimization will reorganize its modules to
minimize dependencies among packages.

Measuring how well the software is decoupled into small and
independently replaceable modules.

Measuring code anomalies that “flock together rather than individual
anomalies that introduce a sufficiency of locating design problems
system.

Identifying architectural smells that most critical ones to prioritize
refactoring efforts and prevent software architecture erosion in terms of
locating in an important part of the system and criticality associated with
each smell.

Measuring the detection of code smells and acknowledging their relations
and co-occurrences.

Proposing a novel approach ADVISE to investigate some metrics (code
decay indicators) on software.

Exploring architecture-sensitive implementation metrics by the code
elements.

are many solutions provided using metrics-based detection
mechanism through which the effectiveness of the solutions
is recognized.

The architectural instability remains growing and the
metric values increases instead of decreases as the system
evolves [SO1], [S20]. Source code metrics show the proba-
bility that classes contribute to generating the architectural
inconsistencies [S04] and the effectiveness of metrics-based
strategies indicate that it could be applied with significant
confidence [S52]. The detection strategies efficiency was not
precise to determine code anomalies since more than 50 % of
the explored code anomalies are not associated with architec-
tural problems and surprisingly, more than 50 % of the false
negatives that can be associated with architectural problems
are made by automated strategies [S61]. The modularity
indicators IPCI and IPGF showed a considerably negative
interrelationship with the normalized ANMCC, while other
indicators do not [S54]. The prediction models based on
AbdeenMod+RM metrics achieved an acceptable accuracy,
while conventional metrics is outperformed in the fault
prediction modeling [S26]. On the other hand, the search-
based module clustering showed that its original architecture
has been lost because of the new features addition and
maintenance [S43]. Decoupling Level (DL) measure has a
considerably negative correlation with architecture maintain-
ability, thereby can be considered a more valuable metric
compared to the coupling level metric [S35]. The agglom-
erations anomalies are better than the individual anomalies.
Around 50% of the syntactic agglomerations correlates with
architectural problems while around 80% of the semantic

VOLUME 8, 2020

agglomerations correlates with architectural problems
[S44], [S39]. Both (high PageRank and high criticality)
metrics provide valuable information to the developers,
of which information can be utilized to explore the danger of
architectural smells [S13]. The use of architecture-sensitive
information for code anomalies detection will introduce crit-
ical knowledge for engineers to identify and address smells
immediately [S57].

Regarding the solutions sufficiency of anomalies priori-
tization strategy, the results showed that the agglomeration
flood standard introduced good outcomes for the determi-
nation of the architectural problem, but it does not nec-
essarily represent the most critical smells [S03], [S13].
Furthermore, the recommended heuristics and architecture
blueprints are able to improve and rank the prioritization
process compared to the metric-based strategies, from 20 %
to 60 % of critical code smells, thereby it motivates for
prioritizing architecturally relevant code smells [S48], [S16],
[S58]. [S31] indicated that the most optimal models are not
accurate enough to specify classes relevant to architectural
inconsistencies dependent on the code smell. In contrast,
the context-based smell prioritization techniques indicated
that relevant results introduce more improvement than the
severity-based smell prioritization [S17]. Moreover, all algo-
rithms achieved high performances such as the ones that were
obtained by J48 and Random Forest while the worst perfor-
mance was obtained by the support vector machines, suggest-
ing that machine learning implementation to the detection
of the code smells may provide high accuracy (>96 %)
[S42].

173695

IEEE Access

A. Baabad et al.: SA Degradation in OSS

TABLE 13. Detail solutions for prioritization anomalies.

Reference / study

Details solutions of prioritization architectural anomaly

[S03], [SI3].
[S58].

[S48], [S16].

[S31].
[S17].
[S41].

[S42].

Identifying the prioritization of architecturally smell agglomerations to
focus on relevant architectural problems.

Prioritization of code anomalies based on architecture sensitiveness
(proposed heuristics).

Prioritizing code anomalies by architectural blueprints to identify the
strength of the relationship between code anomalies and architectural
design problems.

Prioritizing classes that violate the intended architecture for architectural
repair.

Prioritizing code smells from code smell detectors by considering
developers' current context to support of the prefactoring phase.
Prioritization of identifying and estimating the debt at the architecture
level.

Machine learning technology for classifying code smells by examples.

TABLE 14. Detail solutions for architectural rule’s violations.

Reference / study

Details solutions for applying refactoring’s strategy

[S08], [S62].
[S46].

[S23].

[S53].

[S30]

Applying refactoring for removing architecturally design problems.

Proposing architectural repair recommendation through a
recommendation engine called ArchFix for providing refactoring
guidelines.

Proposing a technique to detect code fragments incompliant to the
architecture as fine-grained architecture smells.

Repairing architectural smells by changing the structure and the
behaviors of the internal system elements without changing the external
behavior.

Applying longitudinal case studies from a SACC perspective to obtain a
deeper understanding of architectural erosion, its impact, and evolution.

Considering the solutions to the architectural rules vio-
lations, 99 % of the systems introduced violations at least
one architectural principle type, and one of the principles
was not followed in 60 % of the investigated entities [S06].
In addition, many violations were solved and introduced with
time, and they also reappeared after they have been solved in
future releases of the project [S63]. In the case of DSpace,
the violations of layering were identified by the tool and
then added as a code cleanup activities list [S72]. For the
modularity violations, 231 violations (47 %) were identified
from 490 modification demands of Hadoop, and 152 (65 %)
violations were confirmed, while from 3458 modification
demands of Eclipse JDT, 399 (12%) were identified and 161
(40 %) violations were confirmed [S67], 325 dependency vio-
lations were identified, whereas 70 % recommended refac-
toring for removing code anomalies [S55]. All the inference
rules have a significant impact and efficiency on the detection
of the violation [S23]. [S33] used software architecture con-
formance checking (SACC) to find out the architectural vio-
lations in specific files compared to normal files. Appearing
code churn for files that have architectural violations become
similar to natural files after removing violations. ArchLint
approach detected 389 and 150 architectural violations, with
an inclusive precision of 62.7 % and 53.8 % [S36]. The DCL

173696

2.0 language shows a carefully captured of the architectural
model for the system where 771 architectural violations were
detected; 74 % of the violations were discovered by the new
restrictions suggested in DCL 2.0 [S28].

Regarding refactoring strategy solutions, refactoring has
no positive effect on the variety and intensity of any the
symptoms indicators, of which around 66 % of all refactoring
did not contribute to the repairing of architecturally relevant
code smells [SO8], [S62]. On the other hand, ArchFix pointed
out the proper refactoring for 655 (79 %) out of 828 viola-
tions discovered [S46]. The profound understanding of the
architectural decay and its impact showed an increasing trend
in the degradation pre-refactoring and a decreasing trend in
post-refactoring, producing the erosion that is detached from
size after the post-refactoring termination [S30]. As for the
ArCatch, an architectural conformance checking approach
proved to be beneficial in the specification of the current
exception handling decay issues and its reasons by detecting
7 violations of the design rules where the 6 design rules
corresponded to all the versions [S32].

As for architectural recovery strategy solutions, the
structural- and lexical-based layering techniques outper-
formed structural-based approaches to recover the software
architecture of object-oriented (OO) systems [S37]. A more

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

TABLE 15. Detail solutions for applying refactoring’s.

Reference / study

Details solutions of the architectural rule’s violations

[S06].
[S63].
[S55].

[S47].

[S33].

[S72].

[S74].

[S67].

[S38].

[S56].

[S36].

[S28].

[S32].

Proposing Design Tests approach to check whether the implementation is
following the architectural rules or not.

Focusing the architectural violations lifecycle and location over time to
form an initial body of knowledge on architectural violations.

Proposing an approach (move class) to repair architecture violations
through reengineering and refactoring techniques.

A novel technique to automatically identify and rank causes of violations,
based on the detection of so-called symptoms that are similar to anti-
patterns or bad smells.

Measuring the code churn and code ownership before and after the
refactoring to discover large files containing violations in increasing code
churn than large files before the refactoring.

Proposing a human-assisted approach to identify the intended
organization of the modules into layers by analyzing the source code to
avoid the violations.

Removing most of these anomalies using forward and reverse
architecture repair.

Proposing an approach Clio to detect and locate modularity violations
based on Baldwin and Clark’s design rule theory and design structure
matrix (DSM) modeling.

Proposing an approach ArchDebt by novel history coupling probability
(HCP) and index file groups to identify architectural flaws.

Proposing TamDeral, a new Domain-Specific Language (DSL), for
specifying rules to detect architectural degradation and providing rules to
reuse them.

Proposing ArchLint, an approach based on a combination of static and
historical source code analysis.

Proposing DCL 2.0—an extension of the original DCL (dependency
constraint language) technique to tackle the problem of divergences
between the planned architecture and source code.

Proposing ArCatch: architectural conformance checking solution to deal
with the exception handling design erosion.

TABLE 16. Detail solutions for architectural recovery.

Reference / study

Details solutions of the architectural recovery strategy

[S73].
[S71].
[S37].
[S25].

[S22].

[S59].

[S70].

Proposing an approach Focus for recovering and evolving architectures
of undocumented OO applications and stem architectural erosion.
Recovering the SE concepts of software design and architectures and
identify architectures evolve or decay during the system's evolution.
Proposing an approach that combines lexical and structural information
of'a given system to recover its layered architecture.

Introducing a novel approach, Architecture Recovery, Change, And
Decay Evaluator (ARCADE).

Developing a technique RecovAr, based on ACDC and ARC for
automatically recovering design decisions from the project’s readily
available history artifacts.

Establishing a set of “ground truths for verifying the accuracy by the
system’s architects or developers who have intimate knowledge of the
underlying application and problem domain.

Extending the Software Reflexion Model and tailoring it for the analysis
of MDSD projects using a clustering technique for architecture recovery.

suitable manner of evaluating and understanding architectural
change is by investigating recovered conceptual architecture
of the system either at the general structure level or the
individual components level [S25]. RecovAr technique can
accurately uncover the architectural design decisions embod-
ied in the systems, recovering 75% of the decisions with a
precision of 77% [S22]. In [S59], the results of the study

VOLUME 8, 2020

showed that constructing a ground-truth architecture for the
wide systems is feasible unlike prior intuition for recover-
ing architecture, which claimed that it is infeasible. Hence,
the outcomes can assist the improvement of the understanding
of software architecture.

With respect to proposing various approaches for auto-
matic detection, repair of architectural problems and support

173697

IEEE Access

A. Baabad et al.: SA Degradation in OSS

TABLE 17. Classification of the proposed solution type.

Reference / study

Classification of the proposed solution type

[SO17, [SO4], [S617, [S52], [S54], [S35], [S39], [S26], [S20], [S13], [S50],
[S44], [S02], [S03], [S58], [S31], [S16], [S17], [S05], [S06], [S63], [S55],
[S47], [S72], [S41], [S62], [S67], [S23], [S38], [S09], [S49], [S29], [S64],
[S34], [S22], [S25], [S37], [S71], [S66], [S60], [S62], [S18], [S57], [S45],
[S36], [S28], [S30], [S40], [S19], [S12], [S14], [S24], [S42], [S69], [S56],
[S51],

[S13],[S33

[S01], [S10
[S62], [S67
[S65], [S62
[S43],[S35

[S13], [S04

—

, [S70], [S70], [S68], [S45], S28], [S12], [S14],

, [S48], [S16], [S17], [S05], [S55], [S47], [S72], [S74], [S08],
, [S46], [S53], [S09], [S59], [S22], [S37], [S71], [S70], [S70],
, [S30], [S32], [S15],

, [S03], [S58], [S48], [S08], [S64], [S19],

, [S41], [S60], [S19], [S21], [S11],

[t

[l Wi

Identifying /detecting

Avoiding/ preventing

Addressing/ repairing

Minimizing

Predicting

TABLE 18. Instruments and strategies of the used solutions.

Reference / study

Instruments and strategies of the used solutions

[SO1], [S04], [S09], [S71], [S86], [S65], [S61], [S62], [S57], [S58], [S52],
[S54], [S43], [S48], [S35], [S37], [S39], [S41], [S25], [S26], [S28], [S31],
[S33], [S16], [S18], [S19], [S20], [S10], [S11], [S13], [S64], [S42], [S72],
[S56], [S50],

[S02], [S04], [S05], [S70], [S66], [S61], [S62], [S63], [S47], [S31], [S33],
[S11], [S14],

[S03], [S02], [S04], [S06], [SO8], [S09], [S71], [S68], [S60], [S61], [S62],
[S631], [S57], [S58], [S52], [S53], [S54], [S55], [S43], [S44], [S45], S46],
[S47], [S48], [S13], [S49], [S35], [S36], [S39], [S40], [S41], [S25], [S26].
[S271], [S28], [S29], [S31], [S32], [S15], [S16], [S21], [S23], [S10], [S11],

[S12], [S14], [S64], [S42], [S72], [S34], [S56],

[S03], [S05], [S60], [S55], [S39], [S25], [S311, [S15], [S19], [S20], [S21],

[S14], [S42], [S69], [S72],

[S04], [S06], [S09], [S74], [S73], [S66], [S60], [S63], [S55], [S45], S46],
[S49], [S36], [S37], [S38], [S41], [S25], [S27], [S28], [S30], [S32], [S17],

[S19], [S21], [S22], [S10], [S12], [S42], [S72], [S56], [S67], [S59], [S51],

[S05], [S08], [S68], [S65], [S61], [S62], [S57], [S58], [S52], [S53], [S54],
[S15],

[S43], [S48], [S35], [S44], [S39], [S40], [S26], [S28], [S31], [S33],
[S16], [S18], [S13], [S24], [S69],

Using metrics

Using Model

Using tools / Techniques

Using algorithms/machine learning

Using approach / concepts / theories and principles / logical assumption

Using method/ Mechanism

software developers during the development in Java projects,
the DARCY approach has a significant impact in minimizing
the attack surface and enhancement of the encapsulation,
maintainability and security [S09]. The automatic architec-
ture validation approach introduced a considerable enhance-
ment by the tool application during the development [S49].
Supporting the automatic analysis of software architecture
by Arcan tool, reveals a precision of 100% of the archi-
tectural smells except for the external components, which
reported false negatives [S29]. The experiment with vari-
ous tools for code anomalies exploration showed providing
various answers, although depending on similar detection
algorithms and the tool precision usually differ based on the
code anomalies, in which it is analyzed and the levels and
contexts difference for the tools. [S64], [S34].

Concerning analysis and monitoring inherent complexity
solutions, the evolutional changes that took place in the
architectural stability and structural complexity showed the
complex packages excessively as all dependencies are not

173698

generated balanced-well, and the dependency relation-
ships nature between packages is relatively abstract [S68].
[S65] found out that the architectural flaws (or multiple-
component) are more complex to repair than other flaws as
over 50 % of the topmost flawed components must change
coincidingly with other components to repair a multiple-
component.

With respect to exploring the architectural impact of the
bug-proneness and change-proneness that violate design prin-
ciples by connections among files, the DRSpaces model
showed that the architectural impact is persistently connected
among bug-prone files over time [S02]. Moreover, the archi-
tecture anti-patterns detection approach indicated that it is
robustly associated with greater change-proneness and bug-
proneness files, which leads to increasing change and bug rate
considerably. [S10].

In terms of investigating the relationship between code
anomalies and architecture problems, the correlation of
the architectural designs and code smells agglomerations

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

Weasuring the instability or stability architectural

| Esploring the effectivencss and effort of suitablz cod source metrics

I

Identifying architectural technical debt indicators by modulaty metrics

/

Using a set of static code metrics for autoratic detection of code smells

/
-,

Metrics-based detection strategy

—L

\

/

/
|

Waximizing cohesion and minimizing coupling to reduce dependencies amang packages

_ Measuring the extent of system decaupling into small and independently replaceatle modules

I
. Measuring agglameration code anomalies ratherthan individual anomalies

\ . .
I'x\ Measuring the code anomalies detection by their relations and co-occumences

\ Exploring architecture-sensitive implementation metrics by the code elements

Design Tests approach to check whether the implementation is fallowing the architectural nles or not

[Focusing the architectural vialations lifecycle and location over time

[Move class) to repair architecture violations

‘ —{ Arctitectural rules violations checking

dentifying and ranking violations reasons

\ Idertifying the intended arganization of the modules into layers to avoid the vickations

_Clio to detect and locate modularity violations
"‘.\ architectural conformance checking (ArCatch, DCLZ0, TamDeral, and ArchLint) for specifying rules

Applying refactonng for remoing architecturally design problems
-

Recommendation engine (ArchFix) for providing refactoring guidelines

_ Atechnigue to detect cod fagments incompliant to the architecture

1 Refactorings srateqy

'\ SACC perspectie to abtain a profound understanding of architectural decay

The proposed solutions of architectural decay

Identifying the priontization of architecturaly smell agglomerations

| printitizing code anomalies based on architecture sensitiveness (proposed heuristics)

‘ Prioritizing code anomalies by architectural blueprints

{ Smells prioritization strateqy

_ Prioritizing classes that violate the intended architecture

_prionitizing code smells by considering deselopers' curent context

I\ priertizing identification and edtimation ofthe debt at the architactural lavel
|\

"‘_ Iachine leaming technology far classifying code smells by examples

Focus for recovering and evobing architectures of undocumented 00 projects

| Recovwering software design to describe architectures evalve or erode as the system ta evalves

Cormbining lexical and structural information 10 recover its layered architecture

Arctitectural recovery strate

—

)

f‘_ Anovel approach (ARCADE) for autornatically recovering design decisions

l\ Graund truth for checking the efficiency of underying application knowledge by the system's architects or developers

|
Using 3 clustering technigue for architecture recowery for the analysis of MDSD projects

Automatic detection, architectura problems repainng, and sugport software developers

[Analysis and monitoring of inherent complexity for packages

\, f

' _ Exploring the architectural impact of the bug-proneness and change-praneness

investigating the relationship between code anomalies and architecture prablerns

Predicting fur identifying architectral smells and historical architectural smells dat

FIGURE 14. The proposed solutions taxonomy of architectural decay.

VOLUME 8, 2020

173699

IEEE Access

A. Baabad et al.: SA Degradation in OSS

indicated that most of the god classes’ m-LOC (67%)
flocked around architectural concerns [S18], almost 65% of
all code smells were correlated to 78% of all architecture
problems [S62].

As for the prediction model for determining architec-
tural anomalies and historical architectural smells data,
the machine learning techniques to predict architectural
smells, which depends on historical information showed
that the prediction performance is very high [S11]. Further-
more, the link prediction (LP) techniques showed an accept-
able achievement for the positive class and also indicate
high recall concerning the realistic anomalies identification
although a specific anomaly type can impact the recall and
precision [S21].

The evolution of architectural smells detected by a tool,
namely Arcan, showed that Hublike dependency smell is
better in terms of complexity, current and future mainte-
nance effort compared to cyclic dependency [S12]. Active
Hotspot (AH) model showed that measuring as 100 issue
fixes, ranging usually between 2 and 3, and seldom more
than 5, to detect significant problems architecturally [S14].
In terms of the repeated occurrence for code anomaly,
59% of anomaly classes are influenced by more than one
anomaly [S24]. The DSL allows the identification of many
various anomalies that support the detection technique’s
effectiveness and the generality of its DSL [S69]. The his-
torical information for anomalies disclosure indicated that
over 75% of the anomaly is regarded as the design problems
where the recall is between 58% and 100% and the precision
is between 72% and 86% [S51]. Several design problems
were detected by 36.36% of the developers, where these
problems explicitly appeared when the analysis of agglom-
eration smells compared to individual smells [S15]. The easy
accessibility of information in the issue and code reposito-
ries do not adequately involve the architectural significance
of the current classification issues [S19]. The architectural
distance indicators can be utilized for both flaw assessment
and localization on the dependency graphs of consecutive
releases of systems [S66]. The architecture degradation based
on the multi-level analysis method indicated that it is useful
for detection erosion points and more efficient for fixing
architecture decay [SO5].

V. DISCUSSION

This section presents an analysis and discussion of the find-
ings based on the objectives of the study and the research
questions. Moreover, some recommendations are stated to be
an inception point for the direction of future research in this
domain.

A. THE POSSIBLE REASONS FOR THE OCCURRENCE OF
ARCHITECTURAL DEGRADATION (RQ1)

The findings showed that 17 of the most commonly
occurred causes contribute to the architectural decay of the
OSS community. Essentially, architectural degradation has
numerous causes, which have been discussed by several

173700

researchers in their studies [11], [12], [23], [30]. However,
these reasons have been discussed from limited aspects
such as aging because of changes over time [11], iden-
tifying the reasons through only one case study [12] or
based on their investigation of industrial case studies [27].
Consequently, these causes need to be further identified
in terms of the frequency of their occurrence, especially
in the scope of the OSS projects. Moreover, identifying
the most important reasons will indeed contribute to the
erosion according to the chosen primary studies, which
contain several case studies in different domains for the
OSS community. These causes differ in their impacts with
regard to the actual contribution to the architectural decay
prominence.

The rapid evolution of software out of 17 represents a
stated reason of 19.77%, which means that the rapid devel-
opment of software provides a significant chance for the
growth of architectural smells across the system versions
that increases obscuring in identifying architectural problems
within the system. In addition, increasing the conceptual
distance between the existing architecture and the design-
time one leads to an increase in the amount and complexity
of interactions between the elements of the system software.
This reveals that the rapid development of software deviates
from the original structure by releasing new versions of the
system, especially when the development violations of the
implemented architecture are not controlled in a systematic
manner. One of the reasons that plays a major role in archi-
tecture degradation is the frequent changes that represent
18.6% of the stated reasons, such as adding, removing or
modifying new features or requirements that have a major
impact on the deviation of the architecture far from its origin.
A change that is made without adapting the requirements and
components leads to the erosion of the architecture over time.
This also reveals that changes must be made by considering
the adaptation to the current and future requirements to avoid
architectural contradictions in the subsequent versions of the
system. The lack of developers’ awareness is considered a
significant reason for the contribution to architecture decay
within the OSS, of which it represents 12.79% of the reasons
as a whole. The lack of awareness results from a lack of
basic knowledge of architecture, writing inappropriate codes
that may cause errors that are difficult to maintain later,
the practice of building systems as a hobby, lack of training
for developers in developing their programming skills and
educating them in an analysis of the inherent risks in the
system.

These reasons are considered the most contributing to
degradation, while the rest of the reasons demonstrated
in Table 6 are less important than the three stated reasons
depending on what was declared in the selected primary
studies. However, further studies should be conducted to
find out the other causes as a rooted-deep study in digging
up new causes that could have a significant contribution to
identifying the architecture erosion, whether over the OSS or
industrial systems.

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

B. KEY INDICATORS OF ARCHITECTURAL DEGRADATION
SYMPTOMS (RQ2)

The findings showed that four of the key indicators of archi-
tectural degradation symptoms were detected within the OSS,
which are code smells, architectural smells, architectural
technical debts, and violation of the architectural constraints.

In reality, the code smells are autonomous from architec-
tural smells [68], therefore, architectural smells have to be
regarded as one of the main sources for identifying the decay
symptoms [69]. While the code smells have a significant
impact to increase software’s defectiveness [70], [71] and
change proneness [70], [72], they correlate with architectural
problems [43]. Hence, the architectural smells existence does
not imply the code smells existence and vice versa.

The code and architectural smells are considered the high-
est impact symptoms on the software architecture (as demon-
strated in Fig. 8), since several studies were conducted to
address the code and architectural smells, including their
subcategories.

The results also showed a details group of the key indi-
cators per each stated symptom. In the code smells group,
the code smells individual and code smells agglomeration are
typically key indicators of the code smells within the OSS.
The code smells individual is the most frequent study of the
key indicators of code smells than code smells agglomeration
(as shown in Fig. 9). However, several studies addressing
code smells agglomeration have proven that these smells
agglomeration have a significant correlation with architec-
tural problems from code smells individual.

In the architectural smells group, architectural bad smells
(architecture anti-patterns) stood out as the most effective
smells compared to architectural change (instability) and
architectural hotspots smells (as shown in Fig. 10). This
reveals that the architectural bad smells were studied in iso-
lation and not combined with more than one smell, which
was covered in the prior code smells. Consequently, further
research in this domain should be conducted to identify the
effect of architectural smells agglomeration and its correla-
tion with architectural problems rather than the architectural
smells in isolation in order to prove its inclusion or exclusion
as one of the key indicators of the architectural decay symp-
toms.

In a group of the architectural constraint’s violation, vio-
lations of object-oriented design characteristics emerged as
the most influencing violations of object-oriented properties
such as abstraction, encapsulation, modularity, and hierar-
chy while Internal attributes’ violation is regarded essential
for architecture software design such as complexity, cou-
pling, and cohesion. Architecture inconsistencies violation
that refers to expression, declaration or statements emergence
in the source code, which do not correspond to the restric-
tions forced by the planned architecture that will lead to
improper implementation decisions accumulation resulting in
an architectural decay or erosion within the community of the
OSS.

VOLUME 8, 2020

C. PROPOSED SOLUTIONS FOR ARCHITECTURAL
DEGRADATION (RQ3)

The results showed numerous solutions that can be nominated
to address architectural erosion. The metrics-based detection
strategy solutions are most commonly used to detect architec-
tural decay. These metrics manifest its performance in explor-
ing and estimating the source code metrics effectiveness,
addressing modularity to identify indicators of architectural
debt, detecting code anomaly problems within the code ele-
ments using architecture-sensitive implementation metrics,
automatic detection of code anomaly, identifying instability
or stability software components, determining architectural
anomalies that most critical ones, and measuring code anoma-
lies with regard to their relations and co-occurrences. The
cause behind using these metrics in several studies is that the
models or intended architecture documentation are usually
missing. Therefore, the code is commonly the unique and
most significant source of information about the possible
violation identification of the architectural desired structures
by code smell investigation founded on metrics of the source
code.

In the same context, there are also proposed solutions that
address architectural degradation, which are less common
than the solutions using the metrics-based detection strategy.
These solutions are such as investigation and addressing of
architectural rules violations, which provide the focus on the
locations of violations within the system or place architec-
turally inappropriate files inside packages or classes, violat-
ing the planned architecture rules.

Regarding the priorities of architectural anomalies,
it depicts a focus on the most influential anomalies in struc-
ture and more closely related to architectural problems rather
than the anomalies that have no strong correlation with those
problems.

Concerning an architectural recovery strategy solution,
it describes the recovering the basic concepts of the planned
architecture to conform to straightaway implemented archi-
tecture and to identify design decisions that may harm the
basic rules of the intended architecture.

The refactoring strategy solutions represent the recommen-
dations and guidelines for changing the structure and the
behaviors of the internal system elements. Additionally, there
are many other solutions proposed in addressing architectural
degradation within the OSS environment.

The results also showed the classification of the proposed
solution type in addressing decay that refers to addressing,
identifying, reducing, avoiding, and predicting the architec-
tural erosion, whereas several studies revolve around the idea
of identifying architectural erosion more than the classifica-
tion of other solution types (as highlighted in Fig. 13).

With respect to the proposed solutions to address archi-
tectural degradation, we have developed its taxonomy to
clarify the overall stereotype to contribute to identifying the
paths of these solutions and the extent of their facilitation
to researchers in enhancing this taxonomy (as demonstrated

173701

IEEE Access

A. Baabad et al.: SA Degradation in OSS

in Fig. 14). This also reveals that the extent of the proposed
solutions to address the decay within the OSS environment
is still expanding and discovering other features of these
solutions or integrating convergent solutions would provide
better meaningful results. However, it does not mean that
these proposed solutions have great effectiveness in dealing
with degradation, and this is what we will get acquainted
within the next section on the effectiveness of the proposed
solutions.

D. THE EXTENT TO EFFECTIVENESS OF THE PROPOSED
SOLUTIONS (RQ4)

As already discussed in the earlier research question (RQ3),
the proposed solutions by the present researchers are based
on their studies to address the architectural degradation and
the extent of taxonomy identification according to the explicit
strategies and convergence of the solutions. Therefore, in this
section we explore more about the effectiveness of these
solutions and the impact of their potential benefit in address-
ing architectural erosion within the open-source software
community. The solutions are discussed based on the tax-
onomy stated in the prior research question (RQ3) as shown
in Fig. 14.

1) METRICS- BASED DETECTION STRATEGY

We observed that the metrics strategy solutions were the
most frequently used in identifying the architectural decay,
thereby these metrics can determine the architectural instabil-
ity growth with the system evolution, identify the probability
of the classes contributing to architectural inconsistencies,
and diagnose the anomalies, whether agglomerations or indi-
vidual is more correlated to architectural problems. However,
the use of current metrics at the class level may be affected
by size bias significantly and inefficiency automatically in
detecting architectural problems, indicating that the most
likely cause is the problem on how these metrics are imple-
mented through tools and reconsideration in specifying the
selection of the appropriate metrics at different locations of
software components, especially when compared to the same
results that achieved efficiency manually.

In another context, AbdeenMod+RM metrics introduced
an acceptable satisfaction in the fault prediction modeling.
This satisfaction may increase in the implementation of a
large number of alternative metrics and other techniques used
in diverse aspects to present different results, which may
reflect the overall recommendations of the research.

Modularity metrics refers to the significantly negative
interrelationship by modularity indicators IPCI and IPGF.
This may improve the performance and accuracy or less effort
needed to predict by assuming a new modularity metrics at
the system level and adapting current modularity indicators
specified in other perspectives (e.g., complex networks). Fur-
thermore, the architecture-sensitive metrics for code anoma-
lies discovery provides the majority of awareness to engineers
for the existence of the smells code elements that are more
significant to the architecture design than the most traditional

173702

metrics that are depending on source code and based on static
code metrics combination. This means that the developers and
engineers could detect and repair such anomalies promptly.

Therefore, more studies are needed in this field for other
metrics to be analyzed in order to provide the most appropri-
ate architecture without any impact of the size bias. Further-
more, there is a need for metrics that have a great ability to
discover the inconsistent classes affected by the degradation
from the consistent classes. In addition, there is a need to
identify the effort required for the metrics strategy to archi-
tecturally detect related anomalies and also to derive more
metrics that may have an impact on the quality relationships
of other software that are closely related to architectural
problems.

2) PRIORITIZATION ARCHITECTURAL ANOMALIES

In the anomaly’s prioritization strategy, the agglomeration
flood standard and most optimal models showed that some
agglomerations are overburden with false positives and not
precise enough to identify architectural inconsistencies in
classes, leading to the inability to capture several various
architectural problem types. In contrast, the recommended
heuristics, architecture blueprints, and the context-based
smell prioritization techniques show the ability to rank and
improve in identifying the prioritization of anomalies related
to architectural problems. This reveals the need for provid-
ing an initial enrichment of the possible results to adopt
the solution with a tendency in the ideal combination to
prioritize architectural anomalies. Consequently, there is a
need to provide various prioritization criteria for seizing the
diverse architectural problem types and enhancing the essen-
tial techniques used for discovering code anomalies. More-
over, the integration of two or more heuristics would get better
ranking results’ effectiveness. Additionally, it is possible to
introduce the new strategies to produce ranking on numerous
criteria in order to provide visualization capabilities that are
most relevant to architectural problems for the developers.

3) ARCHITECTURAL RULES VIOLATIONS

In terms of using the architectural rules violations solutions,
we observed that many violations were not restricted by the
architectural principles of the system, which may not have
defined the necessary rules to reduce the severity of major
violations. This means that violations still appear over again
and over again despite the good violation solutions that were
introduced and the approaches that have a significant role in
capturing violations with thorough accuracy. Therefore, it is
important to highlight the identification of the necessary rules
and identification of critical cores through a broad study on
architectural conformance using multiple frameworks.

4) REFACTORINGS STRATEGY

The refactoring strategy solutions do not contribute sig-
nificantly in addressing the architectural degradation, as it
showed many excesses in identifying architectural problems
and is not positively affecting them, however, it may have a

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

simple contribution in addressing architectural erosion when
its problems are minor and easy to repair. This reveals that the
quality of these solutions is not efficient at all in the problems
of deep analysis and the difficulty of address.

5) ARCHITECTURAL RECOVERY STRATEGY

Based on the obtained findings, the architectural recovery
strategy can accurately detect and recover the conceptual
design decisions of the system, rather some techniques used
in recovery architecture provide an acceptable improvement
and may outperform each other as illustrated in the technique
of layers based on structural and lexical in its noticeable
superiority from the structural-based approaches. This reveals
that architecture may be recovered with acceptable accuracy
unlike the prior intuition based on its claimed hypothesis in
an application difficulty to recover conceptual architecture.
However, there is a clear opportunity for many researchers
to shed light on checking more efficient approaches to archi-
tecture recovery by enriching ARCADE’s tool to add further
different current code-level analyses to it. Besides, there is
also a need to conduct more experiments on a wide scope
on more systems, especially industrial systems as well as
to increase approach accuracy through documentations, pull
requests, commit messages, comments, tests, and much more.

6) OTHER SOLUTIONS

Based on our observation, the other proposed solutions to
address the degradation differ in terms of the performance
effectiveness of the solutions and highlight a specific part to
reduce erosion. Automatic detection for various approaches
introduces an acceptable enhancement in the discovery of
architectural smells despite providing various answers and
excluding the external components that are notified as false
negatives. An inherent complexity grants a great opportunity
to increase the complexity and its development over time
when it is not monitored and analyzed, leading to the mul-
tiplication of the change in other components in an unbal-
anced way. This reveals the extent of the leniency risk for
not monitoring the complexity since its early evolutionary
of components. Concerning the connected files to each other
when bug-proneness and change-proneness constantly occur,
it reflects negatively on the architectural influence. This
reveals that the increasing rates of change and errors of these
files inevitably lead to violate the basic design principles
of the architecture. Consequently, reconsideration must be
given to how architectural smells evolve and their profound
relationship with problems from an architectural perspective,
through existing tools that may need to be re-analyzed to
cover a wide scope of those anomalies and reduce the current
and future maintenance efforts for these systems.

VI. IMPLICATIONS FOR RESEARCH AND PRACTICE

An SLR study provides directions for researchers and prac-
titioners on architectural decay within the OSS domain as
follows:

VOLUME 8, 2020

1) There are reasons that could contribute excessively to
increasing architectural erosion such as rapid develop-
ment of software, frequent changes, and lack of devel-
opers’ awareness. Therefore, further studies should be
conducted as a rooted-deep study to find out other
causes and to identify architecture erosion whether on
the OSS or industrial systems. Practitioners should fol-
low guidelines to avoid architectural contradictions in
the new and subsequent versions of the system in terms
of identifying the potential reasons within the system
environment.

2) Since architectural degradation symptoms present that
code smells agglomeration has a considerable correla-
tion to architectural problems compared to code smells
individual, researchers should conduct further inves-
tigation on architectural bad smells in combination.
Practitioners can change their detection way depending
on the code smells agglomeration to identify degrada-
tion symptoms effectively.

3) The findings of the current study serve as evident
that a metrics-based strategy is the most commonly
used solution as compared to other proposed solu-
tions. However, more studies are needed in this field
for other metrics to be analyzed to provide the most
architecturally appropriate solution and identify the
effort required for the metrics to detect architecturally
related smells. The essential techniques of ranking used
should enhance the possibility to get better effective-
ness results and the identification of critical cores of
architectural violations. Also, there is a clear oppor-
tunity for many researchers to highlight enriching
ARCADE’s tool for efficient approaches to architec-
ture recovery. Additionally, there are solutions, which
show that it is not effective at all in the problems of deep
analysis and the difficulty of address such refactoring
strategy that has no considerably a positive impact to
address architectural erosion.

VII. THREATS TO VALIDITY OF THE STUDY

The major threats influencing the validity of SLR are associ-
ated with the direction that might have biased our systematic
literature review. We identified highlighting search, selection
of the relevant studies, and extraction of the adequate data for
our investigation. The threats to validity are described [73] as
follows:

1) Internal validity: The studies indicated [57], [74] that
the common threat to SRL is to explore all researches
and relevant studies to the specific research question.
We attempted to maximize internal validity by select-
ing online appropriate databases that include enough
relevant studies. Accordingly, eight well-known online
databases were selected such as Scopus, Springer, Sci-
ence Direct, Web of Science, Wiley, and Taylor and
some of them specialized in our field of the area
such as ACM, IEEE, covering all journal papers and

173703

IEEE Access

A. Baabad et al.: SA Degradation in OSS

conferences. We also tried to maximize internal validity
by identifying effective and sufficient search terms,
including the synonyms, other alternative words, and
abbreviations that identify and explore, from several
recent scientific papers to adequately cover the spe-
cific research question. Additionally, the snowballing
search strategy was applied by backward and forward
investigation of the selected studies in order to explore
the relevant papers that may be missed if the lack of a
sufficient search term was considered.

2) Construct validity: We evaluated the quality of included
studies in order to make sure that all potential articles
were properly selected according to the specified crite-
ria. We also tried to maximize the construct validity by
excluding or including papers by following the guide-
lines proposed by Brereton er al. [75] and Kitchen-
ham and Charters [57]. Additionally, we designed data
extraction forms to collect the information, check the
gathered data, and generate a checklist in order to
investigate the required information, which was accom-
plished by conducting the analysis and discussion
among the researchers to reduce the circle of difference
and increase the accuracy of extracted information in
line with the answer to the specific research question
as properly as possible.

3) External validity: The study of software architecture
in open-source software was conducted on 74 studies,
including the articles obtained by the forward and back-
ward strategies for the snowballing process, thus the
study findings are generalizable to other studies that
may pertain to architectural erosion in an open-source
environment.

VIIl. CONCLUSION

In this study, we conducted a Systematic Literature
Review (SLR) to explore architectural degradation within
the open-source software (OSS) community. The main goal
was to systematically investigate and review the existing
architectural erosion of the OSS to identify eroded archi-
tecture from diverse perspectives: the reasons that assist in
the occurrence of architectural degradation, key indicators
to initialize a permanence of the architectural degradation
symptoms, the proposed solutions contributing to addressing
the architectural decay, and the extent of the efficiency of
these solutions. Numerous methods and criteria were used
to include the relevant studies and exclude studies that were
irrelevant to the research questions. A total of 74 primary
studies were identified to analyze architectural erosion within
the OSS community.

Our analysis indicated that 17 reasons contribute to archi-
tecture erosion within the OSS projects and the causes most
commonly occurred are the rapid of software evolution,
frequent changes, and the lack of developers’ awareness.
Simultaneously, we observed that four of the key indicators
of architectural erosion symptoms were revealed within the

173704

TABLE 19. The primary studies references.

S-ID

References

S1

S2

S3

s4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

Aversano, L., D. Guardabascio and M. Tortorella (2019).
"An Empirical Study on the Architecture Instability of
Software Projects." International Journal of Software
Engineering and Knowledge Engineering 29(4): 515-545.
Cai, Y., L. Xiao, R. Kazman, R. Mo and Q. Feng (2019).
"Design Rule Spaces: A New Model for Representing and
Analyzing Software Architecture." IEEE Transactions on
Software Engineering 45(7): 657-682.

Vidal, S., W. Oizumi, A. Garcia, A. Diaz Pace and C.
Marcos (2019). "Ranking architecturally critical
agglomerations of code smells." Science of Computer
Programming 182: 64-85

Lenhard, J., M. Blom and S. Herold (2019). "Exploring the
suitability of source code metrics for indicating architectural
inconsistencies." Software Quality Journal 27(1): 241-274
Wang, T., D. Wang and B. Li (2019). A multilevel analysis
method for architecture erosion. The 31st International
Conference on Software Engineering and Knowledge
Engineering.

Silva, T. M., D. Serey, J. Figueiredo, Jo, #227 and o. Brunet
(2019). Automated design tests to check Hibernate design
recommendations. Proceedings of the XXXIII Brazilian
Symposium on Software Engineering. Salvador, Brazil,
ACM: 94-103.

Lenarduzzi, V., N. Saarimaki and D. Taibi (2019). On_the
Diffuseness of Code Technical Debt in Java Projects of the
Apache Ecosystem. 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt).

Eposhi, A., W. Oizumi, A. Garcia, L. Sousa, R. Oliveira and
A. Oliveira (2019). Removal of Design Problems through
Refactorings: Are We Looking at the Right Symptoms? 2019
IEEE/ACM 27th International Conference on Program
Comprehension (ICPC).

Ghorbani, N., J. Garcia and S. Malek (2019). Detection and
repair of architectural inconsistencies in Java. Proceedings of
the 41st International Conference on Software Engineering.
Montreal, Quebec, Canada, IEEE Press: 560-571.

Mo, R., Y. Cai, R. Kazman, L. Xiao and Q. Feng (2019).
"Architecture Anti-patterns: Automatically Detectable
Violations of Design Principles." IEEE Transactions on
Software Engineering: 1-1.

Fontana, F. A., P. Avgeriou, I. Pigazzini and R. Roveda
(2019). A Study on Architectural Smells Prediction. 2019
45th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA).

Sas, D., P. Avgeriou and F. A. Fontana (2019). Investigating
Instability Architectural Smells Evolution: An Exploratory
Case Study. 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME).

Fontana, F. A., I. Pigazzini, C. Raibulet, S. Basciano and R.
Roveda (2019). PageRank and criticality of architectural
smells. Proceedings of the 13th European Conference on
Software Architecture - Volume 2. Paris, France,
Association for Computing Machinery: 197-204.

Feng, Q., Y. Cai, R. Kazman, D. Cui, T. Liu and H. Fang
(2019). Active Hotspot: An Issue-Oriented Model to Monitor
Software Evolution and Degradation. 2019 34th IEEE/ACM
International ~ Conference on Automated Software
Engineering (ASE).

Oizumi, W., L. Sousa, A. Oliveira, A. Garcia, A. B.
Agbachi, R. Oliveira and C. Lucena (2018). "On the
identification of design problems in stinky code: experiences
and tool support." Journal of the Brazilian Computer Society
24(1)

Guimaraes, E., S. Vidal, A. Garcia, J. A. Diaz Pace and C.
Marcos (2018). "Exploring architecture blueprints for
prioritizing critical code anomalies: Experiences and tool
support." Software - Practice and Experience 48(5): 1077-
1106.

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

TABLE 19. (Continued.) The primary studies references.

S17

S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28

S29

S30

S31

S32

Sae-Lim, N., S. Hayashi and M. Saeki (2018). "Context-
based approach to prioritize code smells for prefactoring."
Journal of Software: Evolution and Process 30(6): ¢1886.
Carvalho, L. P. d. S., R. Novais, M. Mendon and #231
(2018). Investigating the Relationship between Code Smell
Agglomerations and Architectural Concerns: Similarities and
Dissimilarities from Distributed, Service-Oriented, and
Mobile Systems. Proceedings of the VII Brazilian
Symposium on Software Components, Architectures, and
Reuse. Sao Carlos, Brazil, ACM: 3-12.

Shahbazian, A., D. Nam and N. Medvidovic (2018). Toward
Predicting Architectural Significance of Implementation
Issues. 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR).

Maisikeli, S. G. (2018). Measuring Architectural Stability
and Instability in the Evolution of Software Systems. 2018
Fifth HCT Information Technology Trends (ITT).

Diaz-Pace, J. A., A. Tommasel and D. Godoy (2018).
Towards anticipation of architectural smells using link
prediction techniques. 2018 IEEE 18th International
Working Conference on Source Code Analysis and
Manipulation (SCAM).

Shahbazian, A., Y. K. Lee, D. Le, Y. Brun and N.
Medvidovic (2018). Recovering Architectural Design
Decisions. 2018 IEEE International Conference on Software
Architecture (ICSA).

Hayashi, S., F. Minami and M. Saeki (2018). "Detecting
Architectural ~ Violations Using Responsibility — and
Dependency Constraints of Components." IEICE
Transactions on Information and Systems E101.D(7): 1780-
1789.

Palomba, F., G. Bavota, M. Di Penta, F. Fasano, R. Oliveto
and A. De Lucia (2018). "A large-scale empirical study on
the lifecycle of code smell co-occurrences." Information and
Software Technology 99: 1-10.

Behnamghader, P., D. M. Le, J. Garcia, D. Link, A.
Shahbazian and N. Medvidovic (2017). "A large-scale study
of architectural evolution in open-source software systems."
Empirical Software Engineering 22(3): 1146-1193.

Shaikh, M., A. Ansari, K. Memon, A. H. Jalbani and A. Ali
(2017). "Evaluating Dependency based Package-level
Metrics for Multi-objective ~ Maintenance Tasks."
International Journal of Advanced Computer Science and
Applications 8(10): 345-354.

Pruijt, L., C. Koppe, J. M. van der Werf and S. Brinkkemper
(2017). "The accuracy of dependency analysis in static
architecture compliance checking." Software: Practice and
Experience 47(2): 273-309.

Rocha, H., R. S. Durelli, R. Terra, S. Bessa and M. T.
Valente (2017). "DCL 2.0: modular and reusable
specification of architectural constraints." Journal of the
Brazilian Computer Society 23(1): 12.

Fontana, F. A., I. Pigazzini, R. Roveda, D. Tamburri, M.
Zanoni and E. D. Nitto (2017). Arcan: A Tool for
Architectural Smells Detection. 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW).
Olsson, T., M. Ericsson and A. Wingkvist (2017).
Motivation and Impact of Modeling Erosion Using Static

Architecture Conformance Checking. 2017 IEEE
International ~ Conference on Software Architecture
Workshops (ICSAW).

Lenhard, J., M. M. Hassan, M. Blom, S. Herold and Acm
(2017). Are code smell detection tools suitable for detecting
architecture degradation? Proceedings of the 11th European
Conference on Software Architecture: Companion
Proceedings. Canterbury, United Kingdom, ACM: 138-144.
Filho, J. L. M., L. Rocha, R. Andrade and R. Britto (2017).
Preventing Erosion in Exception Handling Design Using
Static-Architecture Conformance Checking. Software
Architecture, Cham, Springer International Publishing.

VOLUME 8, 2020

TABLE 19. (Continued.) The primary studies references.

S33

S34

S35

S36

S37

S38

S39

S40

S41

S42

S43

S44

S45

S46

S47

S48

S49

Olsson, T., M. Ericsson and A. Wingkvist (2017). The
relationship of code churn and architectural violations in the
open source software JabRef. Proceedings of the 11th
European Conference on Software Architecture: Companion
Proceedings. Canterbury, United Kingdom, ACM: 152-158.
Fontana, F. A., I. Pigazzini, R. Roveda and M. Zanoni
(2016). Automatic Detection of Instability Architectural
Smells. 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME).

Mo, R., Y. Cai, R. Kazman, L. Xiao and Q. Feng (2016).
Decoupling Level: A New Metric for Architectural
Maintenance ~ Complexity. 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE).
Maffort, C., M. T. Valente, R. Terra, M. Bigonha, N.
Anquetil and A. Hora (2016). "Mining architectural
violations from version history." Empirical Software
Engineering 21(3): 854-895.

Belle, A. B., G. E. Boussaidi and S. Kpodjedo (2016).
"Combining lexical and structural information to reconstruct
software layers." Information and Software Technology 74:
1-16.

Xiao, L., Y. Cai, R. Kazman, R. Mo and Q. Feng (2016).
Identifying and Quantifying Architectural__Debt. 2016
IEEE/ACM 38th International Conference on Software
Engineering (ICSE).

Oizumi, W., A. Garcia, L. D. S. Sousa, B. Cafeo and Y.
Zhao (2016). Code Anomalies Flock Together: Exploring
Code Anomaly Agglomerations for Locating Design
Problems. 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE).

Mirakhorli, M. and J. Cleland-Huang (2016). "Detecting,
Tracing, and Monitoring Architectural Tactics in Code."
IEEE Transactions on Software Engineering 42(3): 206-221.
Fontana, F. A., R. Roveda, M. Zanoni, C. Raibulet and R.
Capilla (2016). An Experience Report on Detecting and
Repairing Software Architecture Erosion. 2016 13th
Working IEEE/IFIP Conference on Software Architecture
(WICSA).

Arcelli Fontana, F., M. V. Mintyld, M. Zanoni and A.
Marino (2016). "Comparing and experimenting machine
learning techniques for code smell detection." Empirical
Software Engineering 21(3): 1143-1191.

Barros, M. D., F. D. Farzat and G. H. Travassos (2015).
"Learning from optimization: A case study with Apache
Ant." Information and Software Technology 57: 684-704.
Oizumi, W. N., A. F. Garcia, T. E. Colanzi, M. Ferreira and
A. V. Staa (2015). "On the relationship of code-anomaly
agglomerations and architectural problems." Journal of
Software Engineering Research and Development 3(1): 11.
Ding, W., P. Liang, A. Tang and H. Van Vliet (2015).
"Understanding the causes of architecture changes using
OSS mailing lists." International Journal of Software
Engineering and Knowledge Engineering 25(9-10): 1633-
1651.

Terra, R., M. T. Valente, K. Czarnecki and R. S. Bigonha
(2015). "A recommendation system for repairing violations
detected by static architecture conformance checking."
Software: Practice and Experience 45(3): 315-342.

Herold, S., M. English, J. Buckley, S. Counsell and M. 0.
Cinnéide (2015). Detection of violation causes in reflexion
models. 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER).
Guimaraes, E., A. Garcia and Y. Cai (2015). Architecture-
sensitive heuristics for prioritizing critical code anomalies.
Proceedings of the 14th International Conference on
Modularity. Fort Collins, CO, USA, Association for
Computing Machinery: 68—80.

Goldstein, M. and 1. Segall (2015). Automatic and
continuous software architecture validation. Proceedings of
the 37th International Conference on Software Engineering -
Volume 2. Florence, Italy, IEEE Press: 59-68.

173705

IEEE Access

A. Baabad et al.: SA Degradation in OSS

TABLE 19. (Continued.) The primary studies references.

S50

S51

S52

S53

S54

S55

S56

S57

S58

S59

S60

S61

S62

S63

S64

S65

173706

Fontana, F. A., V. Ferme and M. Zanoni (2015). Towards
Assessing Software Architecture Quality by Exploiting Code
Smell Relations. 2015 IEEE/ACM 2nd International
Workshop on Software Architecture and Metrics.

Palomba, F., G. Bavota, M. D. Penta, R. Oliveto, D.
Poshyvanyk and A. D. Lucia (2015). "Mining Version
Histories for Detecting Code Smells." IEEE Transactions on
Software Engineering 41(5): 462-489.

Ferreira, M., E. Barbosa, I. Macia, R. Arcoverde and A.
Garcia (2014). Detecting architecturally-relevant code
anomalies: a case study of effectiveness and effort.
Proceedings of the 29th Annual ACM Symposium on
Applied Computing. Gyeongju, Republic of Korea,
Association for Computing Machinery: 1158—1163.
Andrade, H. S. d., E. Almeida and 1. Crnkovic (2014).
Architectural bad smells in software product lines: an
exploratory study. Proceedings of the WICSA 2014
Companion Volume. Sydney, Australia, Association for
Computing Machinery: Article 12.

Li, Z., P. Liang, P. Avgeriou, N. Guelfi and A. Ampatzoglou
(2014). An empirical investigation of modularity metrics for
indicating architectural technical debt. Proceedings of the
10th international ACM Sigsoft conference on Quality of
software architectures. Marcq-en-Bareul, France,
Association for Computing Machinery: 119-128.

Herold, S. and M. Mair (2014). Recommending Refactorings
to Re-establish Architectural Consistency. Software
Architecture, Cham, Springer International Publishing.
Gurgel, A., I. Macia, A. Garcia, A. v. Staa, M. Mezini, M.
Eichberg and R. Mitschke (2014). Blending and reusing
rules for architectural degradation prevention. Proceedings
of the 13th international conference on Modularity. Lugano,
Switzerland, Association for Computing Machinery: 61-72.
Macia, I., A. Garcia, C. Chavez and A. v. Staa (2013).
Enhancing the Detection of Code Anomalies with
Architecture-Sensitive Strategies. 2013 17th European
Conference on Software Maintenance and Reengineering.
Arcoverde, R., E. Guimaraes, I. Macia, A. Garcia and Y. Cai
(2013). Prioritization of Code Anomalies Based on
Architecture Sensitiveness. 2013 27th Brazilian Symposium
on Software Engineering.

Garcia, J., I. Krka, C. Mattmann and N. Medvidovic (2013).
Obtaining ground-truth software architectures. 2013 35th
International Conference on Software Engineering (ICSE).
Hassaine, S., Y. G. Gueheneuc, S. Hamel and G. Antoniol
(2012). ADVISE: Architectural Decay In Software
Evolution. 2012 16th European Conference on Software
Maintenance and Reengineering. T. Mens, A. Cleve and R.
Ferenc: 267-276.

Macia, I., J. Garcia, D. Popescu, A. Garcia, N. Medvidovic
and A. v. Staa (2012). Are automatically-detected code
anomalies relevant to architectural modularity? an
exploratory analysis of evolving systems. Proceedings of the
11th annual international conference on Aspect-oriented
Software Development. Potsdam, Germany, Association for
Computing Machinery: 167-178.

Macia, 1., R. Arcoverde, A. Garcia, C. Chavez and A. v. Staa
(2012). On the Relevance of Code Anomalies for Identifying
Architecture Degradation Symptoms. 2012 16th European
Conference on Software Maintenance and Reengineering.
Brunet, J., R. A. Bittencourt, D. Serey and J. Figueiredo
(2012). On the Evolutionary Nature of Architectural
Violations. 2012 19th Working Conference on Reverse
Engineering.

Arcelli Fontana, F., P. Braione and M. Zanoni (2012).
" Automatic detection of bad smells in code: An experimental
assessment." Journal of Object Technology 11.

Li, Z., N. H. Madhavji, S. S. Murtaza, M. Gittens, A. V.
Miranskyy, D. Godwin and E. Cialini (2011).
"Characteristics of multiple-component defects and
architectural hotspots: a large system case study." Empirical
Software Engineering 16(5): 667-702.

TABLE 19. (Continued.) The primary studies references.

S66 Steff, M. and B. Russo (2011). Measuring Architectural
Change for Defect Estimation and Localization. 2011
International ~ Symposium on Empirical Software
Engineering and Measurement.

S67 Wong, S., Y. Cai, M. Kim and M. Dalton (2011). Detecting
software modularity violations. 2011 33rd International
Conference on Software Engineering (ICSE).

S68 Sangwan, R. S., P. Vercellone-Smith and C. J. Neill (2010).
"Use of a multidimensional approach to study the evolution
of software complexity." Innovations in Systems and
Software Engineering 6(4): 299-310.

S69 Moha, N., Y. Gueheneuc, L. Duchien and A. L. Meur
(2010). "DECOR: A Method for the Specification and
Detection of Code and Design Smells." IEEE Transactions
on Software Engineering 36(1): 20-36.

S70 Biehl, M. and W. Lowe (2009). Automated Architecture
Consistency Checking for Model Driven Software
Development. Architectures for Adaptive Software Systems,
Berlin, Heidelberg, Springer Berlin Heidelberg.

S71 Capiluppi, A. and T. Knowles (2009). Software Engineering
in Practice: Design and Architectures of FLOSS Systems.
Open Source Ecosystems: Diverse Communities Interacting,
Berlin, Heidelberg, Springer Berlin Heidelberg.

S72 Sarkar, S., G. Maskeri and S. Ramachandran (2009).
"Discovery of architectural layers and measurement of
layering violations in source code." Journal of Systems and
Software 82(11): 1891-1905.

S73 Medvidovic, N. and V. Jakobac (2006). "Using software
evolution to focus architectural recovery." Automated
Software Engineering 13(2): 225-256.

S74 Tran, J. B., M. W. Godfrey, E. H. S. Lee and R. C. Holt
(2000). Architectural repair of open source software.
Proceedings IWPC 2000. 8th International Workshop on
Program Comprehension.

OSS projects, which are code smells, architectural smells,
the architectural constraint’s violation, and architectural tech-
nical debts. Our analysis also revealed the proposed solutions
addressed degradation, which were categorized. They showed
that most solutions were based on the metrics-based strategy.
Other solutions are such as anomalies prioritization strat-
egy, addressing and investigating architectural rules viola-
tions, refactoring strategy, and architectural recovery strategy,
which were also identified and detected in terms of the extent
of the effectiveness and accuracy of these proposed solutions
as well as their contribution to identify, address or predict the
architectural degradation within OSS projects.

It can be concluded that the problems of architectural ero-
sion within the OSS projects, including identifying, address-
ing, avoiding and predicting are still open research issues,
which need further analysis and investigation. Consequently,
more efforts on this domain should be focused on identify-
ing the other reasons that are still unclear and suggesting
other solutions to provide more performance and accuracy to
address architectural decay.

APPENDIX A

PRIMARY STUDIES REFERENCES
See Table 19.

VOLUME 8, 2020

A. Baabad et al.: SA Degradation in OSS

IEEE Access

TABLE 20. Quality assessment criterion.

sip QAl

QA2

QA3

QA4

QAS

Score

[

[

[V

[V

[

wn

[V

2]
o}
=
— O, O, OOk L OO O O O e O e O e e e e e e e e e e e e D D e O
193

w2

JQ

(=]
——o—-oo
W wn

wn

[v3

W

G G P P G P G VW Y o S P o Y o S S G < Y HU GH GG G S S D G P G G Y o Y G GH G G R G G G G G P GG P G G G G U
W

wn

e O e e O ke e e e e O O O e O e e e e b b b e e e b b b b b e e D e

Il S
h b L

wn

—_ O e e e O
W

0.5

0.5
1

—_

w

w

W

W

w

[)

W

W

W

w

[

e, O e et O O O e O O e OOt OO O e e O e O O O e O O O e O OO e O
W

oo
[

0.5

—_—

W

e e e b b e b e e b e e e b e e b e e e e e b b et bt b e b b e e b b b b b b b b e e e e e e e e e e e e e e e e e O

o
[

0.5

W

W

[

[

wn [

VOLUME 8, 2020

APPENDIX B
QUALITY ASSESSMENT CRITERION
See Table 20.

ACKNOWLEDGMENT

The authors would like to acknowledge Universiti Putra
Malaysia (UPM) for providing support on part works and
IEEE Publisher for supporting the publication fees. The first
author would also like to express his gratitude to Hadhramout
University and the Hadhramout Foundation, Yemen, for their
support in tuition fees.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]
[71
[8]
[9]
[10]
(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

R. Kitchin and M. Dodge, Code/Space: Software and EverydayLife. Cam-
bridge, MA, USA: MIT Press, 2011.

V. G. Cerf, “A brittle and fragile future,” Commun. ACM, vol. 60, no. 7,
p- 7, Jun. 2017.

P. Naur, B. Randell, and F. L. Bauer, Software Engineering: Report on
a Conference Sponsored by the NATO Science Committee, Garmisch,
Germany, 7th to 11th October 1968. Brussels, Belgium: Scientific Affairs
Division, NATO, 1969.

J. Bosch and P. Molin, ‘““Software architecture design: Evaluation and
transformation,” in Proc. IEEE Conf. Workshop Eng. Computer-Based
Syst. ECBS, Mar. 1999, pp. 4-10.

P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, “Documenting
software architectures: Views and beyond,” in Proc. 25th Int. Conf. Softw.
Eng., May 2003, pp. 740-741.

M. Shaw and P. Clements, “The golden age of software architecture,”
IEEE Softw., vol. 23, no. 2, pp. 31-39, Mar. 2006.

D. Garlan, “Software architecture: A roadmap,” in Proc. 22nd Int. Conf.
Softw. Eng., Future Softw. Eng. Track, Oct. 2000, pp. 91-101.

L. Dobrica and E. Niemela, “A survey on software architecture analysis
methods,” IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 638-653, Jul. 2002.
R. N. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Hoboken, NJ, USA: Wiley, 2009.

H. V. Vliet, Software Engineering: Principles and Practice. Hoboken, NJ,
USA: Wiley, 2008.

D. L. Parnas, “Software aging,” presented at the Proc. 16th Int. Conf.
Softw. Eng., Sorrento, Italy, May 1994.

S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, “Does
code decay? Assessing the evidence from change management data,” JEEE
Trans. Softw. Eng., vol. 27, no. 1, pp. 1-12, Jan. 2001.

A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code,” Manage. Sci., vol. 52, no. 7, pp. 1015-1030, Jul. 2006.
M. Godfrey and E. Lee, “Secrets from the monster: Extracting Mozilla’s
software architecture,” in Proc. 2nd Int. Symp. Constructing Softw. Eng.
Tools (CoSET), May 2000, pp. 1-9.

D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pp. 40-52,
Oct. 1992.

J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analysis of
software architecture recovery techniques,” in Proc. 28th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2013, pp. 486-496.

R. Grewal, G. L. Lilien, and G. Mallapragada, ‘“‘Location, location, loca-
tion: How network embeddedness affects project success in open source
systems,” Manage. Sci., vol. 52, no. 7, pp. 1043-1056, Jul. 2006.

S. D. Suh and I. Neamtiu, “Studying software evolution for taming soft-
ware complexity,” in Proc. 21st Austral. Softw. Eng. Conf., Apr. 2010,
pp. 3-12.

F. Sabir, F. Palma, G. Rasool, Y.-G. Guéhéneuc, and N. Moha, “A sys-
tematic literature review on the detection of smells and their evolution
in object-oriented and service-oriented systems,” Softw., Pract. Exper.,
vol. 49, no. 1, pp. 3-39, Jan. 2019.

D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A system-
atic review,” Inf. Softw. Technol., vol. 55, no. 7, pp. 1165-1199, Jul. 2013.
M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: A review of current
knowledge,” J. Softw. Maintenance Evol., Res. Pract., vol. 23, no. 3,
pp. 179-202, Apr. 2011.

173707

IEEE Access

A. Baabad et al.: SA Degradation in OSS

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

F. Bachmann, L. Bass, M. Klein, and C. Shelton, “Designing software
architectures to achieve quality attribute requirements,” IEE Proc. Softw.,
vol. 152, no. 4, pp. 153-165, 2005.

L. Hochstein and M. Lindvall, “Combating architectural degeneration: A
survey,” Inf. Softw. Technol., vol. 47, no. 10, pp. 643-656, Jul. 2005.

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Reading, MA, USA: Addison-Wesley, 2012.

R. G. Crispen and L. D. Stuckey, “Structural model: Architecture for
software designers,” presented at the Proc. Conf. TRI-Ada, Baltimore,
MA, USA, Nov. 1994, doi: 10.1145/197694.197729.

M. M. Lehman, “On understanding laws, evolution, and conservation in
the large-program life cycle,” J. Syst. Softw., vol. 1, pp. 213-221, Jan. 1979.
C. Stringfellow, C. D. Amory, D. Potnuri, A. Andrews, and M. Georg,
“Comparison of software architecture reverse engineering methods,” Inf.
Softw. Technol., vol. 48, no. 7, pp. 484—497, Jul. 2006.

Z.Li and J. Long, “A case study of measuring degeneration of software
architectures from a defect perspective,” in Proc. 18th Asia—Pacific Softw.
Eng. Conf., Dec. 2011, pp. 242-249.

M. Lindvall, R. Tesoriero, and P. Costa, ““Avoiding architectural degener-
ation: An evaluation process for software architecture,” in Proc. 8th IEEE
Symp. Softw. Metrics, Jun. 2002, pp. 77-86.

J. van Gurp and J. Bosch, “Design erosion: Problems and causes,” J. Syst.
Softw., vol. 61, no. 2, pp. 105-119, Mar. 2002.

N. Medvidovic, A. Egyed, and P. Griinbacher, “Stemming architectural
erosion by coupling architectural discovery and recovery,” in Proc. 2nd
Int. Softw. Requirements Archit. Workshop, Apr. 2003, p. 61.

A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer, “Tool support
for architectural decisions,” in Proc. Work. IEEE/IFIP Conf. Softw. Archit.
(WICSA), Jan. 2007, p. 4.

D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch: Why
reuse is so hard,” IEEE Softw., vol. 12, no. 6, pp. 17-26, Nov. 1995.

M. Riaz, M. Sulayman, and H. Naqvi, “Architectural decay during con-
tinuous software evolution and impact of ’design for change’ on software
architecture,” in Proc. Int. Conf. Adv. Softw. Eng. Appl.,2009, pp. 119-126.
C. Izurieta and J. M. Bieman, ‘“How software designs decay: A pilot study
of pattern evolution,” in Proc. Ist Int. Symp. Empirical Softw. Eng. Meas.
(ESEM), Sep. 2007, pp. 449-451.

1. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Reading, MA, USA: Addison-Wesley, 2004.

J. Bosch, “Software architecture: The next step,” in Software Architecture.
Berlin, Germany: Springer, 2004, pp. 194-199.

J. Lenhard, M. Blom, and S. Herold, ““Exploring the suitability of source
code metrics for indicating architectural inconsistencies,” Softw. Qual. J.,
vol. 27, no. 1, pp. 241-274, Mar. 2019.

M. Lindvall and D. Muthig, “Bridging the software architecture gap,”
Computer, vol. 41, no. 6, pp. 98-101, Jun. 2008.

X. Dong and M. W. Godfrey, “Identifying architectural change patterns in
object-oriented systems,” in Proc. 16th IEEE Int. Conf. Program Compre-
hension, Jun. 2008, pp. 33-42.

1. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and A. V. Staa,
“Are automatically-detected code anomalies relevant to architectural mod-
ularity? An exploratory analysis of evolving systems,” presented at the
Proc. 11th Annu. Int. Conf. Aspect-oriented Softw. Develop., Potsdam,
Germany, 2012, doi: 10.1145/2162049.2162069.

I. M. Bertran, A. Garcia, and A. V. Staa, “An exploratory study of code
smells in evolving aspect-oriented systems,” presented at the Proc. 10th
Int. Conf. Aspect-Oriented Softw. Develop., Porto de Galinhas, Brazil,
2011, doi: 10.1145/1960275.1960300.

1. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa, “On the
relevance of code anomalies for identifying architecture degradation symp-
toms,” in Proc. 16th Eur. Conf. Softw. Maintenance Reeng., Mar. 2012,
pp. 277-286.

K. A.Dawood, K. Y. Sharif, A. A. Zaidan, A. A. Abd Ghani, H. B. Zulzalil,
and B. B. Zaidan, “Mapping and analysis of open source software
(OSS) usability for sustainable OSS product,” IEEE Access, vol. 7,
pp. 65913-65933, 2019.

J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-
source and closed-source software products,” IEEE Trans. Softw. Eng.,
vol. 30, no. 4, pp. 246-256, Apr. 2004.

E. V. Hippel and G. V. Krogh, “Open source software and the ‘private-
collective’ innovation model: Issues for organization science,” Org. Sci.,
vol. 14, no. 2, pp. 209-223, 2003.

173708

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

A. Mockus, R. T. Fielding, and J. Herbsleb, ““A case study of open source
software development: The apache server,” in Proc. 22nd Int. Conf. Softw.
Eng. ICSE, 2000, pp. 263-272.

T. Dinh-Trong and J. M. Bieman, “Open source software development: A
case study of FreeBSD,” in Proc. 10th Int. Symp. Softw. Metrics, 2004,
pp. 96-105.

P. L. Li, J. Herbsleb, and M. Shaw, “Finding predictors of field defects for
open source software systems in commonly available data sources: A case
study of OpenBSD,” presented at the Proc. 11th IEEE Int. Softw. Metrics
Symp., Sep. 2005, doi: 10.1109/METRICS.2005.26.

S. Spaeth, M. Stuermer, S. Haefliger, and G. von Krogh, “Sampling in open
source software development: The case for using the debian GNU/Linux
distribution,” in Proc. 40th Annu. Hawaii Int. Conf. Syst. Sci. (HICSS),
Jan. 2007, p. 166.

A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and Mozilla,” ACM Trans. Softw.
Eng. Methodol., vol. 11, no. 3, pp. 309-346, 2002.

G. von Krogh, S. Spaeth, and S. Haefliger, “Knowledge reuse in
open source software: An exploratory study of 15 open source
projects,” in Proc. 38th Annu. Hawaii Int. Conf. Syst. Sci., Jan. 2005,
p. 198.

A. Capiluppi and J. F. Ramil, “Studying the evolution of open source
systems at different levels of granularity: Two case studies,” in Proc. 7th
Int. Workshop Princ. Softw. Evol., Sep. 2004, pp. 113-118.

S. Christley and G. Madey, “Analysis of activity in the open source
software development community,” in Proc. 40th Annu. Hawaii Int. Conf.
Syst. Sci. (HICSS), Jan. 2007, p. 166.

F. Zou and J. Davis, “‘A model of bug dynamics for open source software,”
in Proc. 2nd Int. Conf. Secure Syst. Integr. Rel. Improvement, Jul. 2008,
pp. 185-186.

A. Fuggetta, “Open source software—An evaluation,” J. Syst. Softw.,
vol. 66, no. 1, pp. 77-90, Apr. 2003.

B. Kitchenham and S. Charters, *“Guidelines for performing systematic lit-
erature reviews in software engineering,” EBSE, Goyang-si, South Korea,
Tech Rep. EBSE Ver. 2.3, 2007.

B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering—A
systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7-15,
Jan. 2009.

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, ‘“Model-based
performance prediction in software development: A survey,” IEEE Trans.
Softw. Eng., vol. 30, no. 5, pp. 295-310, May 2004.

F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek, and S. Kounev,
“Quantitative evaluation of model-driven performance analysis and simu-
lation of component-based architectures,” IEEE Trans. Softw. Eng., vol. 41,
no. 2, pp. 157-175, Feb. 2015.

H. P. Breivold and 1. Crnkovic, “A systematic review on architecting for
software evolvability,” in Proc. 21st Austral. Softw. Eng. Conf., Apr. 2010,
pp. 13-22.

W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of UML in software maintenance,”
IEEE Trans. Softw. Eng., vol. 34, no. 3, pp. 407-432, May 2008.

R. Britto, D. Smite, and L.-O. Damm, “Software architects in large-scale
distributed projects: An ericsson case study,” IEEE Softw., vol. 33, no. 6,
pp. 48-55, Nov. 2016.

H. Koziolek, B. Schlich, S. Becker, and M. Hauck, ‘“Performance and
reliability prediction for evolving service-oriented software systems,”
Empirical Softw. Eng., vol. 18, no. 4, pp. 746790, Aug. 2013.

B. Kitchenham, “Procedures for performing systematic reviews,” Dept.
Comput. Sci., Keele Univ., Keele, U.K., Tech. Rep. UKTR/SE-0401, 2004.
J. Webster and R. T. Watson, “Analyzing the past to prepare for the
future: Writing a literature review,” MIS Quart., vol. 26, no. 2, pp. 13-23,
2002.

O. Dieste and A. G. Padua, “Developing search strategies for detecting
relevant experiments for systematic reviews,” in Proc. Ist Int. Symp.
Empirical Softw. Eng. Meas. (ESEM), Sep. 2007, pp. 215-224.

F. Arcelli Fontana, V. Lenarduzzi, R. Roveda, and D. Taibi, ‘‘Are architec-
tural smells independent from code smells? An empirical study,” J. Syst.
Softw., vol. 154, pp. 139-156, Aug. 2019.

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
it? Manage it? Ignore it? Software practitioners and technical debt,” pre-
sented at the Proc. 10th Joint Meeting Found. Softw. Eng., Bergamo, Italy,
Aug. 2015, doi: 10.1145/2786805.2786848.

VOLUME 8, 2020

http://dx.doi.org/10.1145/197694.197729
http://dx.doi.org/10.1145/2162049.2162069
http://dx.doi.org/10.1145/1960275.1960300
http://dx.doi.org/10.1109/METRICS.2005.26
http://dx.doi.org/10.1145/2786805.2786848

A. Baabad et al.: SA Degradation in OSS

IEEE Access

[70]

[71]

[72]

[73]

[74]

[75]

F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and A. D. Lucia,
“On the diffuseness and the impact on maintainability of code smells: A
large scale empirical investigation,” Empirical Softw. Eng., vol. 23, no. 3,
pp. 1188-1221, Jun. 2018.

T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells have a
significant but small effect on faults,” ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 4, pp. 1-39, Sep. 2014.

S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and
impact of code smells: A case study of two open source systems,” in Proc.
3rd Int. Symp. Empirical Softw. Eng. Meas., Oct. 2009, pp. 390—400.

C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Berlin, Germany:
Springer-Verlag, 2012.

A. Nguyen-Duc, D. S. Cruzes, and R. Conradi, “The impact of global
dispersion on coordination, team performance and software quality—A
systematic literature review,” Inf. Softw. Technol., vol. 57, pp. 277-294,
Jan. 2015.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within the
software engineering domain,” J. Syst. Softw., vol. 80, no. 4, pp. 571-583,
Apr. 2007.

AHMED BAABAD received the B.Sc. degree
in computer science from Hadhramout Univer-
sity, Yemen, and the M.Sc. degree in information
systems from Osmania University, India. He is
currently pursuing the Ph.D. degree with the
Department of Software Engineering, Faculty of
Computer Science and Information Technology,
Universiti Putra Malaysia (UPM). He is also a Lec-
turer with Hadhramout University. His research
interests include software metrics, software
quality, and software architecture.

VOLUME 8, 2020

HAZURA BINTI ZULZALIL received the B.Sc.
degree in computer science, the M.Sc. degree in
software engineering, and the Ph.D. degree in soft-
ware engineering from Universiti Putra Malaysia
(UPM). She is currently an Associate Professor
with the Faculty of Computer Science and Infor-
mation Technology, UPM. Her research interests
include software metrics, software quality, and
software engineering.

SAADAH HASSAN received the B.Comp.Sc.
degree from Universiti Teknologi Malaysia,
the master’s degree in software engineering from
the University of Malaya, and the Ph.D. degree
from Ulster University, U.K. She is currently
an Associate Professor with Universiti Putra
Malaysia. Her research interests include software
engineering, intelligent systems, and management
information systems.

SALMI BINTI BAHAROM received the
B.Comp.Sc. degree from Universiti Putra Malaysia
(UPM), and the M.Sc. and Ph.D. degrees in soft-
ware engineering from the Universiti Kebangsaan
Malaysia (UKM). She is currently an Asso-
ciate Professor with UPM. Her research interests
include software testing, software quality, and
software engineering.

173709

