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ABSTRACT Amulti-camera system combines features from different cameras to exploit a scene of an event
to increase the output image quality. The combination of two or more cameras requires prior settings in terms
of calibration and architecture. Therefore, this paper surveys the available literature in terms of multi-camera
systems’ physical arrangements, calibrations, algorithms, and their advantages and disadvantages. We also
survey the recent developments and advancements in four areas of multi-camera system applications, which
are surveillance, sports, education, and mobile phones. In the surveillance system, the combination of
multiple heterogeneous cameras and the discovery of Pan-Tilt-Zoom (PTZ) and smart cameras have brought
tremendous achievements in the area of multi-camera control and coordination. Different approaches have
been proposed to facilitate effective collaboration and monitoring among the camera network. Furthermore,
the application of multi-cameras in sports has made the games more interesting in the aspect of analyses
and transparency. The application of the multi-camera system in education has taken education beyond the
four walls of the class. The method of teaching, student attendance enrollment, determination of students’
attention, teacher and student assessment can now be determined with ease, and all forms of proxy and
manipulation in education can be reduced by using a multi-camera system. Besides, the number of cameras
featuring on smartphones is gaining noticeable recognition. However, most of these cameras serve different
purposes, from zooming, telephoto, and wider Field of View (FOV). Therefore, future smartphones should
be expecting more cameras or the development would be in a different direction.

INDEX TERMS Calibration, computerized monitoring, digital camera, educational technology, smart
cameras, surveillance.

I. INTRODUCTION
The capturing of still or moving images is an important step
required in object recognition, object behavior analyses, and
object monitoring processes. One of the possible methods of
capturing an image is with the aid of a camera that could
create a single image of an object (i.e., still image) or a
sequence of images in rapid succession (i.e., video image).
Currently, there are many image acquisition technologies
(e.g., cameras). Most of the technologies are built on cata-
dioptric or fisheye cameras, as well as image acquisition
systems with static or moving parts. Camera classification
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or type can be based on one characteristic or another, from
the FOV, image sensor, image quality, focusing properties,
or power of projection. In this survey, the discussion will be
based on unidirectional and omnidirectional cameras. There
are six types of cameras considered in this survey; Pan-
Tilt-Zoom (PTZ) camera [1], smart camera [2], orthographic
camera [3], perspective camera (pinhole) [3], omnidirec-
tional (panoramic) camera [4] and thermal camera [5] as
shown in Figure 1.

The Pan-Tilt-Zoom (PTZ) cameras are usually applied
in surveillance-based applications because of their high-
resolution image output. They have a dynamic field of view
and can be configured tomonitor a specified area of coverage.
PTZ cameras have the capability of zooming far distant object
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FIGURE 1. Types of cameras used in a multi-camera setup.

to display the detailed information required to analyze a cap-
tured image. However, they can only cover a limited area of
the scene at one time. Smart cameras are intelligent cameras
that came into the limelight around the mid-80s. They have
the power of extracting application-based information from a
captured image together with creating event information of an
image or making an intelligent decision that will be applied
in an automated process. At the earliest time of its invention,
there was a limitation in its capabilities in terms of sensitivity
and processing power, but later there are great improvements
in its capabilities [6]. The orthographic camera captures an
image without any perspective distortion. They produce a
two-dimensional (2D) image output without any image depth.
Perspective cameras are cameras that display an image in
a real-world view. They produce a three-dimensional (3D)
image with depth. All pinhole cameras are also referred to
as perspective cameras. Omni-directional cameras can cover
360 degrees FOV with a high-resolution image of about
1600× 1200 pixels [4]. They have the capability of covering
images over a wide area FOV. A thermal camera (infrared
camera or thermal imager) uses infrared radiation to create
an image. It senses infrared light with a wavelength from
about 1µm to 14 µm.
A multi-camera system is an arrangement of sets of cam-

eras used in capturing images or sequences of images of a
scene. A multi-camera setup can be homogeneous (consist of
the same types of camera setup) or heterogeneous (consist
of different types of camera setup) that form a multi-camera
system. The combination of two or more cameras can be
employed to expand the span of the measuring area and when
performing a high-precision measurement. The FOV of a
multi-camera setup is more than that of the single camera.
The advantages of high accuracy, and low cost of visual
measurement techniques made the multi-camera system to be
widely used in different areas of application. Figure 2 shows
the coverage area of three heterogeneous cameras, which can
never be obtained through a single camera.

According to Yilmaz et al. [7] and Mehmood [8],
the omnipresence of high precision and low-cost cameras,

FIGURE 2. Heterogenous camera setup used to obtain a full-coverage
view of a scene.

with high computational resources, and the quest for automa-
tion in video analyses have generated great interest in
multi-camera system developments. The awareness of multi-
camera has started around 1884, where Triboulet [9] used
multi-camera consisting of seven cameras tightened to a bal-
loon (one camera attached to the mouth of the balloon and six
others attached to the circumference of the balloon) mainly
to perform aerial imaging. Similarly, in the mid-nineteen
century, multi-camera systems were employed in industrial
machine automation, where the application of robots taken
charge of humans in the industry [10]. Since then, the research
on multi-camera developments has been expanding. This can
be shown by the number of papers on multi-camera appli-
cations. To proof this, a search on IEEExplore was done
using the keyword ‘‘multi-camera systems’’. The result of
this search is shown in Figure 3. The figure shows that the
number of publications related to the multi-camera system is
in the increasing trend, which indicates that research on the
multi-camera system is still very popular in the present day.

FIGURE 3. The number of publications related to the multi-camera
system, per year (Data source: IEEExplore, search in October 2019).
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Even though several surveys concerning multi-camera sys-
tems have been published, virtually all of them focused on
a selected aspect of the multi-camera system and particu-
lar areas of its applications (e.g., tracking or surveillance)
[11]–[17]. These surveys, of course, do not cover the wide
spectrum of multi-camera system studies. Because of the
literature shortfall, this survey paper comprehensively covers
themulti-camera system in four different areas of application,
with emphasis given on the previous works, identifying the
problems with the existing strategies, the recent advance-
ments and highlight the future direction.

This literature survey is divided into eight sections. Dis-
cussion on single and multi-camera systems and the descrip-
tion of their formations and calibration are presented in
Section II. Section III surveys the basic architectural for-
mation employed in literature for multi-camera setup with
their advantages and shortcomings. Algorithms used in
multi-camera systems and their classifications with their var-
ious approaches under the concept of person re-identification
and tracking fusion are discussed in Section IV. Then, an elab-
orate discussion on the multi-camera systems in the surveil-
lance applications is discussed in Section V. Description of
the multi-camera application, its evolution and image overlay
in sports analysis are presented in Section VI. Overview of
the multi-camera application and its evolution in the educa-
tional system are given in Section VII. An overview of the
progress made in the integration of multi-camera systems in
mobile phones in the past decade and an attempt on the chal-
lenges and future outlooks in this ubiquitous field unraveled
in Section VIII. Section IX unveils the various multi-camera
application algorithmswith their features and limitations. Our
conclusion is presented in Section X.

II. CALIBRATION IN A MULTI-CAMERA SYSTEM
The field-of-view (FOV) of the cameras in a multi-camera
setup determines the calibration method to be used and the
arrangement of the cameras. There are cameras arrange-
ment with overlapping FOV and non-overlapping FOV.
Figure 4 demonstrates the overlapping and non-overlapping
FOV. In multi-camera systems with overlapping FOV, it is
difficult for all cameras to simultaneously view the calibra-
tion target at the same time especially at the overlapped
areas. In this type of scenario, the cameras in a multi-
camera system are distributed across a wide area coverage.
However, calibrating the cameras through the calibration tar-
get cannot be easily realizable. For this type of situation,
Devarajan et al. [18] proposed a distributed algorithm for
calibrating distributed cameras on a network. The algorithm
determines the position of the camera, its orientation, and
the focal length. This approach proffers solutions to com-
plications, memory limitation, and networking constraint,
which are commonly found problems with the centralized
calibration, by introducing a scalable and parallel algorithm
that design a complete framework that senses the visual
overlap between cameras and finishes it with an accurate
parameter estimate of all cameras on the network [18].

FIGURE 4. Multi-camera set up (a) overlapping FOV and
(b) non-overlapping FOV.

A practical approach to video network surveillance was pre-
sented by Gemeiner et al. [19] where cameras are cali-
brated in a multi-camera system network. They perceived the
problem as a localization problem, and then the image was
treated as a 3D model assembled with a priori for a moving
camera. The cameras are well distanced apart with non-
overlapping FOV. Feng et al. [20] proposed a novel global
planar calibration method whereby a box of translucent glass
with one side covered with a pattern was made as a target.
The cameras to be calibrated are arranged on both sides of the
target glass box. Feng et al. [20] adopts Zheng’s traditional
method [21] to estimate the intrinsic and extrinsic parame-
ters of the camera but addressed the calibration error (glass
refraction error) in line with Zheng’s method. The glass error
was removed using the refractive projection model and ray
tracing.

In a multi-camera system, it is critical to find the accurate
position for cameras. This will serve as the key to accurate
vision measurement for all the cameras [20], [22]. It will also
enhance good performance at a collaborative level between
cameras on a network and computer vision communication
such as tracking of multiple objects together, 3D recon-
struction of objects in a scene, and a combination of novel
views [18]. The process of finding an appropriate position
for a camera to achieve an accurate vision is referred to
as camera calibration. Calibration of a camera can be done
by determining the parameters of the camera using images
obtained from a special calibrated pattern. The parameters
are intrinsic (fixed to a camera), extrinsic (may change with
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respect to the world frame), and distortion coefficients of the
camera [23]. There are many different approaches to calibrate
multi-cameras for a specific camera setup. Multi-camera cal-
ibration can be classified into two: (i) calibration method for
overlapping FOV cameras [22] and (ii) calibrationmethod for
non- overlapping FOV cameras [24] as shown in Figure 5.

FIGURE 5. Multi-camera calibration methods.

Multi-camera calibration for overlapping FOV according
to Shen et al. [22] are categorized into four:

(i) Calibration that is based on the object referenced to
3D [25], they used the calibration of a precise 3D
geometry object as their referenced point.

(ii) Calibration based on a 2D plane object [26],
it employed a plane pattern specifically designed for
that purpose.

(iii) Calibration based on 1D object [27], it was built on a
1D stick with 3 and above points.

(iv) Self-calibration [28], this method was not built on any
dimension of an object but uses the static scene to
discover the intrinsic parameters of the camera.

Note, this categorization was based on cameras that are
connected to a central node apart from self-calibration that
is been used in a distributed network. The multi-camera
calibration for non-overlapping FOV are classified into six
according to Xia et al. [24]:

(i) Calibration using large range measuring equip-
ment [29], [30].

(ii) Calibration using a mirror [31], [32].
(iii) Calibration using motion models [33], [34].
(iv) Calibration using auxiliary markers with supporting

cameras [35].
(v) Calibration using laser projection [36], [37].
(vi) Calibration using a wide-range of targets [38].

Another calibration system was based on classical tech-
niques used byHaraud et al. [39], it employed default patterns
with fixed cameras. Smart camera calibrations by Basu and
Ravi [40], and Borghese et al. [41] have received significant
attention in research and development. This is because of
their applications in a multi-camera system setup such as
in surveillance, tracking, monitoring, and video conference
applications. In multi-camera system setup, camera calibra-
tion can be performed either in a group (i.e., centralized
architecture) or on individual single-camera (i.e., distributed
architecture). In a centralized architecture, all the cameras in
the multi-camera setup are connected through a central node
that runs the calibration process to determine the parame-
ters of all the cameras on that network. For a multi-camera
system setup with centralized architecture, both extrinsic
(i.e., relative position and direction) and the intrinsic parame-
ters will be determined. In the case of the distributed architec-
ture, the individual camera performs self-calibration which
can only estimate the intrinsic parameters of the camera.

A one-dimensional calibration approach has been widely
applied inmanymulti-camera systems [42]–[46]. The 1D cal-
ibration approach was first introduced by Zhang in 2002 [47].
In his approach, he used a one-dimensional calibration object
that has three and above collinear points with a specified
relative position. He demonstrated that to calibrate a camera,
a moving one-dimensional calibration object cannot be used
except it is stationary. To get an accurate result, he used the
maximum likelihood (ML) approach to refine the estimate
and performed computer simulation with real data obtained
to test the algorithm which produced an encouraging result.
One-dimensional camera calibration does not need 2D and
3D directions of marker to calibrate. It represents the most
simplified method of calibration. One of the advantages of
one-dimensional calibration in a multi-camera system is that
they can be observed by all cameras and all the cameras
in the system can be calibrated together simultaneously at
the same time. Simultaneous calibration of cameras prevents
error accumulation. However, 1D calibration has its peculiar
disadvantages [48]:

(i) Due to assumptions taken in the model applied,
the exact linearity of points cannot be ascertained.

(ii) The level of accuracy obtained in the extraction of the
corner is below that of the 2D calibration method due
to the tools employed in extracting the points.

A novel nonplanar target for fast calibration of a networked
visual sensor was proposed by Shen and Hornsey [43]. They
used two spheres built on a supporting rod as a calibration
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target. The nonplanar target was applied to each camera
separately to save time instead of applying to all the cam-
eras simultaneously at once. A three-dimensional calibration
method was proposed by Shin and Mun [49]. He used a
direct linear transform (DLT) to determine the calibration
parameters of cameras using a 3-axis frame. The main prob-
lem with his approach was the error generated due to ellipse
fittings which were caused by lighting conditions and noise.
Another shortcoming of the approach was that the precision
achieved at the center extraction which could not be gotten at
the edges [48]. Multiple planar patterns of three-dimensional
calibration targets were proposed by Quan and Lan [50] and
Xu et al. [51] because of its limitations in the way the multi-
camera would be distributed, thereby limits its application.

For non-overlapping FOV camera calibration, Lu and
Li [29] proposed a global calibration method that employed
theodolite coordinate measurement system (TCMS). The sys-
tem determines the 3D coordinates of the points on the cali-
brating target. Then, the global calibration of the cameras was
performed in relation to the calibrating target position relative
to that of the cameras. It employs the transformation matrix
between TCMS and the cameras. Liu et al. [38] developed
a global calibration method that uses multiple targets (MT).
One sensor from themultiple vision sensor was used to obtain
a global coordinate frame (GCF). The MT was placed in
front of the selected sensor to capture the images of the
corresponding sub-target for some time (at least four times).
The coordinate frame for each sensor to GCF was used to
obtain the transformation matrix.

In another approach, Lébraly et al. [31] used a planar
mirror to calibrate two non-overlapping cameras placed on a
vehicle for visual steersman ship. In this approach, the geom-
etry of the scene was not determined. Xu et al. [32] proposed
a multi-camera global calibration that unified the coordi-
nates of two binocular vision pairs with non-overlapping
views using a planar mirror. The method was then applied
to obtain the global unification of the multi-camera system.
Huang et al. [33] used a moving robot carrying a planar
target to calibrate two fixed non-overlapping cameras. The
relative position of the moving robot, the marker placed on
it, and the image captured by the multi-cameras were used to
calibrate the cameras. This type of approach can be applied
in a large camera network because of its simplicity, low
cost, and ease of implementation but the accuracy of the
calibration will be very low. Wang and Liu [34] presented a
tractable mechanism for choosing the best path a calibration
target can take to enhanced the result in a camera network
calibration.

Zhao et al. [35] used the chessboard augmented real-
ity (AR) marker and supporting camera to calibrate non-
overlapping cameras. The transformation was performed
using the AR marker and the supporting camera to estimate
between the marker and the cameras to be calibrated. The
effectiveness of this method depends on the resolution of the
supporting camera which will be seriously impaired when
calibrating a well-spaced camera network.

Zou and Li [36] used a laser projection method to calibrate
inward and outward-facing cameras in a vehicle. A laser
pointer was mounted on the calibrating target. The two cam-
eras were connected using the laser rays from the pointer
and the pose of the ray was determined using the calibration
target boards’ coordinates. The problem with this method is
setting the cameras in-line with the laser ray on the calibra-
tion target to avoid linearity error and this will affect the
accuracy of the method. Xia et al. described a global method
of calibrating multi-camera without overlapping FOV. Two
planar targets are fixed together by a bar length equal to
the distance between the positions of the two cameras that
are to be calibrated. A photogrammetry method was used
to determine the relative position of the planar targets. The
initial transformation matrix for the two cameras coordinates
were determined using a linear method which requires a
single captured image by the two cameras. A global cali-
bration for multiple captured images was obtained using the
Levenberg-Marquardt nonlinear (LM) optimization method
where the linear method’s output served as the input.

III. MULTI-CAMERA SYSTEM ARCHITECTURE
This is a carefully designed structure of cameras in multi-
camera system formation. Amulti-camera arrangement could
be of different forms, as obtained in different works of litera-
ture. They can be classified as (i) Centralized (ii) Distributed
(iii) Hybrid, and (iv) Multi-tier [52]–[54]. In a centralized
multi-camera architecture, analysis and accumulation of data
are performed at the central unit whereby all the detailed
information gathered by the individual cameras will be sent
to a central system, which is usually a work station or a
camera node. In this type of arrangement, no autonomous
decision or processing will be done by any of the distributed
cameras. The function of the camera could either be any or all
of the followings: (i) integrating the image or data collected
from the distributed cameras on the network, (ii) taking in
or dissecting the information gathered from the subordinate
cameras and (iii) controlling of other cameras as a means of
a remote access point to them [11]. Many approaches have
used this method, such as Kang et al. [54], Lim et al. [55],
Kattnaker and Zabih [56], Lu and Payande [57],
Evert et al. [58], Sommerlade and Reid [59], and
Piciarelli et al. [60]. All the cameras are connected to the
central work station. Therefore, when two or more cameras
are exchanging data, it must go through the central work sta-
tion that connected them. Figure 6 (a) shows the connection
setup of centralized architecture.

In a distributed architecture, each camera does the pro-
cesses locally. Smart cameras that have the capability of
sensing, processing digital signal, and communication com-
ponents are usually employed in a distributed architec-
ture. This approach was used by the following researchers;
Kim et al. [61], Quaritschet al. [62], Rinner et al. [63],
Fleck and Strasser [64], and Fleck et al. [65]. A dis-
tributed network could also be a PC based method where the
distributed cameras are seen as an autonomous body on

172896 VOLUME 8, 2020



A. S. Olagoke et al.: Literature Survey on Multi-Camera System and Its Application

FIGURE 6. Multicamera system architecture (a) Centralized [11], and
(b) Distributed cameras.

the network. Examples of this type of arrangement can be
found in Qureshi and Terzopoulos [66], Micheloni et al. [67],
Morioka et al. [68], Park et al. [69], Hodge and Kamel [70],
Li and Bhanu [71], and Song et al. [72]. Figure 6 (b) shows
the diagrammatical illustration of distributed architecture.

The integration of the features of centralized architecture
and distribution architecture form the hybrid architecture.
In this case, the subordinate cameras perform monitoring and
capturing of the target image and at the same time processing
the image before sending it to the central system or worksta-
tion. The workstation articulates all the raw data or images
gotten from the subordinate cameras to form the information.
Subordinate cameras make certain decisions at their level
while the higher-level decision would be left for the central
controlling system orworkstation. Prati et al. [73] used hybrid
architecture in an integrated multi-sensor setup. Mult-tier
architecture can also be called hierarchical architecture in the
sense that the level of the decision making depended on the
level of the hierarchy of the subordinate cameras. Multi-tier
architecture was applied by Matsuyama and Ukita [74] and
Bamberger et al. [75] as an alternative to hybrid, central-
ized and distribution architectures. Figure 7 shows a dia-
grammatic illustration of hybrid and multi-tier architectures.

FIGURE 7. Multicamera system set up in (a) Hybrid architecture, and
(b) Multi-tier camera architecture.

The advantages and disadvantages of these architectures are
stated in Table 1.

The ubiquitous nature of cameras made it applicable in
every aspect of human endeavor except in some areas where
it has not been exploited. In this paper, the application of
the multi-camera system is centered on the following areas:
surveillance and tracking system, sports and entertainment,
education, and mobile phones.

IV. MULTI-CAMERA SYSTEM ALGORITHMS
Human tracking is seen as automatic monitoring of the tra-
jectories of an individual and the record of the timely ordered
sequence of location data of the tracked person. Tracking
using a multi-camera system provides complete coverage
of human movement from many angles of view. Therefore,
it produces comprehensive information on the scene which
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TABLE 1. Advantages and disadvantages of camera architectures.

solves some of the single-camera problems such as occlu-
sion, FOV limitation, and temporary disappearance [76].
A multi-camera tracking can be online (in real-time) or
offline (in a stationary image(s) and motion pictures) [77].
In a multi-camera system tracking, the correspondences of
the tracked individuals across the multiple cameras are very
important unlike that of a single camera that is ignored. Most
of the algorithms used in multi-camera tracking are adopted
from single-camera tracking with amodification that caters to
multiple cameras. There are many approaches adopted from
literature towards classifying amulti-camera tracking system,
some are based on cameras’ FOV [17], motion detection, and
camera architecture [16]. Figure 8 depict the multi-camera
tracking classification.

Multi-camera tracking using overlapping FOV was
employed by many researchers. For example,
Cai and Aggarwal [78] used the intensity and geometry
features to track people in an overlappingmulti-camera setup.
Multivariate normal distribution was used to determine the

FIGURE 8. Multi-camera tracking classification.

densities of the features and Bayesian classification schemes
for matching points. Liem and Gavrila [79] presented multi-
ple persons tracking systems. The three-body region (head-
shoulder, torso, and legs) is projected using overlapping
camera views. A color histogram algorithm was used to
describe the appearance and the tracking measurement was
modeled using the Kalman filter. Calderara et al. [80] used
overlapping multi-cameras to track objects using consistent
labeling methods. The position of the object in the multiple
views of the cameras is determined using the homograph
of the first detection of the camera view. Generally, most
of the above-mentioned tracking methods, appearance, and
motion modeling was carried out using a Kalman filter and
Bayesian network. Kalman filter allows more precise motion
estimation especially for objects that are viewed by different
cameras at the same time. The main setback of the Kalman
filtering based approach is the arbitrary assumption of a
linear dynamic system and posteriors as Gaussian problems
in nature. The pattern of motion demonstrated by people are
generally non-Gaussian in nature. This can be addressed by
the Extended Kalman filter (EKF) which presumes lineariza-
tion of a model and approximates the posterior estimate to be
Gaussian [81]–[83]. Another setback for the Kalman filter is
how to define the strategy for identifying sinking nodes for a
distributed multi-camera network.

Tracking objects within overlapping FOV cameras is only
possible for objects moving within the vicinity of the cam-
eras’ view. Non-overlapping camera tracking is required in
blind areas that are out of the cameras’ FOV coverage.
Makris et al. [84] proposed a topographical model of a
multi-camera network that performs unsupervised learning of
activity around the camera view and then creates data from
the large set of observations. The learning experience from
data created is used for tracking targets across the whole
area of the camera network. The method has no reference
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for correspondence, entry, and exit of the target from a
camera’s view. They are learned using the expectation-
maximization algorithm and the zones are formed by a Gaus-
sianMixtureModel (GMM). Stauffer [85] proposed a linking
structure for non-overlapping cameras. This method estab-
lished a technique of modeling correlations based on inter-
arrival times instead of the constant rate assumption taken by
Makris et al. [84]. It also creates a means of estimating the
validity of a link based on the total distribution instead of
using the statistical value. In addition to these approaches,
Rahimi et al. [86] presented a method of recalculating the
path taken by a target within the view of non-intersecting
cameras and then reconstruct the calibration of the cameras.
The location of the moving target was determined using
the ground plane coordinates of the series of cameras field
of view on the network. The performance of the technique
was not tested on the online application. Zhang et al. [87]
presented a framework for tracking multiple targets in a
multi-camera setup. They applied the Structural Support Vec-
tor Machine (SSVM) to obtain status information of the
targets as a group or individual. The tracking of multiple
targets involved was converted to a network flow problem
which was resolved using the K-shortest paths algorithm.
Tesfaye et al. [88] tried to solve the problem of track-
ing an object in multiple non-overlapping cameras with
a single three-layer approach. A version of standard
quadratic optimization (constrained dominant sets cluster-
ing) was used to solve the tracking problem. An algo-
rithm based on dynamics in evolutionary game-theory
was used to solve the inter-camera tracking which is
performed by merging the tracks of the target in all
cameras.

The motion detection approach of multi-camera tracking
is classified into temporal difference [89] and background
subtraction [90]–[92]. The temporal difference technique is
the subtraction between two consecutive frames and then
set the output on thresholding value. The resulting pix-
els with the difference value higher than the threshold are
referred to as the foreground pixels. This approach has
a setback on changing background with time, therefore,
it does not accommodate overlapping parts of the camera
while detecting moving persons. The background subtraction
approach is a technique of removing a background model
from the frames of a video scene to determine the fore-
ground pixels. This technique requires an update of the model
for every change in the video scene. Also, it is generally
employed in a fixed multi-camera tracking setup [93]. One
of the researchers that employed background subtraction is
Senior et al. [94], where they used 2D and 3D ground plane to
determine the positional information of a tracked person and
other three different algorithms. They compared the tracking
performance of four different algorithms that is background
subtraction, face detection-based tracker, feature matching
particle filter, and edge alignment of a cylindrical model. The
background subtraction method uses multiple Gaussian color
tracking methods. The particle filtering tracker used frame

differencing which is susceptible to noise and distraction.
The face detection approach depends on the faces detected
to track and the accuracy of the approach can be seriously
affected in the case of occlusion, distance from the camera,
and light intensity. Lastly, the edge-alignment-based tracker
uses a 3D graphical human model designated with cylinders
connected using kinematic chains. The method experiences
failure after initialization which requires a re-initialization
strategy. Liang et al. [95] presented multi-camera collabo-
ration using head detection and the trifocal tensor pointer
transfer method. They used Kalman and PDA algorithms for
tracking people and then applied background subtraction to
detect the head position.

Classification based on camera architecture is based on
how data acquired by the multi-camera sensors are been
processed. There are two categories; in the first category
data detection and tracking is carried out after fusing the
information acquired from different sensors. This is referred
to as a centralized approach. In the second category, called
a distributed approach, each camera on the network per-
forms their detection and tracking separately and the output
of the cameras is combined to obtain the final trajectories
of the tracking. Figure 9 depicts the representation of the
classification.

FIGURE 9. Classification of multi-tracking base camera architecture.

A. CENTRALIZED APPROACH
In this approach, the data obtained from the different cameras
on the network are first combined before performing the
tracking of the people. The data obtained from each cam-
era are usually preprocessed before been fused. Data fusion
is used to obtain scene information from different camera
views. Some used data fusion to establish ground plane occu-
pancy map, for examples, the works by Khan and shah [96],
Figueira et al. [97], Baltieri et al. [98], Minh et al. [99], and
Chen et al. [100]. Others used it to establish 3D geometry
of the tracked person on the scene such as the works by
Li et al. [101], Hirzer et al. [102], Bouma et al. [103],
Wang et al. [104], Wen et al. [105] and Brendel et al. [106].
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A centralized multi-tracking approach has a well-
coordinated and control center which makes the system to
be more effective. Some of its limitations include cameras
synchronization, redundancy problem and it is not suitable
for an online application. Figure 10 shows a diagrammatic
representation of the distributed approach. The centralized
approach is usually applied in overlapping multi-camera
setup to reduce noise and occlusion problems. Table 2 gives
a summary of the centralized approaches used by different
researchers.

FIGURE 10. Centralized multi-camera tracking.

TABLE 2. some of the centralized approach in literature and the methods.

B. HYBRID APPROACH
This approach balanced the limitations and advantages of
centralized and distributed approaches. It allows the creation

of multi-cameras in groups to form clusters where detection,
tracking, and data fusion are done within the clusters of cam-
eras using a centralized approach. Person re-identification
is carried out by combining the feature signatures obtained
from different clusters on the camera network to create the
trajectories of the tracked persons. Among the studies that
embraced this approach is Kim et al. [61], where they built
a clustered wireless network of cameras that employed a
Kalman filter to track people. Information communication is
tracked based on the cluster location of the camera which
determines the position of the tracked person. The cluster
head of each cluster in the network then transmits the gathered
information to the central station where the trajectories of
the tracked individuals will be built. Besides, Agrawal and
Davis [25] have proposed a hybrid formation when extracting
features from images. They used an occupancy map (ground
plane) at the fusion node point using the centralized approach
and then performed the ground plane color mapping for
tracked persons using a color likelihood for each camera in a
distributed approach. The color functions are then combined
at the fusion node to produce a color multiview function. The
trajectories of the tracked people are obtained by combining
the result of the occupancy map and color map of each
individual.

C. DISTRIBUTED APPROACH
The distributed approach consists of autonomous camera
nodes that perform detection and tracking of people indepen-
dently and then collate the correspondences of the tracked
individuals from the different cameras’ views. The collation
of the correspondences is done in such a way that the trajec-
tories of the tracked persons obtained in the first camera are
compared with the correspondences in other cameras before
fusing them to obtain the final trajectory. The image obtained
from the first camera used to compensate for images obtained
from other cameras is called the probe image and the process
is referred to as person re-identification (Re-ID). The dis-
tributed approach is generally applied in a non-overlapping
multi-camera setup. Figure 11 shows a diagrammatic repre-
sentation of the distributed approach.

The major advantage of the distributed multi-tracking
approach is its scalability which makes it to be
easily deployable in a disjointed multi-camera set up
(Non-overlapping setup) without reference to the geomet-
ric relationship between the cameras. It is suitable for an
online application. The major setback of this approach is
that the failure of one camera renders the section of network
non-trackable and also occlusion is difficult to manage using
this approach. Table 3 shows a list of studies that applied the
distributed approach.

Recognizing and tracking people across spatially dis-
connected cameras requires the knowledge of the transi-
tion from one camera to another. Person Re-ID provides
a means of identifying people across disjointed cameras.
Person Re-ID can be classified into two; (i) learning-based
and (ii) non-learning based method.
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FIGURE 11. Distributed multi-camera tracking.

TABLE 3. Some of the studies that applied distributed.

1) LEARNING-BASED RE-ID
Person Re-ID in this approach is based on learning the dis-
tinct features of an individual from a dataset, extract the
features which are then used to re-identify the person from

the image of the tracked people. What differentiates the
learning-based approaches is the learning metrics (classifier)
that are used to identify or re-identify a person. Some of
the metrics or classifiers that are normally been utilized are
the shape model [127], boosting method [128], deep learn-
ing [123], [129], support vector machine (SVM) [130], [131],
descriptors learning methods [132]–[135], distance learning
methods [136], [137], nearest neighbor approach [108] and
least square reduction [138].

A learning algorithm was used by Bak et al. [128] for
personRe-ID based on theAdaboost and it usesHaar-like fea-
tures. They employed histogram of oriented gradients (HOG)
for tracking and detection. After detections and tracking of
people, the Haar-like features of the tracked people are used
to obtain the visual signature using the Adaboost scheme. The
extracted visual signature was used to re-identify people in
other camera detections. Su et al. [139] presented 3 stages
of deep CNN learning metrics for person Re-ID, while
Chen et al. [116] used a deep learning approach that
employed the fusion pyramid multi-scale metric for Re-ID.

Another learning approach is the descriptors-based type.
The approaches under this method combine the appearance
and shape features to track people. The learning metric
is used to identify the features to be extracted from the
tracked individual. Huang et al. [33] presented a discrimi-
native approach that used an algorithm to learn and extract
appearance-based descriptors from the body of each tracked
person. The extracted features are used to create a model
using a multi-scale feature learning framework obtained from
the work of Qian et al. [140]. Also, Kuo et al. [141] have
presented an approach that used a discriminative appearance
learning feature together with the Adaboost algorithm for a
group of appearance features extracted from tracked individu-
als in a different location. The obtained discriminative feature
is used to identify who has a close affinity to a tracklet.

Avraham et al. [125] introduced an algorithm that used
correspondences of two people obtained from two overlap-
ping camera views to train. The algorithm can differentiate or
identify two tracked individuals using color histogramswhich
shows positive pair if the detected people in the camera views
are the same and a negative pair for two different individuals.
The binary SVM classifier was used to differentiate between
the two detected pairs. Similarly, Nakajima et al. [142] used a
multi-class SVM classifier to detect the full-body of a person.
The SVM algorithm classifier was trained using colored and
shape-based features obtained from the tracked individual.
Another study was done by Martinel et al. [143] that pre-
sented a method for training multiple re-identifications using
features obtained from pairs of images for the same or dif-
ferent individuals. The model is used to determine from the
new pairs of images obtained depending on the result of the
models.

A learning-based distance approach used similarity mea-
sures in terms of the distance between pairs of images or
features of an individual in different camera views. The dis-
tances (differences) between images that represent the same
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person (positive pair) and that of different persons (negative
pair) are used for Re-ID instead of learning the individuals’
visual features. One of the studies under this method was
proposed by Hirzer et al. [136] where the concept of person
Re-ID is classified into three stages; (1) feature extraction
(2) metric learning and (3) classification.

Features like color, Haar-like, shape-based, body parts and
texture are distinct characteristics for human identification.
HSV, Lab color channels, and Local Binary Patterns can be
used to extract the local features to create a global image rep-
resentation. At the learning stage, an algorithm (for example
PCA) is used to reduce dimensionality and noise. However,
a small dataset or low dimensional representation is enough.
During the evaluation, the distance between two samples for
example Xm and Xn are calculated, where Xm and Xn describe
the camera views of the same person. At the classification
stage, the work is to find the image (probe image) that was
first obtained from one of the cameras’ views in all the images
(gallery images) obtained from all other cameras. Similarly,
Makris et al. [84] used relative distance comparison learning
between a pair of true images and a pair of false images match
to perform re-identification. The comparison model was used
on the texture and color histograms extracted features of the
tracked people.

Gou et al. [144] presented a comprehensive performance
evaluation of person Re-ID (feature extraction and metric
learning) algorithms. Table 4a and Table 4b summarize the
algorithms. It was demonstrated that kLFDA and kMFAwere
the best metric learning methods because they resolve the
problems of eigenvalue in a scattered matrices data and the
best algorithms for feature extraction to be GOG, LDFV and
LOMO as shown in Table 4b.

Finally, Shen and Hornsey [43] presented an approach that
is based on space-time and the appearance between every two
cameras view. It is used to determine whether the resulting
output of two camera views will be the same or different. The
appearance relationship is made up of the BTF between the
two cameras’ view while the information about the entrance
point, exit point, direction ofmovement, and the required time
for the tracked person to move from one camera view to the
other is in the space-time correspondence.

2) NON-LEARNING-BASED RE-ID
These are person Re-IDmethods that directly extract discrim-
inative features from a tracked person without any training
data. Non-learning-based Re-ID relied on the signature used
in representing the tracked person, which can be extracted
by local or global features. Appearance features are the com-
mon features employed in non-learning person Re-ID which
include shape, texture, and color. One of the relevant studies
that embraced this method is the work of Aziz et al. [153]
that used the front or back appearance of the tracked indi-
viduals to perform person re-identification. They used SIFT
and SURF algorithms to extract the discriminative signature
of the segmented three-body level (i.e head, legs, and torso).
For peoples’ re-identification, the extracted signatures are

TABLE 4. (a) Re-Id metric learning algorithms. (b) Re-Id feature extraction
algorithms.

matched with the body parts of the detected individuals. The
effectiveness of the approach can be improved by employing
a pose estimation approach, for example, the one presented by
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Hong et al. [154], [155] before performing person re-
identification. Truong Cong et al. [119] used localized fea-
tures of the body parts and extract their descriptors for per-
son re-identification; where Alahi et al. [156] presented an
approach for creating object descriptor built using cascaded
grids of descriptors.

Wang et al. [157] presented an approach that combines
shape and appearance features to prepare a matrix that indi-
cates the descriptor of the tracked people. The descriptor
is built based on the captured closed relation between the
appearance labels. The same approach was used to build
a framework for real-time computation of the occurrence
matrix. Besides, Truong Cong et al. [119] presented a color-
position histogram obtained from the silhouette of the tracked
persons. The presented color-position signature was classi-
fied into regions where RGB values were extracted from each
to create a discriminative signature employed for matching
tracked individuals from different camera views.

Jüngling et al. [127] presented the person Re-ID approach
in a multi-camera setup that used the Implicit Shape
Model (ISM) and SIFT features. The approach performs
human detection and tracking, where SIFT feature models
are built during tracking. ISM is used for human detec-
tion and tracking, while SIFT serves the purpose of feature
extraction. The approach is not sensor independent (homoge-
nous or heterogeneous) because it does not use color or
other sensor specifics features for re-identification. Also,
Hamdoun et al. [158] presented a method of identification
using interest points collated from different motion images.
SURF algorithm was used to obtain the feature points with
descriptors to compute a signature for the tracked persons.

Approaches based on local features, Wong et al. [17]
presented a method that used local features like the color
histogram, size, the intensity gradient, and position of the
tracked individuals to perform tracking using data associa-
tion algorithms. Another approach under this is the work of
Piciarelli et al. [60] used appearance features obtained from
the upper body level of the detected person and the spatial
position for re-identification in other camera views.

D. INFORMATION FUSION IN A MULTI-CAMERA SYSTEM
The fusion of information or data aims to produce something
better than what can be obtained separately. However, infor-
mation fusion in a multi-camera system is the combination
of different features extracted from the same object, different
instances of the same object, or the same scene of an object
from different views of cameras. Views of cameras in a
multi-camera system are best explained in the overlapping
and non-overlapping form, also information fusion as amulti-
source data fusion process from different views of cameras.
Therefore, information fusion can be well seen from the
perspective of the overlapping and non-overlapping camera.

1) INFORMATION FUSION IN OVERLAPPING CAMERAS
Many information fusions approach or methods have been
applied by researchers for overlapping cameras. Some of

the approaches are particle filtering (Sequential Monte Carlo
Methods), Bayesian estimation, support vector machine
(SVM), and Kalman filtering. For example, Lu and Li [29]
presented a novel image fusion approach that integrated
particle filters and belief propagation as a unified frame-
work. A dedicated particle-filter tracker was applied in each
camera’s view. Each local tracker in different views works
together with other views through belief propagation as a
means of passing genuine and important information across
the view. Also, Zhao et al. [30] presented a distributed
Bayesian formulation using multiple interactive trackers.
The approach avoids joint state-space rendition to prevent
tedious and complex joint data union. The method has a
better approach for an online real-time tracking application.
However, a conventional Bayesian tracking framework was
modeled for problems like proximity, occlusion, or interac-
tions between the objects’ observation. Lébraly et al. [31]
integrated Bayesian particle filtering with Dempster–Shafer
theory to fuse the pieces of evidence obtained from multiple
heterogeneous and unreliable sensors. The approachwas used
to solve the problem of tracking people in a multi-camera
indoor environment. Xu et al. [32] also used the Bayesian
framework to track a variable number of 3D persons in
an overlapping multi-camera setup. In their approach, they
employed joint multi-object state-space formulation, each
object states are defined in 3D. This approach is not appli-
cable in real-time applications because of the computational
complexity and large joint data required. Huang et al. [33]
presented a system that fuses tracking information in an over-
lapping multi-camera set up using an approach called map-
view mapping. A particle filtering algorithm was adopted for
target tracking and information fusion was performed accord-
ing to reliability and weighting of each source of information.

2) INFORMATION FUSION IN NON-OVERLAPPING CAMERAS
Other researchers applied information fusion in a non-
overlapping camera setup. For example, D’Orazio et al. [159]
proposed tracking of people in a multi-camera set up using
appearance similarity. The color histogram mapping of the
same object from different views was performed. The mean
brightness transfer function (MBTF) and cumulative bright-
ness transfer function (CBTF) were used to determine the
appearance similarity but the performance of the two is quite
similar in the phase of simple association problem. The
two methods experienced a setback when it comes to the
detection of a new entry scenario. In this method, further
research can be centered on the major differences between
two similar bodies so that a technique can be applied based on
the differences. Chilgunde et al. [160] presented a real-time
tracking system for targets in a non-overlappingmulti-camera
setup. Kalman filter was used to select the targets based on
shape and motion from each cameras’ view. For areas that
are not covered by the camera, a prediction of each cameras’
view is made using the Kalman filter prediction. Gaussian
distributions of the tracking parameters were computed for
each camera to determine the target position and motion.
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Lin and Huang [161] also presented a framework that applied
the client-server system for tracking targets in a multicam-
era setup. The client aspect manages single cameras’ object
tracking and detection and the server is responsible for col-
laboration between the multiple cameras. Kalman filter was
applied for object tracking and detection for a single cam-
era view and homograph was implemented to determine the
FOV lines for each camera’s view. The features identified
from the single-camera object tracking are fused for object
matching and the FOV lines are used for switching between
the cameras. The framework was designed to unify object
tracking for overlapping and non-overlapping multi-camera
systems. Leoputra et al. [162] proposed a unified framework
that used a particle filter to track target objects in a non-
overlapping multicamera system. The blind section between
the camera views is predicted by switching between the track-
ing predictions and visual tracking. The trajectory informa-
tion of the target object as it moves through the blind areas is
mapped by the Particle Filter algorithm.

Bauml et al. [163] presented a system for online
capture and recognition that uses facial features for person
re-identification in a non-overlapping multi-camera system.
The system combines the support vector machine (SVM)
and Discrete Cosine Transform (DCT) to determine the
facial features and extraction. The challenges of face appear-
ance feature for person re-identification like low resolutions
facial image, lighting and pose are addressed. Since peo-
ple’s faces are sometimes very similar, future techniques
should integrate face tracker with body tracker or associate
face tracking with other close term features such as clothing
for better identification. Avraham et al. [125] proposed an
approach that modeled a camera with a transfer function for a
multi-valued transformation for pedestrian re-identification.
The system is metric independent and did not depend on
learning object appearance from one domain to another. The
approach used the radial basis function kernel (RBF) binary
SVM classifier to reveal the unapparent differences between
the camera’s view. Prosser et al. [123] described a person
re-identification as a sequencing problem rather than a dis-
tance measuring problem. They introduced a novel ensem-
ble Rank SVM algorithm to perform the actual sequencing
match and minimize the computational time suffered by the
original SVM approach. The approach is more scalable, and
it requires less memory.

V. APPLICATION OF MULTI-CAMERA IN SURVEILLANCE
SYSTEMS
In literature, many papers have been written on the appli-
cation of multi-camera, especially in surveillance systems.
Table 5 shows the list of studies that have been conducted on
the application of multi-cameras in the surveillance system
and their description.

The earliest research carried out on the multi-camera sys-
tem was performed with fixed view cameras. The resolution
of the cameras employed was a low type because of their

TABLE 5. Summary of recent studies on the application of multi-camera
in surveillance systems.
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TABLE 5. (Continued.) Summary of recent studies on the application of
multi-camera in surveillance systems.

wider view angle to cover wide areas. Eventually, with the
emergence of Pan-Tilt-Zoom (PTZ) cameras, a clear image
of the surveillance object can now be obtained. Initially,
the problem of non-overlapping FOV of the static cameras

has prevented the solution to occlusion and localization of
images in the real world. With the invention of PTZ cameras,
a particular area of interest (AOI) can now be focused. PTZ
cameras are mostly configured as a master-slave system to
quickly sense and capture a human face and objects’ shape in
any direction.

There are series of development in the area of multi-camera
system control and coordination, especially for the hetero-
geneous camera system. PTZ cameras are configured as a
master-slave setup to collaborate, sense and monitor targets
in a multi-camera arrangement. Several approaches like the
game theory, decision theory, and control theory were used
to create collaborative monitoring among cameras, while
others applied optimization structures [11]. The discovery
of smart cameras contributed a lot in the area of object
tracking, on-board processing and getting detailed informa-
tion of the captured image from the scene. In distributed
smart cameras (DSCs) information is shared between the
individual cameras with distributed sensing and processing
capability in a smart camera network. Pervasive smart cam-
eras (PSCs) create autonomous and adaptation functioning
of smart cameras which provides easy usage and operation
in the various areas of application. With this development in
smart cameras, the attention of the researchers was directed
towards self-control and collaboration among distributed
cameras [52].

Many works of literature have identified different prob-
lems associated with surveillance using multi-camera sys-
tems while some have proffer solutions to the problems
identified by others. Presently, surveillance problems using
multi-camera systems rest on multi-camera coordination
when it involves multiple targets to be observed. The num-
ber of targets that a particular camera can observe without
compromising the quality of the captured image has not been
stipulated. Especially when the camera to target ratio is less.
Also, the problem of occlusion in a multi-camera setup is a
persistent issue for areas where there are physical obstruc-
tions and privacy issues. Furthermore, there is a problemwith
computation or processing, especially for real-time applica-
tions. Surveillance is a real-time activity that demands a lot
of processing power from cameras on a surveillance network.
Presently, the processing capabilities of smart cameras are
still fell short when it involved many cameras. Even if the
smart cameras can process faster, the communicationmedium
still limits the rate of data transfer from one camera to another
because of the traffic load.

VI. APPLICATION OF MULTI-CAMERA AND IMAGE
OVERLAY IN SPORT ANALYSIS
A multi-camera system has a wider area of applications in
the human endeavor or factually in every aspect of human
activities [179] and entertainment is not an exception. This
area ranging from film making, sports, TV shows and other
performances or activities that keep people’s attention. This
studywill concentrate on the applications of themulti-camera
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system in sports where football and other games will be the
center of discussion. For example, the automatic display of
views that draws special attention in sports programs, video-
on-demand display [180], and other aspects like tracking
of football as a way of making comments by pundits in
sports videos [181] will be the areas considered for review.
Needham and Boyle [182] applied a monocular non-moving
camera to monitor players in an indoor 5-aside soccer fiesta.
The tracking of the players was done with an algorithm called
‘‘CONDENSATION’’. This was carried out with a single
camera that has low-resolution.

The single-camera view system has some shortcomings
ranging from low-resolution image output, lack of total cover-
age of the pitch due to limited FOV of the camera, and players
occlusion problem. Especially, when the players queue up
in–line in the direction of the camera. Also, the position of
the ball on the pitch or when the ball is rolling on the ground
creates constraints on the 3D view of the ball while using a
single camera. This will further demean the application of a
single-camera view because the direction of the movement
of the ball draws the special attention of the viewer [183].
Table 6 shows a summary of the applications of multi-camera
systems in sports.

The earliest research according to Table 6 on the appli-
cation of camera(s) in entertainment or sporting activities
was a graphical overlay on a calibrated camera image. This
is done by placing a sensor on the camera stand and lens
which allows the recording of the cameras’ panning, tilting,
and zooming. This sensor allows images to be overlaid on
the moving video and placed as a background for the video
recorded by the camera. Themethod can also be used to create
graphics that can measure the distance of the player to the
goal post and mark the off-side line by calibrating the posi-
tion of the camera with regards to the scene manually. This
was one of the reasons why video image and single-camera
were the most common applicable sensor as the first type of
graphic technology in sport [191], [195]–[197]. Furthermore,
a typical application of a mechanical sensor on-camera stand
together with other groups of cameras was applied [185].
The ‘FoxTrax’ was a puck-tracking system that used graphics
overlay to display the movement of an ice hockey puck.
A 20 IR LED was implanted into the puck, the signals of the
LEDs are picked by the set of IR cameras which were hanged
up at the roof. However, the position of the puck was made to
be located using the images of the IR cameras. For the easy
location of the puck duringmotion, the system added a ‘comet
tail’ and a blue trailing light [198].

The introduction of image processing into sporting display
brought about a color segmentation algorithm (Chromakeyer)
which allows the segmentation of the foreground color from
the background. This technology was used to make the
background color of a sporting field uniform, for example,
the green background color in a soccer pitch. A typical appli-
cation of this can be found in ‘1st and TenTM’ [199] American
football and ski race is shown as if they were physically
present.

TABLE 6. Summaries of the application of multi-camera systems in sport.

The application of the multi-camera view system to soccer
game coverage or sports analysis in general tackles the single-
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camera shortcomings. Multi-camera system application in
sports coverage and analysis provides a wider FOV that will
cover the whole pitch of play, reduces the dynamic occlu-
sion, and allows camera output integration or collaboration.
Though a multi-camera system application in sports coverage
requires camera calibration and the camera position is also
paramount [200]. Generally, the use of the multi-camera
system has found its purpose in various sports applica-
tions such as football, ice hockey, snooker, diving and ice
skating, down-hill sky race, tennis ball, and tracking of an
athlete.

In the event of viewing sports activities, it became difficult
to show an athlete’s motion or objects trajectories such as ice
hockey puck, football, tennis, and others’ evolution over time
and space. This is because the FOV of a fixed photographic
camera cannot capture the entire spatial and time of an ath-
lete’s motion. A new idea was employed in which a set of
cameras are arranged along the path of the athlete or object to
be monitored to snapshot the athletes or objects as they pass.
The resulting images of the athletes or objects’ motion are
joined together to form the total view of the event. A typical
example of this was applied [188] to show athletes’ motion in
sports like ice skating and swimming. This method compared
to image overlay improves player resolution and provides full
coverage of the total sporting event with the application of
multiple fixed cameras [183].

Steins [201] and Del Bimbo et al. [202] reportedly com-
puted homography transformation for images obtained from
the field of view of two overlapping uncalibrated cameras.
All the targets on the images are considered to be on the
same plane. Therefore, the homography computation result
was meant for all the targets between the FOV of the two
cameras. Khan et al. [203] and a similar work presented by
Cai and Aggarwal [184] monitor a target using uncalibrated
multi-cameras. It was highlighted in their approach that for
cameras with overlapping FOV, the current camera should
hand the field of view to the neighbor camera once the target
leaves its field of view.

A different approach to the above method was the use of
calibrated cameras to create a 3D position of an athlete or ball
in a sporting event. Several approaches have been discussed
in the literature. First, using the foreground segmented image
of the athlete together with calibrated cameras. The lowest
point of the segmented image of the athlete from a calibrated
camera should be assumed to be in direct contact with the
ground. Another approach was to place the foreground seg-
mented image of the player on a 3D model of a stadium. This
allowed a seamless creation of a virtual view of the game
other than the actual view captured by the physical camera
which can be tilted to a different direction of view other than
that of the physical camera. This approach was employed
by the Red Bee Media (RBM) [204] in segmenting player’s
images from the pitch.

The problemwith the player or stadiummodeling approach
was that there are limitations in its applicability when using
a single camera. The degree of tilting the virtual camera

view relative to that of the physical camera is too small and
the players’ occlusion problem is also difficult to resolve.
An alternative approach to the above method was the use of
the multi-camera method. This approach made use of high
frame rate calibrated broadcast cameras to capture the pitch
or field of the sport. The system was first used for tracking
tennis game in a 3D view [190].

One more peculiar problem in sport was the determination
of the location and tracking of the individual players and
the ball. There are a lot of approaches to this problem in the
literature. Though it was a general assumption that tracking
players are more difficult than the ball because of some obvi-
ous reasons. The ball rolls on a pitch alone and it has definite
shape while players are many, running after the ball [193].
Therefore, there will be a problem of occlusion between
players. The ball has a particular pattern of movement which
can easily be modeled but players move erratically following
the direction of the ball. Onemore thing was that players need
to be identifiedwhether by number or jersey color before been
tracked.

Distributed multiple fixed cameras at different locations on
the pitch of the game was one of the methods [193] applied in
tracking players and the ball, though it requiredmore cameras
and somehow costly to implement. For commercial purpose,
most multi-camera-based player tracking system employs
the use of automated cameras together with manual camera
tracking approach. Areas of spectacular tackling and accurate
passes are been identified and manually logged into live and
latter highlighted those areas for analysis at the end of the
match.

Another method is the use of two cameras positioned to
work together, then applying the triangulation method to
determine the points in 3D space. Here, the matrices of the
cameras (camera projection function from 3D to 2D) involved
must be known.

A lot has been done in the application of multi-camera
in the area of sports and entertainment from image over-
lay, single-camera with a mechanical sensor, single-camera
with an image overlay and multiple cameras. Monitoring the
position of the limbs of an athlete during sporting activities
remains a challenge in this field of study. Marker-based
motion approach [200] was sometimes proposed but this
only applicable during training and exercise, in live matches
analysis, factually not possible. Future studies should focus
on automated systems for tracking athletes’ limbs during live
matches or on recorded videos.

VII. APPLICATION OF MULTI-CAMERA IN EDUCATION
Thewind of the digital revolution blowing across all the facets
of our life has brought tremendous growth and ease into the
way we do things traditionally. Environmental digitalization
was at the current leading front of creating new ways of
human relations. The effort of carrying out unobtrusive mon-
itoring, distinct and trackable actions with large numbers of
the audience gave us the chance of looking at the diverse
facet of human undertakings. The ubiquitous presence of
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cameras in most automation applications especially those
that deal with light sensing, photo capturing, monitoring and
tracking system has made cameras relevant in every facet of
our life. For example, in the area of education, technological
inventions gave us the idea of considering a scenario where
teaching can be carried out without a teacher (intelligent
teaching systems) [205], or in another perspective; teaching
unreal students (distance learning) [206].

The latest technological innovation was focusing on the
level under which lectures can hold, and the possibility of
transmitting it with quality to large numbers of students (Mas-
sive Open Online Courses (MOOCs) [207], [208]. All these
are made possible due to advancements in the area of video
capturing, processing, compression and delivery techniques.
In the late ’60s, it all started outside the class which can now
be referred to as distance learning. Distance education was
based on noncontiguous communication between a school
(represented by the teacher) and its students [209]. In other
words, this was two-way communication. The first way was
the communication from the teacher or supporting organi-
zation to the student through the sending of instructional
materials and other learning materials. The other way was
represented as feedback from the students back to the teacher.
Other areas where cameras are applicable in education are in
the area of estimation of students’ attention and smart atten-
dancemonitoring system, teacher’s evaluation/appraisal exer-
cise and feedback on student performance, automatic students
face recognition/detection and teachers and student security
and protection. All these can be achieved through technolog-
ical innovations in education and they are majorly carried
out by the application of camera or multi-camera systems.
There are several papers related to cameras or multi-camera
applications in educational settings found in the literature.
Table 7 summarizes the related survey papers on camera
or multi-camera applications in education. As described by
most papers, the majority of the work focus on lecture
capturing and broadcasting, students’ attention estimation,
teacher’s evaluation, protection and security of students and
teachers, attendance monitoring, face recognition and detec-
tion, motion detection, and behavior analysis during lectures
where cameras or multi-camera systems are applied.

A. EVOLUTION OF CAMERA AND MULTI-CAMERA IN
EDUCATIONAL SYSTEM
This section briefly discusses the evolution of multi-camera
in education. The application of multi-camera started around
1985 where the majority of its usage was in the area of object
detection and recognition. The evolution of multi-camera was
due to the limitation in the application of the single-camera
in terms of area of coverage, resolution of the image and
accuracy of the image output. However, this led to the intro-
duction of multi-camera where the accuracy of the cam-
era can be improved by fusing the image obtained from
multiple cameras. Thereby increasing the resolution of the
output image and allow a wider area of coverage. Earlier
work of multi-camera focuses on object detection and image

TABLE 7. Summary of related survey papers on multi-camera
applications in education.

classification [220]. Up till early 2000, the majority of the
cameras used in surveillance and tracking of an object are
fixed cameras which are of low resolution. Though, they
have a wider view but cannot capture objects that are of far
distance. Due to these shortcomings, Pan Tilt Zoom (PTZ)
was invented to produce a high-resolution image with the
power of capturing far distance target objects. The first set
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of PTZ cameras are manually configured to capture spe-
cific target areas. For example, focusing on the presentation
slide board, surveillance of the entry and exit point and
tracking of the individual students’ faces for recognition. In a
multi-camera setup, the PTZ cameras are later configured
automatically to focus on specific areas based on defined
features or configured as master-slave for automatic control
and coordination [11].

In early 2010, smart cameras and wearable devices are
introduced to carry out intelligent monitoring of events
and tracking of human limbs. For example, Bianchi and
Way [221] described the concept of the automatic auditorium
(AutoAuditorium system), where audiovisual lectures pro-
duced in a lecture auditorium can be automatically captured
in real-time without the support of any human control apart
from turning it on and off. Erdmann andGabriel [222] applied
an automated smart camera system to perform audio-visual
tracking of the lecturer and audience in a lecture hall. The
system also performs automatic video editing with quality
near to the one performed by a human coordinated system.
This setup completely automates events or lecture capturing
for distribution and easy access by students. In the aspect
of human action recognition and position monitoring, gen-
erally, they can be observed in two ways. There are wear-
able sensor-based devices and vision monitoring devices. For
wearable sensor-based devices, the devices are to be worn by
the target to determine or monitor his / her activities [223].
This approach used action models to infer the behaviors and
actions of the target. For example, Zhang et al. [213] used
wearable devices like head, pen, and eyes-focus modules to
analyze students’ attention. These modules gathered infor-
mation through smart cameras, gyroscope, and accelerometer
embedded in those wearable devices. Another approach [224]
was the use of an eye-tracker to determine the attention level
of the student. However, this approach will have a serious
negative impact on the eyes of the target [225] and the gadgets
are quite expensive. The use of wearable devices has tenden-
cies of higher accuracy but there are some major challenges
like:
• The number of human features to be used for inference,
each feature will require a sensor and each sensor will
generate data. So, there will be a diverse set of data to
handle together.

• After gathering the data from different features, select-
ing the feature to use to determine the best result will
be difficult because it involves physical and emotional
feedback.

• Another challenge is individual differences. The reac-
tion or behavior of an individual might be different
towards different things at the same time. An individual
might pretend to be focused but his / her attention is
somewhere else.

The vision monitoring devices employ a camera or multi-
camera-based system to detect the actions of the targets [226].
Steriadis et al used video cameras [227] to monitor students’
behavior and their facial expressions to determine their level

of attention [216]. A lot of factors will affect the correctness
of this approach like lighting intensity and image background
obstruction. It also requires high processing computer capa-
bility, especially in real-time applications.

Mothwa et al presented a conceptual model of a face recog-
nition student attendance monitoring system. The authors
make use of a full multi-camera view to capture and detect
the faces of the students. The system is designed to perform
periodic real-time recognition of students during lectures and
performs update recognition after a specific interval of time
to ensure that some of the students did not leave the lecture
hall after the first capture. The captured images of the stu-
dents are compared against the database image of the student
already stored. This is then used to determine the presence
or absence of a student in the lecture. The approach used
centralized architecture where all the cameras are connected
to a single facial recognition. In this type of architecture, there
is no redundancy in the setup when the central interface that
connected the multi-camera is down. The authors employ his-
togram equalization, bilateral filtration, and elliptical crop-
ping to perform preprocessing tasks on the captured images.

B. OBJECT TRACKING ALGORITHM AND IMAGE
RECOGNITION
This subsection highlights the various tools and algorithms
used in object detection or recognition from images or video
frames. Object recognition in image or video of multiple
frames is performed using object tracking techniques. Most
of the object tracking algorithms composed of three fea-
tures; object representation, dynamic model and search pro-
cedure [228]. There are two ways of representing objects;
holistic and local description object representation. Exam-
ples of the holistic descriptor are values of the raw pixels
and color histogram while that of the local descriptor is
local histogram and color information. The dynamic model
narrates the motion between two successive frames thereby
reducing the computational problem in object recognition.
Also, the searching procedure in the object recognition algo-
rithm is seen as a problem of optimization. A deterministic
and stochastic approach is always employed to solve it. The
deterministic approach is only applicable when there are
no local minima involved otherwise Stochastic or sampling
methods are employed [228], [229]. However, there are a
lot of object recognition algorithms proposed by researchers,
some of them are good for real-time (online method) object
detection which is mostly used in educational applications
while others are used for object recognition in still-image.
Examples of the algorithms are Tracking-Learning-Detection
(TLD) [230], resonant tunneling device (RTD) [231], Mul-
tiple Instance Learning (MIL) [232], incremental visual
tracker (IVT) [233], Beyond semi-supervised (BeSemiT)
[234], L1 tracker (L1T) [229], visual tracking decomposition
(VTD), semi-supervised tracker (SemiT) [235], variance ratio
tracker (VRT) [236], fragment-based tracker (FragT) [237],
and online boosting tracker (BoostT) [238]. It was shown
that TLD was the most reliable and robust online object
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tracking algorithm when tested on different video frames and
images [228].

Wang et al. [228] in Table 8 tested the performance of the
algorithms based on the modeling of their motion, the state
vector movement between two successive frames (dynamic
model), and their searching methods. Boris et al. pre-
sented multiple instant learning (MIL) to separate an object
from its background. The researchers employed the appear-
ance model which composed of the discriminative classi-
fier, the classifier load itself and then extract the examples
(positive and negative) from the most recent frame. A little
change in the tracker can cause incorrect labeling of the
trained examples and this debases the classifier. However,
the motion model employed in the approach was too simple.
It could be replaced with a more robust and sophisticated one
like a particle filter. Kainz et al. [239] used LTD to determine
the number of the student attending a lecture and later on
applied face recognition algorithm to identify the particular
student in the detected faces.

Feature extraction is an essential part of face recognition.
It deducts salient features subsets from the main data follow-
ing some rules. The advantage of feature extraction is that it
increases the speed of machine training and reduces space
complications. The different categories of feature extrac-
tion methods are the holistic method, feature-based and
hybrid matching methods. The holistic methods are the most
widely used because they employed the whole face as input
data. Examples of the holistic methods are Linear Discrim-
inant Analysis (LDA) [240], Principle Component Analysis
(PCA) [241], Independent Component Analysis (ICA) [242]
and Local Binary Patterns (LBP). Mothwa et al. [219] used
the Viola and Jones face detection algorithm [243], this algo-
rithm employedHaar cascade to identify faces and it canwork
in real-time.

Mothwa et al. [219] employed three different cameras of
the same quality to capture student’s faces and used PCA,
LDA, and LBP to extract the features of the face images. The
Euclidean distance was calculated to determine the accuracy
between the image tested and the train data. The accuracy of
the feature extraction algorithms was tested and compared.
High recognition accuracy was obtained when the PCA and
LDA were combined and used on the first camera.

All these algorithms mentioned above can be found in
computer vision tools. Computer vision tools are software for
implementing image and video frame processing, examples
of these tools are OpenCV, VXL, LTI, OpenTLD, MatLab
and fast CV (produced by Qualcomm). The fast CV tool
can be operated on mobile devices. A comparison of these
vision libraries shows that open CV is faster when used on
computers of the same specifications [244].

Fuzail et al. [245] implemented real-time detection algo-
rithms for managing student attendance. They used the Haar
classifier for face detection and it was implemented in the
OpenCV computer vision tool. The recognition aspect was
done using an algorithm in python named pyfaces. Apart
from its fast speed of recognition, this algorithm relies

TABLE 8. Summary of related survey papers on multi-camera
applications in education.

on the pose of the image, scale, and color to differenti-
ate between the compared image and the one stored in the
database. However, the system cannot identify the individual
student available in class. Tamimi et al. [246] presented
a real-time group face detection system. This approach is
similar to Fuzail et al.’s approach. The face detection algo-
rithm was implemented in MatLab. 2012, which is another
example of computer vision software. This system can-
not identify the individual student in the captured image.
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Zhang et al. [213] demonstrated student attention level deter-
minant using wearable devices built on four modules; they
are head movement, pen movement, visual focus, and Apps
modules. In the head movement module, Speed-Up Robust
Feature (SURF) [247] algorithm was used to determine
the correlation between the position of the students’ head
(whether up, down, or center) and the information on the
white marker board. SURF was implemented in an open
CV library.

VIII. APPLICATION OF MULTI-CAMERA IN MOBILE
PHONES
The growing competition in the mobile communication
world has prompted many manufacturers of mobile phones
to introduce more features in their mobile products like
imaging-related functions such as video recording, video
calls, and video conferencing [248], [249], [222]. The
importance attached to the camera on smartphones by man-
ufacturers and users has driven most mobile phone man-
ufacturers to work hard on how to improve the features
and image qualities of their products. The initial concern of
most mobile phone manufacturers was the resolution of the
camera on the smartphone which lead to the production of
lots of megapixels cameras. Another possible feature was the
introduction of object digital zooming in on mobile phones
which was entirely based on software interpolation when it
came out initially due to the limitation in the camera focal
lens and the size of the mobile phone. The thin shape of the
smartphone body [250] and the design of the lens makes it
complicated to fit a zoom lens. The implementation of multi-
cameras on mobile phones has made several features possible
and much easier such as object zooming (through optical),
portrait mode, 3D, better high dynamic range (HDR) and low-
light photography. The most popular smartphone manufac-
turers have moved to stereo camera design. However, not all
cameras on multi-camera smartphones are serving the same
function. Some smartphones have a primary camera that does
the actual capturing of images while the secondary camera
is either a telephoto lens (thick and wider) or monochrome
with a wider field of view (FOV). A telephoto lens has a
longer focal length and it can bring a distant object or scene
closer as shown in Figure 12. The advantage of using a
dedicated telephoto camera module on a mobile phone is that
it solves the problem of zoom-in and produces better images
at the long focal length. The result will be better than using
cropping and scaling the image output of the main camera.
The output of a two-camera module can be integrated to
produce an improved image. Though, this poses an image
processing challenges such as white balance and focus dis-
tance problem because the two images will slightly offset
each other.

According to the literature, this area has not been well
studied. There will be a need for alignment in terms of the
geometry and photometric properties of the images produced
by the two asymmetric lenses. Anirudh et al. [250] proposed
a computational algorithm that can solve the problem of

FIGURE 12. Mobile phones with a telephoto lens (usually wide) and a
wide-angle lens.

fusion of images produced bymultiple asymmetrical cameras
(tele-wide) in terms of color and brightness integration. The
images obtained from the telephoto and wider view lenses
were first set to the same scale and FOV (refer to as global
image registration) using different algorithms (Oriented Fast
and Rotated (ORB), Library for Approximate Nearest Neigh-
bour (FLANN), Random Sample Consensus (RANSAC), and
affine transform). The brightness and color of the two images
are then matched since they are both in the same FOVs.
The brightness and color of the resulted image were then
corrected at Y-channel and U and V-channels respectively.
However, the algorithm was tested on static image and scene
with occlusion but not on motion pictures. The approach of
Liu and Zhang [251] was performed on six symmetric
wide-view cameras and the cameras are all calibrated.
A global correction gain was calculated for each camera
view using the appropriate color index that matches the
global brightness and color. The differences between the
corresponding overlapping sample of the views were mini-
mized by the joint optimization of the optimal gain. Then,
the tone marking curve was applied to remove the photomet-
ric misalignment. In this approach, a lot of assumptions were
made and the method is not adjustable to different lighting
conditions.

The focal length limitation imposed on the mobile phone
by the thin size flat body shape can be resolved using folded
optics. This is a method whereby a mirror or prism is used
to direct the light reflection from the scene to the lenses and
the sensor. Tremblay et al. [252] examine the performance
of conventional miniature refractive lenses used by mobile
cameras and multiple fold reflective optics of less thick-
ness, huge light collection, and high resolution. In miniature
conventional optics, the focal length of the lens is smaller
compared to the size of the pixel and its array (pixel pitch).
A smaller pixel pitch means higher pixel density and higher
resolution. Pixel pitch is important because it influences
viewing distance. The smaller the pixel pitch, the closer the
viewing distance. Folded optic creates a longer focal length
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without increasing the physical distance between the lens and
the image sensor. It also increases the diameter of the image
sensor thereby increases the light collection of the aperture
area. The effective aperture diameter of a circular folded optic
lens compared to that of the miniature conventional is given
as:

deff = douter
√
1− o2 (1)

where o is the inner aperture diameter divided by the outer
aperture diameter (obscuration ratio), douter is the outer
diameter (OD) of the folded optic and deff is the diameter of
an unobscured circular aperture of the same aperture as the
folded optic. Multi-camera arrangement at the front side and
the rear back of the smartphones are usually fixed at the top.
Each camera lens is fixed on the samemodule with the sensor.
The rear cameras are usually placed in a cluster whether at the
top right of the phone or top center [253].

A. MULTI-CAMERA PHONE DEPTH ESTIMATION
The presence of the homogenous or heterogeneous cameras
on a phone made it possible for the camera to be able to
perform depth estimation of the objects in the scene. Depth
estimation is a method of using images obtained from two or
more cameras to carry out survey triangulation and estimate
distance [254]. This process is used to determine the distance
of the object in the image from the two cameras (refers to as
parallax). The objects closer to the cameras will be quite far
apart in the image and those far away from the cameras will
look closer in the image. One of the advantages of the depth
of the object in a scene is that it allowed the introduction of
special portrait modes in multi-camera phones which makes
the image sharp and displays a nice blurring background.
Another method of blurring the background of an image is
referred to as ‘‘Bokeh’’, it is the natural method of blurring
the background by using wide aperture optics. This is usually
done through the hardware but hardly difficult to replicate
computationally. Depth estimation is determined using the
different methods; one is carried out with two or more input
images (stereo vision [255] and shape from a motion [256])
and the second one is from a single monocular image which
has been recently proposed [257]–[259]. The first methods
produce the most accurate depth information. Guo et al. [260]
used the Markov Random Field (MRF) model to estimate
the depth map and determine the relationships between the
different parts of a single image. The model of the MRF was
trained using supervised learning. Then, the estimated depth
details and the geometric information were used to generate
a pedestrian candidate. Saxena et al. [254] combine monoc-
ular and stereo methods (triangulation) to estimate depth
information. Markov Random Field was used to obtain the
monocular cues and the result was incorporated into the stereo
formation. The advantage of this approach is that the result
can be applied in both areas where any of the systems (stereo
and multi-camera) performs poorly. Other depth estimation
approaches are summarized in Table 9.

TABLE 9. Summary of some past works of literature on depth
information estimation.

B. IMAGE DETAILS ENHANCEMENT THROUGH MORE
CAMERAS
The image details can be enhanced when multi-camera is
employed in mobile phones. For example, in image demo-
saicing, a typical camera sensor cannot record color on its
own except an array of the color filter is laid over it. Each
photosite displays in one color (Red, Green, or Blue). From
this, an RGB image can be produced through a process
called demosaicing. Though, this method has disadvantages
such as a reduction in resolution, and less sensitive image.
However, most smartphones use a color camera together with
a monochrome sensor that can capture the available light and
in full resolution. The image output of the two (color camera
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and monochrome sensor) is then combined which produced
a better-detailed image. Also, some manufacturer uses two
high-resolution color cameras and then combined their output
image but the process of combining and aligning is complex,
the result of the combination is not as detailed as that of
the monochrome sensor. For low light and high contrast
condition, the combination of the image from a more light-
sensitive monochrome camera with image from high color
camera produce better image output. In this combination,
there is a result of artifacts due to the alignment difference
in the output of the two cameras.

Multi-camera phones have the advantage of using the
differences in images produced by their cameras to cre-
ate a depth map. This map can be used to enhance vari-
ous augmented reality (AR) applications. Although it is not
only through a multi-camera module that depth informa-
tion can be measured, some manufacturers used a dedicated
depth sensor that makes use of the time of flight (TOF) or
other technologies to generate the depth map required for
AR improvement.

However, the addition of more cameras to mobile phones
or smartphones is in no doubt makes smartphones to be more
robust but some challenges accompany it. The problem of
cost and space are not the only limitations, the processing
power of smartphones is also a thing of concern. The pro-
cessing of multiple flows of images is significantly complex
than working with images obtained from a single camera.
Additional work is required to align the images obtained from
multiple cameras properly to reduce the ghosting artifacts and
other actions required to create a quality and detailed image
output from the cameras.

IX. MULTI-CAMERA APPLICATION ALGORITHMS
The ubiquitous nature of multicamera has made it to be
widely applied in different areas of human life ranging from
surveillance, sport, mobile phone, and other areas. Most
multi-camera applications are based on tracking, match-
ing, and surveillance. Human and Objects can be correctly
observed, tracked, or identified using scale, appearance, and
shape changes, provided they reveal enough texture. Local
features are the most generally used features because they
are good invariants. They are categorized into two: (i) local
features based on absolute value and (ii) the one based on
relative value or discriminative descriptor.

One of the most common local features techniques built
on absolute value is the scale-invariant feature transform
(SIFT). SIFT is invariant to image scale, rotation angle, and
brightness, it can build a histogram with gray and gradient
quantization. Some of the advantages of SIFT are:

• Locality: It recognizes all features as local, and there-
fore, it is a good option for occlusion and clutter (no
early subdivision).

• Distinctiveness: Each feature can be integrated into a
large database of objects.

• Quantity: It can work with many features.

• Efficiency: Its performance is comparable to that of the
real-time.

• Extensibility: It has a wide range of support for many
feature types, with each adding robustness.

However, SIFT is computationally intensive, and it is
practically not implementable for real-time applications
like visual odometry and low-power devices, for exam-
ple, mobile phones because of its computational demand.
Ke and Sukthankar [267] described a principal component
analysis (PCA-SIFT) technique that substituted the histogram
in SIFTwhich improves the computational speed. Speeded up
robust features (SURF) [268] is another algorithm that
has better performance than SIFT, especially in terms of
computational speed. Oriented FAST and Rotated BRIEF
(ORB) [269] is binary descriptors based on BRIEF, it is a
robust algorithm that is illumination and rotation invariant.
It is highly resistant to noise and can compute 10 times faster
than SURF, but it has a scale variation problem. In general,
local feature algorithms based on relative value have chal-
lenges in local feature points identification and description,
local features description capability, and computational inten-
sity. Examples of the relative value-based methods include
Binary Robust Independent Elementary Features [270], mod-
ified feature point descriptor based on Binary Robust Inde-
pendent Elementary Features (MBRIEF) [271], Ordinal
Spatial Intensity Distribution [272], and Binary Robust
invariant scalable keypoints [273].

Some researchers used the texture of an object in
tracking non-rigid objects. Nummiaro et al. [274] imple-
mented color distribution in particle filtering together with
edge-based image features to perform real-time tracking of
non-rigid objects. The method is not susceptible to par-
tial occlusion, rotation, and scale variation and it is com-
putationally balanced. Mathes and Piater [275] combined
low-level features to form a model of shape and appear-
ance of an object. The resulting model performs very
well in serious partial occlusions images. The approach
is built to detect and track texture object in a clumsy
scene for non-static cameras. The algorithm was tested
on 160 frame soccer sequence tracking 6 players as
targets.

Others perform tracking using 2D or 3D geometry of the
objects’ shape. These approaches are employed in surveil-
lance, human-computer interface (HCI), and communication
support services. Senior et al. [276] applied tracking tech-
nology in 2D and 3D ground plane to determine the posi-
tional information of a tracking object. In their approach,
four different algorithms were used in tracking a person
in an indoor environment. One of the approaches is par-
ticle filtering, this method used particle trackers adapted
from the work of Nickel et al. [277]. This method does not
use a background model subtraction because of its limita-
tion in handling moving targets. It employed frame differ-
encing which is also susceptible to noise and distraction.
The algorithms employed are background subtraction, par-
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TABLE 10. Summary of some past works of literature on depth
information estimation.

ticle filter, face detection and edge alignment of a cylin-
drical model. The second approach is face detection which
depends on the faces detected to perform tracking. This
method can be seriously affected in the case of occlusion,
distance from the camera and light intensity. Next is the
background subtraction approach which works on keeping
a good background model that cannot be certainly guar-
anteed. Lastly, the edge-alignment method, it used a 3D
graphical model of a human represented by cylinders cou-
pled in kinematic chains aligned in multi-camera views.
This method requires a re-initialization strategy whenever it
fails. Therefore, it is not suitable for an online application.
Liang et al. [95] presented objectmatchingwithmulti-camera
collaboration using head detection and trifocal tensor pointer
transfer method. They used Kalman and PDA algorithms
for tracking people and then applied background subtraction
to detect the head position. Using the corresponding head
points, trifocal tensor transfer was used to detect objects
in the upper view of the two cameras. Straw et al. [278]
body inclination of animals by tracking their 3D motion and
location using the Kalman filter and the nearest neighbor
filter algorithm. The system was designed to study the neu-
robiological behaviors of freely flying animals. The system
used 11 cameras to track three flies simultaneously at 60 fps
in real-time.

Subsequently, Dockstader and Tekalp [279] proposed a
method of tracking persons in motion using multi-view
implementation of the Bayesian belief network which inte-
grates the 2D features of each camera view. Sparse motion

image estimate and Kalman-like state propagation were
used for observation and filtering respectively. Mittal and
Davis [280] presented a suitable method for tracking people
in a cluttered area using synchronized cameras. The sys-
tem employed a region-based stereo algorithm in detecting
the 3D points and Bayesian classification for segmentation.
Calderara et al. [80] used overlapping multi-cameras to track
people using consistent labeling methods. The position of the
people in the multiple views of the cameras is determined
using the homograph of the first detection of the camera
view. Table 10 shows a summary of multi-camera application
tracking algorithms.

X. CONCLUSION
Multi-camera systems have gained significant attention dur-
ing the past few years especially in the area of surveillance,
tracking, image recognition, image sensor, and computer
vision. This becomes an excellent opportunity where we
combine the techniques (multi-camera system algorithms)
and advancement in these fields with that of multi-camera
systems to proffer sustainable solutions to the problems of
humanity. In this survey paper, we discussed the aspect of
camera calibration and architecture in a multi-camera for-
mation because of their importance. Also, there has been a
focus on the application of multi-camera systems in the area
of surveillance, sports, education, and mobile phones. Multi-
camera systems application algorithms are also discussed
with references to the area’s application. More importantly,
we have discussed the current challenges faced, progresses
made, and potential directions for the future to guide the
researchers and scientists who are in need to understand how
this area of research is evolving.
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