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ABSTRACT Feature selection and instance selection are dual operations on a data matrix. Feature selection
aims at selecting a subset of relevant and informative features from original feature space, while instance
selection at identifying a subset of informative and representative instances. Most of previous studies address
these two problems separately, such that irrelevant features (resp. outliers) may mislead the process of
instance (resp. feature) selection. In this paper, we address the problem by doing feature and instance
selection simultaneously. We propose a novel unified framework, which chooses instances and features
simultaneously, such that 1)all the data can be reconstructed from the selected instances and features
and 2) the global structure which is characterized by the sparse reconstruction coefficient is preserved.
Experimental results on several benchmark data sets demonstrate the effectiveness of our proposed method.

INDEX TERMS Unsupervised feature selection, unsupervised instance selection, active learning, dual

selection.

I. INTRODUCTION

Real world applications usually involve with big data with
large volume and high dimensionality, presenting great chal-
lenges such as the curse of dimensionality, huge computation
and storage cost. To tackle these difficulties, a lot of algo-
rithms have been developed in the literature. The high dimen-
sion of features can be largely alleviated by feature selection
techniques, which aims at keeping a few informative and rel-
evant features [1]-[4]. Instead of being a passive recipient of
data, instance selection (a.k.a, active learning) keeps the most
informative data for labeling and further training [5]-[7].
These two tasks, i.e., feature selection and instance selection,
are often solved separately. It’s not strange that, the process
of feature selection may be misled by the less informative
instances, and meanwhile, the performance of instance selec-
tion may be degenerated with irrelevant features. Ideally,
we should select features only on the most informative sam-
ples, and select instances only on relevant features. However,
Most of the existing work addressed these two problems
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separately. Thus, in this paper, we consider the problem of
dual selection on features and instances simultaneously.

With existing one-side only techniques, i.e., active learn-
ing methods and unsupervised feature selection algorithms,
there are at least three different strategies to merge their
results to achieve dual selection. Firstly, we can run one
side algorithm on the original data set independently, and
then manually merge their selected results. We can also run
these one-side algorithm in sequence, i.e., feature selection
first and then instance selection, or instance selection first
and then feature selection. More specifically, we can run
the feature selection on the original data and obtain the
selected features, and then run the active learning method
on data only with selected features to obtain the selected
samples. We can also run instance selection method first
to obtain the selected samples and then run feature selec-
tion method on data with all features and selected sam-
ples to obtain the selected features [8]. Apparently, The
duality between feature selection and instance selection has
been neglected by these tandem algorithms. Thus, these
methods suffer from adverse effect from noisy features and
outliers.
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Recently, Zhang et al. [9] proposed a unified feature
and instance selection framework (UFI) based on A-optimal
experimental design (AOD) [5]. The basic idea is to simulta-
neously select those features and instances that can minimize
the size of parameter covariance matrix. Due to its combina-
torial nature, UFI uses a greedy backward removal schema,
which deletes the least informative features and instances
sequentially. It has been shown that, UFI can achieve promis-
ing performance for data dual reduction. However, it evalu-
ates the importance of each feature and instance individually
and removes the less informative feature (instance) one by
one. Such backward removal mechanism cannot make full
use of the correlation among features and instances, and also
incurs high computational costs.

In this paper, we propose a novel unsupervised dual learn-
ing framework to effectively diffuse the process of feature
and instance selection (DFIS for short). From the view of
instance selection, we resort to the intermediate results of
feature selection instead of using all the relevant and irrel-
evant features. With the selected features, we keep these data
points such that all the data can be well reconstructed by
the selected ones. Similarly, we select the feature subset to
best preserve the inherent structure of the data, where the
structure is adaptively determined by the most informative
instances from the result of instance selection rather than
all the instances. By leveraging the interactions between
these two selection tasks, it is believed that the dual learning
method could achieve better results on both sides.

Our main contributions are highlighted as follows,
« we propose a novel method for dual selection, which

chooses instances to reconstruct all the data in the
reduced feature space and keeps the best features
to preserve the global structure characterized by the
sparse reconstruction coefficients among the selected
instances.

« we present an effective algorithm to solve the optimiza-
tion problem, which is non-greedy and proved to be
converged.

o Experimental results on several benchmark data sets
demonstrate the effectiveness and efficiency of the pro-

posed method.
Notations: In this paper, matrices are written as boldface

uppercase letters and vectors are written as boldface lower-

case letters. Given a matrix H = {A;;}, we denote its i-th

row and j-th column as h; and W respectively. The £,-norm
1

of a vector v € R" is defined as ||v|| = (3_i_, |vil”)?. The

Frobenius norm of a matrix H € R is defined as ||H||F =

I S i = /S0 I3 The £1-norm of Hois
defined as [[H|[21 = Y, /S /2 = Y0 [hyll2. The

£2,0-norm of matrix H is defined as the number of nonzero
rows. tr(M) is the trace of a squared matrix M € R"*",

Il. RELATED WORK
A. UNSUPERVISED FEATURE SELECTION
Various methods have been developed for the task of feature

selection in the unsupervised setting. Most of existing works
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distinguish these algorithms into three groups, i.e., filter
[2], [4], [10], wrapper and embedded approaches [11]-[13],
in terms of different selection strategy. Moreover, with the
absent of supervised information, one of the key problem for
unsupervised feature selection is to design the appropriate cri-
terion to guide the search of relevant and informative features.
In the previous literature, there are at least three type of crite-
ria are well developed. A number of methods [1], [14]-[22]
aim to exploit the intrinsic cluster structure of data, and use
it as pseudo label for further feature selection task. Another
line of work [15], [23]-[31] is to select those features which
can be used to well reconstruct or approximate the whole data
set. Besides, it has also been verified that the local structure
of data is also vital important for unsupervised features selec-
tion [16], [32]-[34]. Most recently, several techniques have
also been introduced to further improve unsupervised feature
selection, such as the adaptive graph learning [35], [36], the
ensemble of weak partitions [37]. It should be pointed out
that unsupervised feature selection has also been extended to
handle multi-view data.

Although a lot of algorithms have been developed, it is
still worthwhile to point out that many existing works surfer
from the annoying problem of hyper parameter selection in
supervised setting [16], [38], [39]. Beside, it is believed that
the low quality of data not only appeared on the feature side,
but also the sample side.

Based on the above analysis, we aim to improve the feature
selection with the help of dual selection mechanism. As a
result, the process of unsupervised feature selection will be
less influenced by low quality samples.

B. INSTANCE SELECTION

Instance selection targets at selecting the most informative
instances from a large scale data set. Like the counterpart
of unsupervised feature selection, one of the key issue in
instance selection is to design the appropriate criterion, which
is used to decide the usefulness of data samples. There are
at least two strategies, i.e., representative [40], [41] and
uncertainty sampling [42], to guide the search of informative
instances. On the other hand, instance selection can also be
categorized into early selection [43], where no labeled data
is available, and normal selection which can access certain
amount of labeled data.

In statistics, the problem of instance selection is referred to
the Optimal Experimental Design (OED), which is to mini-
mize the variance of a parameterized model. There are three
typical types of design criteria: D-optimal design, A-optimal
design and E-optimal design. Recently, [6], [41] proposed
transductive experimental design, which can fully explore
the available unlabeled data. There are also several exten-
sions of transductive experimental design, including MAED
[44], LROD [45], RRSS [7] and DTED [46]. The above
methods perform feature and instance selection separately.
It can be found that these OED series criteria aim to select
the representative instances. Moreover, several methods have
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also been developed in supervised scenario [47]-[50] and
semi-supervised case [51], [52].

It is worthwhile to point out that all the above mentioned
active learning method take all the input features to select
sample. Actually, it has been widely verified that the low
qualify and less discriminant features will degenerate the
learning task, such as classification and clustering. Thus, it is
also expected that the performance of instance selection could
also be further improved by eliminating the side effect of
noise features. However, there are only a few attempts to
jointly select features and instances, such as UFI in [9], which
takes high computational cost to obtain the greedy algorithm.

Ill. PRELIMINARIES
We first formulate the problem of dual selection. Let
X € R9*" be the data matrix, where columns correspond
to data instances and rows correspond to features. The goal is
to simultaneously select % instances and / features such that,
with the selected features as new representation and selected
instances as training data, the prediction error on the testing
data can be minimized.

Next, we briefly review the UFI method [9]. UFI aims at
selecting a sub matrix Z € R!* from the original matrix
X € R¥*" by solving the following optimization problem

mZin tr(ZZ" + A1)~
s.t. Z e R is a sub matrix of X. e))

Since the above problem is NP-hard, UFI uses a greedy
algorithm to solve it, where the importance of each feature
and instance is evaluated individually and less informative
feature (instance) is removed one by one. Such backward
removal mechanism does not take special consideration on
the correlations between features and instances. It also incurs
high computational costs with time complexity of O(n*+d*).

Zhang et al. [9] proposed UFI to perform dual selection
based on AOD, which is optimized by a greedy backward
searching strategy. Different from UFI, we propose to eval-
uate the importance of a set of features and instances simul-
taneously and a non-greedy algorithm is also developed. The
difference of our method and UFI are as follows, 1) different
formulations; 2) UFI evaluates the importance of each feature
and instance one by one, while our method can evaluate a
subset of features and instances jointly, which leads to better
performance.

IV. UNSUPERVISED DUAL LEARNING FOR FEATURE AND

INSTANCE SELECTION

In this section, we introduce our framework DFIS for dual
selection. As we have mentioned before, the key intuition
behind DFIS is to effectively diffuse the process of dual
selection into a unified framework. With the selected features,
DFIS selects those data points such that the whole data set
can be best approximated. Meanwhile, it selects features to
best preserve the structure of the data, which is largely deter-
mined by the selected informative samples. As a result, our
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dual selection method is formulated as a data reconstruction
problem from the view of instance selection, and a structure
preserving problem from the view of feature selection. Con-
cretely, the selected representative data points should have the
ability to reconstruct the whole data set. Inspired by [6] and
[7], we minimize the following data reconstruction problem

min X —XB|z st |Bllo =k, @

where B € R™ " is the instance selection matrix and k; is
the number of selected instances. The quality of this recon-
struction may be affected by noisy features in original feature
space. To alleviate the adverse effects of noisy features on
instance selection, we employ a transformation matrix A €
R4*¢ for feature selection (i.e., to eliminate noisy features),
where ¢5 g-norm is imposed to achieve row-sparsity. Thus,
we have the following optimization problem

min  ||ATX — ATXB||%
A B
s.t. [IBllao = k1, [|All2.0 = k2, ATXATX) =1, (3)

where k> is the number of selected features. The additional
constraint, i.e., ATX(ATX)T = L, is used to not only avoids
the arbitrary scaling problem and the trivial solution with all
zeros but also ensures that data on the subspace are statis-
tically uncorrelated. Due to the presence of ¢, ¢-norm, the
optimization problem in Eq. (3) is NP-hard. To resolve this,
we appeal to a useful result from [53] where the optimization
w.r.t ||A||2,0 can be nearly identical or approximated by the
minimization w.r.t ||A|]2,1. Therefore, the optimization prob-
lem in Eq. (3) can be relaxed to

min [|A"X — ATXB|[} + «/|All2.1 + BIIBL2.

st. ATXATX) =1 4)

where o and B are parameters.

The above optimization problem involves both the feature
selection matrix A and the instance selection matrix B. It is
worthwhile to further analyze the different role of these two
variables in the dual learning task. When A is fixed and let
X' = ATX, then Eq. (4) reduces to an instance selection
method with the following form

min  [IX = X'BlI; + BIIBlla,1
st. XX)H =1, (5)

which actually selects instances that can be used to best
reconstruct the whole data set in a new feature space,
where noisy and irrelevant features are eliminated by the
row-sparsity constraint on A. By alleviating the adverse effect
from feature side, our method often lead to better perfor-
mance for instance selection. When B is fixed, Eq. (4) can
be simplified as the following feature selection problem

ngn tr(ATX[T — B)YX — B XTA) + a[|All2.1.  (6)

By denoting the graph Laplacian matrix L = (I—B)I—B)7,
the optimization problem in Eq. (6) selects those features that
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can best preserve the global data structure captured by L. Due
to the row-sparsity of B, the graph Laplacian is largely deter-
mined by the most informative instances, which alleviates the
side effect of outliers from instance side. Moreover, unlike
most existing unsupervised feature selection algorithms [1],
[14], [54] using a pre-fixed graph Laplacain, the inherent
structure within L in our method can be gradually improved
by eliminating the less informative instances. Therefore, our
method can also achieve better results on feature selection.

Starting from all features and instances, the key intuition
behind DFIS is to effectively diffuse the process of dual
selection into a unified framework. From the view of instance
selection, we use the selected features detected by ATX,
instead of using all the relevant and irrelevant features. With
the selected features, we select these data points such that all
the data can be well reconstructed by the selected ones (see
Eq. (5)). Similarly, we select the feature subset to best pre-
serve the inherent structure of the data, where the structure is
largely determined by the most informative instances (see Eq.
(5)). By leveraging the interactions between these two tasks,
the dual learning framework could achieve better results on
both tasks.

A. ALGORITHM TO SOLVE DFIS
We present an efficient algorithm to solve the optimization
problem in Eq. (4). Let

L(A,B) = [[ATX — ATXBJ} + «l[All2,1 + BIIBll2,1,

we have two variables A and B. In order to deal with the
non-smoothness of the sparsity induced £;1-norm in Eq. (2),
we develop an coordinate descent algorithm to alternatively
minimize the above objective function with respect to A and B
respectively. This process is repeated until convergence (see
Algorithm 1).

1) OPTIMIZE A WITH FIXED B
The optimization problem for updating A is equivalent to
minimize the following objective function

L1 =t ATXA-B)A-B)/X"A) +al|All1 (7)

with the constraint ATX(ATX)T = I. Let
L = X(I—-B)I-B)" X, then, Eq. (7) can be easily rewritten
as

L1 = t(ATLA) + a[|A]|2. = (AT (L + aS)A)  (8)

where S is a diagonal matrix with s; = m To avoid
zero values, we use a very small constant € to regularize
m. This problem can be solved by generalized
eigen-decomposition (L + «S)A = AXXTA, where A is a
diagonal matrix whose diagonal elements are eigenvalues.

Sii =

2) OPTIMIZE B WITH FIXED A
The optimization problem of updating B is equivalent to
minimize the following objective function

Lo = ||ATX — ATXB|[% + BIBl|2,1. ©9)

VOLUME 8, 2020

Let % = 0, that is,
oLy
OB

where D is a diagonal matrix with d;; = m. We also use

= —2XTAATX 4+ 2XTAATXB + 28DB = 0,

a very small constant ¢ to regularize d;; = AMbiae Then we

get the following close-form solution to B,
B = (XTAATX + D) 'XTAATX. (10)

Note that the matrix X’ AAT X + D is a n x n matrix, so cal-
culating the inverse matrix takes O(n>) time complexity.

Algorithm 1 The Optimization Algorithm of DFIS

Input: data matrix X € R?*", parameters o and f3.
I: Sett = 0, and initialize S € RY*? and D € R™" as
identity matrices
2: repeat
3 B = XTAATX + D) IXTAATX
4:  Update the diag?nal matrix D! as

21B}l2+e

DZ—H —

L

2B, o+

5. L'=XI-BHI-BHTX

6: A" = [p1,p2.P3. ... Pcl, where py, p2, ..., pc are
the eigenvectors of (L+aS)A = AXX” A correspond-
ing to the first ¢ smallest eigenvalues

7. Update the diaglonal matrix S'1 as

2IAT [+
St—H —
1
20145 l2+e

& t=t+1

9: until Convergence;

Qutput: Sort all features and all instances according to
llaillz (G =1,2,....,d)and ||bjll (G =1,2,...,n)
in descending order respectively and select top / ranked
features and top 4 ranked instances.

B. CONVERGENCE ANALYSIS
We analyze the convergence of the proposed optimization
algorithm.

Theorem 1: Updating B using Eq. (10) will monotonically
decrease the objective function in Eq. (7).

Proof: Following a similar procedure in [55], we can
prove the following inequation holds in the #-th step. Given
A’ and B! at ¢-th iteration, the optimal solution of B'*! can
be obtained as follows

Bt = min AHTX — (AHTXB||% + Btr(BTD'B)
< [IANTX — (AHTXB!| |2 + pt((B")' D'B’)

According to the definition of d/; = 1

= S hTe" the following

inequation holds
IAHTX — (AHTXB T2 + BIB |2
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||bl+1

113
_ Bt+] _ 2
BUIB 2,1 §:2Hb,||2)
< JAHTX — (AHTXB'[|Z + BIIB'||2,1

b!|13
LA bl

2| 1w 112

According to the inequation /a — L <b-—
we have

IIAHTX —

1n [53],

AHTXB % + BIB |2,
< [IAYTX — (ADYTXB|[% + BIB |21 (11)

By combining Equations (7) and (11), we have
LA BT < LA, BY). (12)

Thus, Theorem 1 is proved. 0

Theorem 2: Updating A using the procedure in Algo-
rithm 1 monotonically decreases the objective function in
Egq. (7).

Proof: Following a similar procedure in [3], we can
prove the following inequation holds in the #-th step. Given
A’ and B’ at ¢-th iteration, the optimal solution of A’*! can
be obtained as follows

At = rrgn tr(AT[XT — BT — B)'XT + aS]A)
< tw((AHT XA = BHYA — BH'XT + «S]AY)
According to the definition of sﬁi = m and
L = (I — B)I — B")7, the following inequation holds
r((AHTLA™Y 4+ a| A,
—a(llA™ | — Z a1
2||af[l>

< w((A)LA") + oe||Af||z,1
. |at][3
—a(llA |21 =) )
i

2|lagll2

<./b—

According to the inequation /a — # <

we have
tr(ATHTLA™Y + oA
<tr(AH'LAD) +al|A']l21 (13)

ﬁg in [53],

By combining Eq. (7) and Eq. (13), we have
E(AI+1,BI+1) < E(At,Bt+l). (14)
g
Theorem 3: The alternating update rules in Algorithm 1

monotonically decrease the objective function of Eq. (7).
Proof: Combining Eq. (12) and Eq. (14), we can get

LA BT < £(A", B < £(A",B).  (15)

Thus, the objective function in Eq. (7) monotonically
decreases by updating rules in algorithm 1 and Theorem 3
is proved. 0

170252

Since the function in Eq. (7) is non-negative, it is lower
bounded. Based on Theorem 3, the alternating update rules
in Algorithm 1 monotonically decrease the objective func-
tion of Eq. (7), thus the proposed optimization algorithm is
converged.

C. COMPLEXITY ANALYSIS

When updating B, the most consuming process is to compute
the inverse matrix of a n x n matrix, which leads to O(n?)
time complexity. The time complexity of updating A is O(d>).
So the overall time complexity of our algorithm is O(n3) with
respect to n and O(d>) with respect to d.

D. DISCUSSION
We discuss the relationships of our proposed model with
existing feature and instance selection models.

1) CONNECTION WITH TED

TED [6] aims at minimizing the assessed uncertainty of pre-
dictions on given unlabeled data, while solving the following
problem

B.o;eR"

min anl X" a2 +Z +yllﬁ||1 (16)
j=1

If we fix A and let G = ATX, our optimization problem
in Eq. (4) can be reduced to minimize the following objective
function

min |G — GBI|% + BIBl|2,1 (17)

Both our method and TED select those data points to best
reconstruct all the data samples via the sparsity-induced
norm (i.e., £71 and £1). However, our method actually selects
instances in a reduced feature space, which avoids the adverse
effect of noisy and irrelevant features. Thus, it’s expected to
achieve a better performance.

2) CONNECTION WITH FEATURE SELECTION METHODS
If we fix B, our objective is reduced to

min - tr(A"X(@ = B)(I - B)' X" A) +el|All2,1

st. ATXATX) =1. (18)

When compared with Laplacian Score [2] and MCFS [1], our
method is superior as it selects a subset of feature simul-
taneously rather than individually, which can better model
the correlation among features. When compared with UDFS
[3] and NDFS [55], which construct the graph Laplacian
by local information, our method uses sparse reconstruction
coefficient to capture the global intrinsic structure. What’s
more, the graph Laplacian of our method can be adaptively
updated to better capture the data structure in the learning
process.
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3) CONNECTION WITH UFI
The objective function of UFI is given in Eq. (1). An equiva-
lent form of our DFIS framework is given as follows

max u[X'Z/(Z7Z +vD)'Z27X]
Z/
st. ZeX,Z =ATZ, X' =ATX,|Z| = ki, |A| = ks,
(19)

As shown in Eq. (1), UFI aims at selecting informative fea-
tures and instances to minimize the size of parameter covari-
ance matrix. Similar to [41], our dual selection method can be
interpreted as jointly selecting features and instances to min-
imize the uncertainty of prediction on given unlabeled data.
UFI evaluates the importance of each feature and instance
individually. Our method evaluates the importance of a subset
of features and instances jointly, which can better model the
correlations among features and instances. The non-greedy
optimization scheme of DFIS is also more efficient than the
greedy backward selection mechanism of UFI.

V. EXPERIMENTS

In this section, we evaluate the performance of DIFS. Follow-
ing the similar experimental protocol in [9], we train classifi-
cation model on the selected instances and make predictions
on the remaining instances. The prediction accuracy is used
to measure the performance of each method.

A. DATA SETS

We conduct experiments on two face image data sets, i.e.
ORL and YALE data and one document data set CSTR.
We give brief description about these data sets.

Yale database contains 165 gray scale images in GIF
format from 15 individuals. There are 11 images per subject,
one per different facial expression or configuration.

ORL database contains 400 images from 40 distinct sub-
jects. The images were taken at different times, varying the
lighting, facial expressions and facial details.

CSTR database contains 476 abstracts of technical reports
published in the Department of Computer Science at the Uni-
versity of Rochester between 1991 and 2002. The abstracts
are divided into four research areas: Natural Language Pro-
cessing, Robotics/Vision, Systems and Theory.

B. EXPERIMENTAL SETTINGS

We compare our proposed method with 12 carefully designed
baselines and UFI [9] method. We first choose LS [2] and
MCEFS [1] as the feature selection methods, and choose AOD
[5] and cTED [6] as active learning methods. By adopting
different ways to couple the results of feature selection and
active learning, we have the following 12 combinations for
dual selection.

o LS+AOD. This combination selects subset of features
based on all instances via Laplacian Score [2], and
selects subset of samples based on all features via AOD
[5]. The SVM classifier is finally trained and evaluated
based on the selected samples and features.
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o LS+cTED. Similar with LS+AOD, except that the
instances are selected via cTED [6] method.

o« MCFS+AOD. Similar with LS+AOD, except that the
features are selected via MCFS [1] method.

o MCFS+cTED. Similar with LS+AOD, except that the
features are selected via MCFS [1] method and the
instances are selected via cTED [6] method.

o« LS2AO0D. This combination first selects subset of fea-
tures based on all instances via Laplacian Score [2], and
then selects subset of samples only based on selected
features via AOD [5]. The SVM classifier is finally
trained and evaluated based on the selected samples and
features.

o LS2¢TED. Similar with LS2A0D, except that the
instances are selected via cTED [6] method.

e MCFS2AO0D. Similar with LS2A0D, except that the
features are selected via MCFS [1] method.

o MCFS2cTED. Similar with LS2A0D, except that the
features are selected via MCFS [1] method and the
instances are selected via cTED [6] method.

o AOD2LS. This combination first selects subset of
instances based on all features via AOD [5], and
then selects subset of features only based on selected
instances via Laplacian Score [2]. The SVM classifier
is finally trained and evaluated based on the selected
samples and features.

o AOD2MCEFS. Similar with AOD2LS, except that the
features are selected via MCFS [1] method.

o ¢cTED2LS. Similar with AOD2LS, except that the
instances are selected via cTED [6] method.

o cTED2MCEFS. Similar with AOD2LS, except that the
instances are selected via cTED [6] method and the
features are selected via MCFS [1] method.

Similar with [9], these 12 baselines can be categorized
into three groups. The first category have 4 methods, i.e.,
LS+cTED, MCFS+cTED, LS+AOD and MCFS+AOD.
These combinations perform feature selection and instance
selection independently. The selected features and instances
are combined finally. The second category also have 4 com-
binations, i.e., LS2A0D, LS2cTED, MCFS2AOD and
MCFS2cTED. These methods first select subset of features
based on all samples and then select informative instances
only based on selected features. The third category also
have 4 methods, i.e., AOD2LS, AOD2MCEFS, cTED2LS
and cTED2MCEFS. These combinations first select subset of
instances based on all features and then select informative
features only based on selected instances.

Once the subset of features and subset of samples are
selected, we use these selected samples represented by
selected features and their labels to train the linear SVM
model, and evaluate the classification accuracy of SVM clas-
sifier on the rest unlabeled data which are also represented by
selected features. We conduct one-against-all classification to
handle the problem of multi-class classification as UFI did.
If there are c classes in the data set, ¢ binary classifiers are
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trained. In the prediction stage, all these c classifiers are used
for each instance. The class label of each instance is deter-
mined by the classifier with the largest output value. SVM
[56] with linear kernel is used in our experiments. To fairly
compare the above unsupervised algorithms, we tune the
parameters for all methods by a ““grid-search strategy” from
a large range of {10_3, 1072, ..., 106} and report the best
result each method can achieve.

C. EXPERIMENTAL RESULTS

On the YALE data set, we apply all the comparing meth-
ods to select k = {300, 500,700} features and m =
{15, 20, ...,40} instances. The classification results are
shown in Figure 1. At a first glance, our method can achieve
the best result. In most of the cases, UFI can achieve the
second best performance. If we fix the number of selec-
tion instance as 25, we can see in Figure 1(a) that our
method achieve 0.5 classification accuracy with 300 fea-
tures. To achieve the same performance, the best baseline
requires 700 features, as shown in Figure 1(c). This indi-
cates that our method can select more informative features
than other methods. If we fix the selected features as 500,
we see in Figure 1(b) that our method can achieve 0.55
classification accuracy with 25 instances. To achieve the
same performance, the best baseline needs 40 instances. This
indicates that the selected instances by our method are more
informative. We also observe that, our method can achieve
the best classification accuracy (about 0.6) with 500 fea-
tures and 30 instances. It needs the best baseline method
select 700 features and 40 instances to approximate 0.6.
On ORL and CSTR data sets, our method can also achieve the
best performance as shown in Figure 2 and Figure 3. In sum-
mary, our proposed method can achieve better performance
than other methods in most of the cases.

D. EFFECT OF DUAL SELECTION STRATEGY

Here, we investigate the effect of dual selection within one
unified framework by empirically answering the first ques-
tion as follows,

o Whether the performance of active learning, i.e.,
instance selection, can be further improved by the
embedding of feature selection?

We conduct the following experiment to present qualitative
research on the insight of bringing more separable represen-
tation for the task of instance selection via the embedding
of feature selection. Here, we take a subset of ORL data set
with 40 samples, where all these samples can be found in
Figure 4(a), as an example for clear illustration. We perform
principle component analysis (PCA) on this data set with
all 1024 features and project these 40 samples onto the first
two principle components, as shown in Figure 4(b). We run
DFIS on this data set and select top 300 and 500 features
according to the results of DFIS. Then we further perform
PCA on these 40 samples with selected top 300 and 500
features. We also show the first two principle components

170254

0.65

-=0=.
_____
- -

l' @ 7 25"
+2] -+ -LS+cTED g
24| = @ = MCFS+cTED [
DI 2% |-®-LswmoD

‘. % 24 MCFS+AOD
Y= LS2cTED ||
’ ‘ MCFS2cTED

’ = # =LS2A0D

- e i £
k- PR P ° . - © - MCFS2A0D ||
0 .-'.___:_o,— - Sy — 5 — cTED2LS
.
.

ACC
.
[y
,
1
[N

— + — cTED2MCFS
g = © = AOD2LS

= B = AOD2MCFS |
= % = UF|

= © =DFIS
T

|
15 20 25 30 35 40
Number of Selected Instances

(a) 300 features

06 Lo D
e
L
L
055 -
‘—— ”’F $
-
0s o .’ R
. - Pcl 227
2 22354
’ o eO-»¥=3
. Ph LR T &
045 R4 - R Y. ]
8 . e (RIS N
k4 P JrEpEp A i I % 2 [+ - LswTED
0 el - geSl%27 |- @-NCFswcTED ||
PR TR LR T S Nkl BN
IR S A 2 PA L) MCFS+AOD
g . =TT 4 LS2cTED ||
035 2 L A ~
f S T . < MCFS2cTED
oo
reLe" .- = * = S2A0D
oBE"T_ P - © = MCFS2A0D ||
. L P - B — cTED2LS
P — + — cTED2MCFS
L. - @ -A0D2LS
0250 » = B = AOD2MCFS [
= % = UFI
= @ =DFIS
02 . . . :
15 20 25 30 35 40
Number of Selected Instances
(b) 500 features
0.65 T
o6 aa= D S
o mmm=-- ) ae T ~
'f 'f
- '—
055 .* .-
-
. - Py
° - L2z
. - P
05 R4 e ol iAs
. -° 3 2l
'¢ Phe PR YN R |
. ;
o 0.45 '¢ g ’I' 5’; ’,‘8’
‘ -2
2 ‘ .’ Mg ezl 'J::i"‘ =+ =LS+cTED
04 PR . = 5 = @ = MCFS+cTED
LR - &<l
RIPT ISl oy . ~e. ¢d;" = B =LS+AOD
PEIVASIN T SO N i/ MCFS+AOD
0355 = 7 2% L2 Sagest e LS2¢TED
: e? .9 - e MCFS2cTED
TSP | o - + =152A0D
o=t P - ® = MCFS2A0D
- PR A S — & —¢TED2LS
- .0 ~ + — cTED2MCFS
P 2 = @ = AOD2LS
0.2 ’ = B = AOD2MCFS
,
’ =+ =UFl
. = @ =DFIS
02 ya L L L T
15 20 25 30 35 40

Number of Selected Instances
(c) 700 features

FIGURE 1. Comparisons with baselines on the Yale data set.

in Figure 4(c) and Figure 4(d). It can be seen that projected
samples using top 300 features or top 500 features selected by
DFIS, are more separable than that of using all 1024 features.
This visualization shows the effectiveness of the dual learning
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FIGURE 2. Comparisons with baselines on the ORL data set.

strategy to perform feature selection for the task of instance
selection and subsequent classification.

Moreover, we conduct the following experiment to present
quantitative research on the improvement of using feature
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FIGURE 3. Comparisons with baselines on the CSTR data set.

selection technique for the task of instance selection. In this
new experiment, we take the cTED method [6] with all fea-
tures on CSTR data set as the baseline active learning result.
Then we provide the results of DFIS with different size of
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the score of the first principle component, and the vertical axis is the score of the second principle component. Different color marks

samples of different classes.

TABLE 1. Classification results on CSTR.

# of instances 5 10 15 20 25 30
c¢TED (1000) 5570 7232 79.18 78.07 78.05 78.48
DFIS (300) 68.37 74.68 7592 78.07 7827 7892
DFIS (500) 69.21 7511 7852 7873 78.71 82.06
DFIS (700) 69.43 7575 7831 79.82 80.04 8341

feature subset, i.e., 300, 500 and 700 features in Table 1.
Compared with cTED with all 1000 features, the performance
of DFIS is not degenerated with less features. Actually, it can
be seen that DFIS with less features achieves better results
than ¢cTED with all features. Intuitively, such improvements
can be contributed to that the dual selection method can
identify the most informative features for instance selection
and the subsequent classification task. Mathematically, the
main difference between cTED in Eq. (16) and DFIS in
Eq. (4) is the joint embedding of feature selection. Thus we
can conclude that the dual selection strategy of DFIS is indeed
helpful for the instance selection task.
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TABLE 2. Classification results on Yale subset.

Number of selected features

300 400 500 600 700 1024
10 20.00 | 20.00 | 22.50 | 20.00 | 20.00 | 22.50
20 22.50 | 22.50 | 25.00 | 20.00 | 25.00 | 22.50
30 25.00 | 22.50 | 27.50 | 25.00 | 25.00 | 20.00
40 25.00 | 25.00 | 25.00 | 20.00 | 27.50 | 22.50
50 17.50 | 17.50 | 20.00 | 20.00 | 20.00 | 15.00
60 17.50 | 17.50 | 20.00 | 17.50 | 20.00 | 17.50
70 20.00 | 22.50 | 17.50 | 17.50 | 17.50 | 17.50
80 20.00 | 20.00 | 17.50 | 17.50 | 17.50 | 20.00
90 17.50 | 17.50 | 17.50 | 17.50 | 17.50 | 15.00
100 | 20.00 | 17.50 | 17.50 | 17.50 | 20.00 | 15.00
110 | 17.50 | 20.00 | 20.00 | 17.50 | 20.00 | 15.00

Now, we aim to further empirically answer the following

question.

o Compared with all candidate samples, whether the selec-
tion of fewer samples is useful for informative feature
selection?

We take the first 110 samples from YALE data set
with 10 classes, then split these 110 samples into 70 can-
didate set and 40 test samples. Then we additionally
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FIGURE 5. Classification Accuracy with different parameters on ORL data
set.

select 40 samples in the rest 55 samples. To simulate more
practical and challenging real scenario, we purposely edit the
label of these 40 samples with [1, 2, ..., 10], and get 40 noisy
samples. Now we conduct dual learning via DFIS on the
combined data set with 70 candidate samples and 40 noisy
samples. With different size of selected samples and features,
we evaluate the performance of DFIS on the rest 40 test
samples. The classification accuracy via SVM is present in
Table 2. It can be seen that for the different size of selected
features, such as 300 selected features in the first column, the
best results are achieved by select 30 or 40 samples. That is
to say, the usage of all 110 noisy samples does not improve
the classification results. It can also been find that, all the best
results in each column are achieved with few labeled samples,
not all 110 samples. In summary, we conclude that the feature
selection procedure can also be improved by using selected
informative samples. Such results well justify the motivation
and the correctness of the proposed method.
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E. SENSITIVE ANALYSIS AND CONVERGENCE ANALYSIS
We now study the sensitiveness of parameters. Due to space
limit, we only report the results on ORL data set. The perfor-
mance with respect to the parameter « and different number
of selected features is provided in Figure 5(a), where the num-
ber of selected instances is fixed as 60. We can see that, the
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performance of our method is not sensitive to o and increases
as the number of selected feature increases. The performance
with respect to the parameter 8 and selected instance number
can be found in Figure 5(b), where the number of selected
features is fixed as 700. We see that, the performance of our
method is not sensitive to S and increases as the number of
selected instances increases.

In the next, we conduct experiment to demonstrate the
convergence behavior of DFIS on ORL data set. We plot
the decreasing curve of the objective function value in
Figure 6(a). Since the purpose of DFIS is to select the top
features and top samples, we further compute the changes
between consecutive sequences of {A’} and {B'}. We use the
following criteria to measure the convergence of the feature
score and sample score among iterations

d
feaScoreDiff = ) ([laf™"ll2 = llafll2D.  (20)

i=1

n
smpScoreDiff = Y (|||l — [[bi[l2]).  (21)

i=1

The results of feature score difference and sample score
difference between two consecutive iterations are present in
Figure 6(b) and Figure 6(c). These three figures well demon-
strate the convergence behavior of the proposed optimization
schema for DFIS. It can also be seen that DFIS often con-
verges in few iterations.
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Although the complexity of DFIS has been pro-
vided in SectionIV-C, we take additional experiment to
show the computation cost of DFIS. Here, we ran-
domly generate a data set with different size of sam-
ples and features. The size of samples changes from
[1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000] and
the size of features comes from [100, 200,400, 600,
800, 1000]. Then we run DFIS on this toy data set with
different size of samples and features. We record and plot the
computational time for DFIS on these different combination
of feature and sample in Figure 7. The code of DFIS is
implemented by Matlab 2015b. The experiment is conducted
on a 3.6-GHz Windows machine. It can be seen that DFIS
takes more time for the increasing of samples and features.

VI. CONCLUSION

In this paper, we propose a novel method, which performs
unsupervised feature selection and instance selection within
an unified dual selection framework. It is expected that the
whole features can be well reconstructed by the selected
features and all the instances can also be approximated
by the selected instances. The dual selection procedures
are achieved by dual sparse regularization on both feature
side and instance side. The whole dual selection model can
be solved by the coordinate decent algorithm. The experi-
mental results show that our proposed method can achieve
better performance when compared with the comparing
methods.
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Compared with existing works on feature selection and
instance selection, the main theoretical contributions of this
paper are to design the dual reconstruction model and inte-
grate these two separated and connected process within
one unified framework. Compared with most closely related
work, i.e., UFI, we provide non-greedy learning algorithm
to solve the newly developed dual selection model. We also
provide the convergence analysis and the complexity analysis
of the proposed method.

Although it is a good attempt to unify two separated pro-
cesses, DFIS may be further improved in several different
ways. It is better to eliminate the additional tuning parameters
by replacing the sparse regularization with £y constraints to
make the algorithm more practical. Due to the low quality of
data, it is better to improve the robustness of the selection
procedure by taking more robust loss functions. It is also
important to improve the diversity of the selected samples or
features, where less redundant information may be preserved.
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