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ABSTRACT Excessive time complexity has severely restricted the application of support vector
machine (SVM) in large-scale multi-label classification. Thus, this paper proposes an efficient multi-label
SVM classification algorithm by combining approximate extreme points method and divide-and-conquer
strategy (AEDC-MLSVM). The AEDC-MLSVM classification algorithm firstly uses the approximate
extreme points method to obtain the representative set from the multi-label training data set. While persisting
almost all the useful information of multi-label training set, representative set can effectively reduce the scale
of multi-label training set. Secondly, to acquire an efficient multi-label SVM classification model, the SVM
based on the improved divide-and-conquer strategy is trained on the representative set, which will further
improve the training speed and classification performance. The improvement is reflected in two aspects.
(1) The improved divide-and-conquer strategy is applied to divide the representative set into subsets and
this can ensure that each representative subset contains a certain number of positive and negative instances.
This will avoid singular problems and overcome computation load imbalance problem. (2) The different
error cost (DEC) method is applied to overcome the label imbalance problem. Effective experiments have
proved that the training and testing speed of AEDC-MLSVM classification algorithm can be accelerated
substantially while ensuring the classification performance.

INDEX TERMS Multi-label classification, approximate extreme points method, divide-and-conquer strat-
egy, support vector machine, label imbalance.

I. INTRODUCTION
Compared with traditional binary or multi-class classifi-
cation, multi-label classification is different in that each
instance can have multiple labels and thus these labels are
no longer mutually exclusive [1]. Many methods have been
proposed to solve the multi-label classification problem,
including SVMmethod, decision treemethod, neural network
method, K-nearest neighbor method, etc [2]. These methods
have been widely recognized and successfully solved many
real-world practical problems, such as image video semantic
annotation [3], [4], text categorization [5], music emotion
classification [6], bioinformatics prediction [7] and so on.
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With the arrival of big data era, many real-world applications
need to be implemented in large-scale multi-label data sets.
However, many existing multi-label classification methods
cannot be applied to large-scale multi-label data sets effec-
tively. The main reason for this problem is that these methods
are severely restricted by the excessive time complexity. This
phenomenon is especially evident in SVM. In this paper,
we will focus on the research of efficient multi-label SVM
classification methods.

SVM [8] is an extraordinary well-known machine learning
method, which has been applied successfully in face detec-
tion, handwritten recognition, text categorization, etc [9].
Traditional SVM only can solve the single-instance single-
label classification problem, but the improved SVM algo-
rithms, such as Rank-SVM [10] algorithm, can be applied in
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multi-label classification. However, many real-world multi-
label data sets are non-linear. Hence, to obtain competitive
performance, SVM needs non-linear kernel to train these
multi-label data sets, which further limits the use of multi-
label SVM classification algorithm in large-scale data sets.
In addition, the multi-label SVM classification algorithm
cannot avoid the problem that the vast majority of multi-
label data sets are suffering from a serious label imbalance
problem [11], which will seriously affect the classification
performance.

The main contributions of this paper are as follows:
(1) The proposed AEDC-MLSVM classification algorithm

can solve the problem that the application of multi-label SVM
classification algorithm in large-scale data sets is seriously
restricted by the excessive time complexity.

(2) The principle of the proposed SVM by combining
approximate extreme points method and divide-and-conquer
strategy (AEDC-SVM) is shown in FIGURE 2. The proposed
AEDC-SVM can not only ensure the classification perfor-
mance, but also reduce greatly the size of the training set
and the negative impact of label imbalance problem, solve
the computation load imbalance problem and prevent singular
problems. This further improves the applicability of AEDC-
MLSVM classification algorithm in large-scale data sets.

(3) The experimental results in three public real-world
data sets show that the training and testing time of
AEDC-MLSVM algorithm is the shortest compared with that
of the existing multi-label classification algorithms such as
ML-LIBSVM [12], ML-CVM [13] and ML-BVM [14]. And
the performance of AEDC-MLSVM algorithm on the five
evaluation indexes is pretty close to that of ML-LIBSVM and
better than that of ML-CVM and ML-BVM.

The rest of this paper is organized as follows. Chapter 2will
introduce some related works. The new AEDC-MLSVM
classification algorithm is proposed in chapter 3. After that,
the analysis of the experiment results is presented in chapter
4. Chapter 5 is the summary of this paper.

II. RELATED WORK
From the first, multi-label classification has been widely con-
cerned by experts in machine learning, pattern recognition,
statistics and so on. In view of different practical problems,
various kinds of multi-label classification methods have been
proposed and achieved good effect. These multi-label clas-
sification methods can be summarized as the following two
main strategies: problem transformation strategy and algo-
rithm adaptation strategy [2]. Moreover, many methods have
been proposed to solve the problem of label imbalance in
multi-label classification. This chapter will firstly introduce
the existing multi-label classification methods according to
the two strategies, and then introduce current methods of
processing the label imbalance problem.

The problem transformation strategy ismainly to transform
a multi-label classification problem into several single-label
classification problems. As a result, this type of multi-
label classification methods is mainly achieved by the

combination of problem transformation skill and existing
single-label classification methods. Problem transformation
skills mainly contain binary relevance (BR), one-by-one
(OBO), one-versus-one (OVO) and label powerset (LP) [2],
etc. Frequently-used single-label classification methods con-
tain SVM, decision tree, neural network, nearest neighbor and
so on [2].

In [15], three main defects of BR problem transformation
strategy are described. First of all, since it assumes that the
labels are independent, dependencies among labels will not
be exploited. Secondly, it will likely cause the label imbalance
problem. Finally, as the number of labels increases, the label
imbalance problem will aggravate with the increase of classi-
fiers. Despite of above problems, the BR problem transforma-
tion strategy is still considered to be simple and practical, and
the data set can be reconstructed. In [16], the author highlights
its superiority. Firstly, any single-label classifier can be used
as the base classifier to accomplish the multi-label classifi-
cation. Secondly, its complexity is lower than other methods,
and its complexity is linear with the number of labels. Thirdly,
because of the independence among labels, it can be easily
parallelized. Finally, the advantage that needs to be empha-
sized is that it can optimize multiple loss functions. Thus,
this paper will use the famous BR problem transformation
strategy to accomplish multi-label classification.

Algorithm adaptation strategy accomplishes multi-label
classification by improving single-label classification algo-
rithms. By improving the information entropy formula and
setting the leaf nodes as a label set, C4.5 type multi-label
classification algorithm is proposed in [17]. This multi-
label classification algorithm is suitable for small-scale data
sets. Rank-SVM [10] algorithm accomplishes multi-label
classification by minimizing the ranking loss of multi-class
SVM, which will cause an extremely complex quadratic
programming problem. To overcome the high time complex-
ity problem of Rank-SVM algorithm, Rank-CVM [18] and
Rank-CVMz [19] algorithms are proposed by adopting core
vector machine (CVM) and zero label, which can improve
the training speed to a certain extent, but reduce the clas-
sification effect. By combining the advantages of Ranking
support vector machine and Binary Relevance with robust
Low-rank learning, RBRL [32] algorithm is proposed. This
algorithm can solve the optimization problem efficiently by
adopting two accelerated proximal gradient (APG) methods.
The ML-SLSTSVM [33] algorithm improves the MLTSVM
algorithm by introducing structural information of training
instances and adopting least square method. Although RBRL
and ML-SLSTSVM algorithms can improve the classifica-
tion performance, it can only be applied to small-scale data
sets. ML-KNN [20] algorithm which is based on the k near-
est neighbor (KNN) can achieve label prior probability and
conditional probability by independently using the discrete
binary bayes rule for each label. The BP-MLL classification
algorithm [21] can express the multi-label features by con-
structing a new empirical loss function. These algorithms are
difficult to be applied to large-scale data sets.
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In [22], the influence of label imbalance problem on vari-
ous classification algorithms is introduced in detail. In order
to overcome this problem, many countermeasures have been
proposed and have achieved good effect. These counter-
measures can be summarized as the following three main-
stream methods: resampling method [22], instance-based
method [23] and cost sensitivemethod [24]. TheDECmethod
adopted in this paper is a specific implementation of cost
sensitive method.

To sum up, the use of existing multi-label classification
algorithms in large-scale data sets is seriously limited by
heavy time complexity and this phenomenon is severer for
these algorithms based on SVM. The AEDC-MLSVM clas-
sification algorithm proposed in this paper will be a good
solution to this problem. It not only can shorten the time
consumption of training and testing greatly, but also achieve
the classification performance close to that of ML-LIBSVM
classification algorithm, and better than that of ML-CVM
andML-BVMclassification algorithms. In addition, the DEC
method is adopted to reduce the impact of label imbalance
problem.

III. AN EFFICIENT MULTI-LABEL SVM CLASSIFICATION
ALGORITHM BY COMBINING APPROXIMATE EXTREME
POINTS METHOD AND DIVIDE-AND-CONQUER STRATEGY
In this chapter, we will firstly introduce the BR problem
transformation strategy. Secondly, we will explain the prin-
ciple of approximate extreme points method. Thirdly, the
AEDC-SVM is elaborated in detail. Fourthly, we will design
and implement the AEDC-MLSVM classification algorithm.
Finally, we will analyze the time and space complexity of the
AEDC-MLSVM classification algorithm.

A. BINARY RELEVANCE PROBLEM TRANSFORMATION
STRATEGY
Suppose that D = {(xi,Yi) |xi ∈ Rd ,Yi ⊆ Q, i =
1, 2, · · · ,N } represents a multi-label training data set, xi
represents a data vector of d feature values,Q = {q1, · · · , qk}
represents the label set. First of all, the BR problem transfor-
mation strategy is to transform the multi-label training data
set D into k independent binary training subsets, i.e. Dqj =
{(xi, yi) |xi ∈ Rd , yi ∈ {−1, 1}, i = 1, 2, · · · ,N and j =
1, 2, · · · , k}. The principle is as follows: for each multi-label
training instance (xi,Yi), if qj ∈ Yi, xi is regarded as a positive
training instance of Dqj, i.e. yi = 1 and a negative training
instance otherwise, i.e. yi = −1. After that, by training on
each binary training subset Dqj, corresponding binary classi-
fier hqj (x) is constructed. Finally, the BR problem transforma-
tion strategy integrates the results of the k binary classifiers to
realize multi-label classification, and its formula is as below.

y = h(x)

[q1, · · · , qk ] = hq1 (x), · · · , hqk (x) (1)

In order to utilize the BR problem transformation strategy
to realize multi-label classification effectively, the following

FIGURE 1. the principle of extreme points.

decision function is used to integrate all binary classification
results. The decision function is as below.

Y = {qj, s.t.hqj (x) ≥ 0,∀qj ∈ Q, j = 1, · · · , k} (2)

Meanwhile, the following rule is used to avoid obtaining an
empty relevant label set. The equation is as below.

Y ={qj, s.t.max hqj (x),∀hqj (x) < 0, qj ∈ Q} (3)

From chapter 2, we know that the BR problem transformation
strategy is effective and practical, and it can be effec-
tively applied to large-scale multi-label classification. Conse-
quently, the BR problem transformation strategy will be used
to realize multi-label classification.

B. THE PRINCIPLE OF APPROXIMATE EXTREME POINTS
METHOD
Before explaining the principle of approximate extreme
points method, we convert Dqj (defined in the previous sub-
chapter) into Xqj = {xi|xi ∈ Rd , i = 1, 2, · · · ,N } and
Yqj = {yi : yi ∈ {−1, 1}, i = 1, 2, · · · ,N }. Since the
approximate extreme points method is based on the extreme
points principle, we will firstly introduce the extreme points
principle [25], [26]. It can be seen from FIGURE 1 that any
vector xi in Xqj can be represented by a convex combination
vector set EP(Xqj), and its formula is as below.

xi =
∑

xt∈EP(Xqj)

βi,txt ,

where 0 ≤ βi,t ≤ 1, and
∑

xt∈EP(Xqj)

βi,t = 1. (4)
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It can be seen from formula 4 that any vector xi in Xqj can
be obtained only by using EP(Xqj) and convex combination
weight parameter set{βi,t }. Therefore, we define EP(Xqj) as
the extreme points set of Xqj. EP(Xqj) not only contains
almost all the important information of Xqj, but also its
quantity is far less than that of Xqj. Thus training SVM on
EP(Xqj) can greatly improve the training and testing speed
on the basis of ensuring the classification performance. How-
ever, when facing large-scale training data set, the solution
complexity of extreme points method is high. For this reason,
the approximate extreme points method is proposed. Before
that, we assume that the kernel space transformation set of
Xqj is A, i.e., A = {ai|ai = 8(xi),∀xi ∈ Xqj,8 : R

d
−→

H}, here 8(xi) represents the explicit representation of xi in
kernel space. A can be decomposed into l disjoint subsets
Al , l = {1, 2, · · · , N

|Al |
}, i.e., A =

⋃
l
Al , for simplicity,

we assume that N can be divided by |Al |. When i 6= j, for
∀ai, aj ∈ Al , we can obtain yi = yj. Here, |Al | represents the
number of training instances in Al . Alg denotes an arbitrary
subset of Al , i.e., Alg ⊆ Al . For ∀ai ∈ Al , the following
formula is obtained according to the extreme points principle.

h(ai,Alg) =min
ρ̄i
‖ai −

∑
at∈Alg

ρi,tat‖2,

s.t. 0 ≤ ρi,t ≤ 1, and
∑
at∈Alg

ρi,t = 1. (5)

A∗l can be defined as an approximate extreme points set of
Al ,if it satisfies the following formula.

max
ai∈Al

h(ai,A∗l ) ≤ ε. (6)

Therefore, the representative set A∗ of A can be obtained as
follows.

A∗ =

N
|Al |⋃
l=1

A∗l (7)

We can get the representative set of Xqj as Xq
∗

j := {xt |at ∈
A∗, xt ∈ Rd , t = 1, 2, · · · ,M} and its label set as Yq∗j =
{yt |yt ∈ {−1, 1}, t = 1, 2, · · · ,M}. The data size of Xq

∗

j
is much smaller than that of Xqj, and it contains almost
all important information of Xqj. The time complexity of
representative set solution is linear with the size of Xqj.

C. SVM BY COMBINING APPROXIMATE EXTREME POINTS
METHOD AND DIVIDE-AND-CONQUER STRATEGY
The obtained Xq

∗

j and its corresponding label set Yq∗j are
applied to train SVM. The primal optimization problem of
SVM can be transformed into the following quadratic opti-
mization problem, the equation is as below.

min
α h(α) =

1
2
αT κα − eTα,

s.t. 0 ≤ αt ≤ C (8)

Equation 8 is a standard C-SVM model. The parameter C is
used to balance the model complexity and the sum of losses

of training data set, α ∈ RM is the vector of dual variables.
e ∈ 1M is a vector of all ones, αt is the t-th dual variable. κ is
a M ×M matrix, κtf = ytyf K (xt , xf ), where K (xt , xf ) is the
kernel function. By solving equation 8, we can get the optimal
solution α∗. Then we search for the α∗t of α∗ in section (0,C)
to calculate b∗, the equation is as below.

b∗ = yt −
M∑
t=1

ytα∗t K (xt , xf ) (9)

Finally, we construct decision function hqj (x) to realize clas-
sification and the equation is as below.

hqj (x) = sgn(
M∑
t=1

ytα∗t K (xt , x)+ b∗) (10)

Although SVM using approximate extreme points method
has good classification performance, its use in large-scale
data sets will be still restricted by excessive computational
complexity. In [27], the author proposed the DC-SVM algo-
rithm, in which the divide-and-conquer strategy is used and
the training speed is improved greatly. But it has the fol-
lowing problems: firstly, the whole problem is partitioned
by the unsupervised kernel kmeans clustering method, which
will easily lead to the singular problems; secondly, it is
difficult to balance the computation among subproblems.
Therefore, we will propose an algorithm in which the approx-
imate extreme points method and divide-and-conquer strat-
egy are combined to improve SVM, namely AEDC-SVM.
FIGURE 2 shows the improvement of AEDC-SVM. The
steps are as follows.

(1) AEDC-SVM uses the approximate extreme points
method to obtain the representative set Xq

∗

j and its corre-
sponding label set Yq∗j .

(2) Divide Xq
∗

j into Xq
∗+

j and Xq
∗−

j according to the
positive and negative labels.

(3) The kernel kmeans algorithm is used to obtainw cluster
centers, i.e. {c+1 , · · · , c

+
w }, {c

−

1 , · · · , c
−
w }, and w cluster sub-

sets i.e. {V+1 , · · · ,V
+
w }, {V

−

1 , · · · ,V
−
w } of Xq

∗+

j and Xq
∗−

j
respectively.

(4) According to the distance between positive and neg-
ative clustering centers from near to far, the combined w
representative subsets are obtained, i.e., {V1, · · · ,Vw}.

(5) Each combined representative subset Vv can be trained
on SVM efficiently and independently with the following
equation.

min
α(v)

h(α(v)) =
1
2
αT(v)κ(v,v)α(v) − eT(v)α(v),

s.t. 0 ≤ α(v)t ≤ C (11)

where v = {1, · · · ,w}, α(v) denotes the sub-vector composed
by Vv, {α(v)t |α(v)t ∈ Vv, t = 1, · · · , |Vv|}. κ(v,v) is a |Vv|×|Vv|
sub matrix. α(v)t is the t-th dual variable of α(v). e(v) ∈ 1|Vv| is
the vector of all ones.

(6) All subproblem solutions are integrated to initialize an
approximate whole solution ᾱ =

⌈
ᾱ(1), · · · , ᾱ(w)

⌉
. ᾱ(v) is

the optimal solution for the v-th subproblem. Above method
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FIGURE 2. The principle of AEDC-SVM.

can overcome the computation load imbalance problem and
avoid singular problems, and improve the classification per-
formance effectively.

Although the proposed AEDC-SVM can reduce the com-
putational complexity and has good performancewhen facing
large-scale data sets, it cannot solve the multi-label classifica-
tion problem and label imbalance issue.When facing the label
imbalance issue, AEDC-SVM tends to treat each instance as
negative instance. Therefore, the result has skewness. Setting
different punishment parameters to two kinds of instances can
solve the label imbalance issue. A larger value is set to Cwhen
facing few positive instances, which means more attention
is paid to the positive instance and the misclassification of
positive instance will be punished rigorously. This is the idea
of DEC method. Based on DEC method, we improve the
AEDC-SVM to solve the label imbalance issue. We improve
the original AEDC-SVM optimization problem according to
the following equation.

min
α(v)

h(α(v)) =
1
2
αT(v)κ(v,v)α(v) − eT(v)α(v),

s.t. 0 ≤ α(v)t ≤ C+, yt = +1,

0 ≤ α(v)t ≤ C−, yt = −1, (12)

where C+ and C− denote different punishment parameters.
It can be seen from formula 12 that by selecting different
penalty parameters C+ and C− for two kinds of instances,
the label imbalance problem can be effectively solved.

D. DESIGN AND IMPLEMENTATION OF AEDC-MLSVM
CLASSIFICATION ALGORITHM
The proposed AEDC-MLSVM classification algorithm
adopts the BR problem transformation strategy to implement
multi-label classification.

Firstly, it transforms the multi-label training data set into k
binary training data sets based on the number of labels. Each

binary training data set is composed of positive instances and
negative instances, and the number of instances of each binary
training data set is the same as that in the multi-label training
data set.

Secondly, for each binary training data set, we adopt
AEDC-SVM method to get its classifier hqj (x). The main
steps are as follows.

Step 1: The representative set is obtained by using the
approximate extreme points method.

Step 2: The representative set is divided into positive rep-
resentative set and negative representative set according to
positive and negative labels.

Step 3: m training instances are chosen randomly from the
positive representative set. Then the kernel kmeans algorithm
is run on the m training instances and w positive cluster
centers are constructed in the kernel space. After that, the w
cluster centers are used to separate the positive representative
set into w positive subsets.

Step 4: m training instances are chosen randomly from the
negative representative set. Then the kernel kmeans algorithm
is run on the m training instances and w negative cluster
centers are constructed in the kernel space. After that, the w
cluster centers are used to separate the negative representative
set into w negative subsets.

Step 5: According to the distance between positive and
negative clustering centers from near to far, w representative
subsets are obtained by combining the positive and negative
subsets. Each representative subset contains positive and neg-
ative instances.

Step 6: Each representative subset can be trained on the
improved LIBSVM algorithm and the vector of dual variables
are obtained, i.e., ᾱ(v) represents the optimal solution for the
v-th representative subset. The improved LIBSVM is used
because it is the combination of DEC method and SMO
algorithm.

VOLUME 8, 2020 170971



Z. Sun et al.: Efficient Multi-Label SVM Classification Algorithm

Step 7: The vector of dual variables of representative set is
obtained by integrating each representative subset ᾱ(v), i.e.,
ᾱ =

⌈
ᾱ(1), · · · , ᾱ(w)

⌉
. Then the classifier hqj (x) is obtained.

Finally, we integrate the results of each classifier hqj (x) by
formulas 2 and 3, and efficient multi-label classification is
achieved. The pseudocode of AEDC-MLSVM classification
algorithm is shown in Algorithm 1.

Algorithm 1 AEDC-MLSVM Classification Algorithm
Input :
D training data set{(xi,Yi) |i = 1, · · · ,N };
Q the set of all labels {q1, q2, · · · , qk };
x testing data {x ∈ Rd }; k total number of labels;
P maximum size of subsets after first level partition;
V maximum size of subsets after second level partition;
ε minimal positive real constant;
β positive real constant; w number of cluster centers;
Output:
Y the prediction label set of x
begin
1) Transform multi-label training data set D into k binary
training data sets with the BR problem transformation strategy,
i.e., Dq1,Dq2, · · · ,Dqk .
2) for each binary training data set obtained
Dqj(qj ∈ Q, j = 1, 2, · · · , k) do

(a) Get the representative set Dq∗j of Dqj:
[Dq∗j , ρqj] = ImpAEPoints(Dqj,P,V , ε), according to

formulas 5, 6 and 7.
(b) Dq∗j is divided into Dq∗+j and Dq∗−j according to the
positive and negative labels.
(c) For Dq∗+j and Dq∗−j

[1] Randomly select m instances from Dq∗+j and Dq∗−j
respectively;

[2] Run the kernel kmeans algorithm on m instances to
construct w cluster centers,i.e., {c+1 , · · · , c

+
w }. Use the w

cluster centers to separate Dq∗+j into w subsets, i.e.
{V+1 , · · · ,V

+
w };

[3] Run the kernel kmeans algorithm on m instances to
construct w cluster centers,i.e., {c−1 , · · · , c

−
w }. Use the w

cluster centers to separate Dq∗−j into w subsets, i.e.
{V−1 , · · · ,V

−
w };

(d) Calculate the distances of
{(c+1 , c

−

1 ), · · · , (c
+

1 , c
−
w ), (c

+

2 , c
−

1 ), · · · , (c
+
w , c
−
w )}

respectively. According to the distance from near to far,
obtain w representative subsets of mutual exclusion, i.e.
{V1, · · · ,Vw};
(e) for each representative subset V v(v = 1, · · · ,w) do

Use LIBSVM (V v,β) to obtain the optimal solution,
i.e., ᾱ(v), with the formulas of 11 and 12.

end
(f) Get hqj (x) of Dq

∗
j according to ᾱ =

⌈
ᾱ(1), . . . , ᾱ(w)

⌉
and the formulas of 9 and 10;

end
3)Get the prediction label set Y of x .
if all hqj (x) < 0(j = 1, 2, · · · , k) then
Y = {j, s.t.max hqj }, based on formula 3.

else
Y = {j, s.t.hqj > 0}, based on formula 2.

end
4) return Y .

Through the introduction of AEDC-SVM in the previ-
ous subchapter, we can expect that the AEDC-MLSVM

classification algorithm with non-linear kernel can have
good performance in large-scale data sets. It will shorten
the training and testing time. Meanwhile, the performance
ofAEDC-MLSVM classification algorithm is similar to that
of ML-LIBSVM.

E. TIME AND SPACE COMPLEXITY ANALYSIS OF
AEDC-MLSVM CLASSIFICATION ALGORITHM
We know that the training time complexity of standard SVM
classification algorithm is O(N 3), and its space complexity
is O(N 2), where N represents the size of the training data
set. The time complexity of obtaining representative set with
approximate extreme points method is O(kN ). Because there
areM/w dual variables in formulas 11 and 12, the time com-
plexity of AEDC-MLSVM classification algorithm is at least
O(kM2/w), and its space complexity is O(kM2/w2), where
k represents the number of labels, w represents the number
of clustering centers, and M represents the size of represen-
tative set and it is far less than N . Therefore, the time-space
complexity of AEDC-MLSVM classification algorithm will
be greatly reduced, and it can be well applied to large-scale
multi-label data sets.

IV. EXPERIMENTS
A. DESCRIPTION OF THREE PUBLIC REAL-WORLD DATA
SETS
To confirm the effectiveness of the proposedAEDC-MLSVM
classification algorithm, wewill conduct experiments in three
public real-world data sets. TMC2007-500 is a text data set,
in which each instance represents an aviation safety report,
and each label represents a type of safety issues described in
the aviation safety report. In this data set, each aviation safety
report may contain multiple types of safety issues, that is,
multiple labels. Mediamill(exp1) is a video data set in which
each instance represents a video and each label represents an
annotation concept. In this data set, each video can contain
multiple annotation concepts, that is, multiple labels. Eukary-
oteGO is a bioinformatics data set, in which each instance
represents an protein sequence, and each label represents a
type of sub-cellular location. In this data set, each protein
sequence may contain multiple types of sub-cellular location,
that is, multiple labels. These data sets can be obtained from
public websites [28], and the detailed descriptions are shown
in TABLE 1.

TABLE 1. Three public real-world data sets.

B. THREE COMPARABLE MULTI-LABEL CLASSIFICATION
ALGORITHMS
To verify the advantages of AEDC-MLSVM classification
algorithm, we select three comparable multi-label classifi-
cation algorithms, i.e., ML-LIBSVM [12], ML-CVM [13]
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and ML-BVM [14]. These algorithms are implemented by
combining the BR problem transformation skills and exist-
ing single-label algorithms, i.e., LIBSVM, CVM and BVM.
As the benchmark algorithm of experiments, ML-LIBSVM
algorithm can achieve good classification performance, but
its training and testing time complexity is too high. ML-CVM
and ML-BVM algorithms are commonly used to improve
the training efficiency of multi-label classification. These
algorithms have been applied to many practical problems and
achieved good results.

C. FIVE COMMON EVALUATION INDEXES
Because of the characteristics of multi-label classification, its
evaluation index is more complex than that of single-label
classification. At present, many multi-label classification
evaluation indexes have been used [29]–[31]. Five common
evaluation indexes are chosen to evaluate the experimental
results. They are coverage, ranking loss, hamming loss, one-
error and average-precision.

(1) Coverage: it is applied to evaluate how many steps
are needed, on average, to move along the ranked label list
in order to get all the relevant labels of an instance. This
evaluation index is computed as follows.

Coverage =
1
N

N∑
i=1

max lj∈L ri
(
lj
)
− 1 (13)

here, ri
(
lj
)
represents the rank position of label lj in the label

set L.
(2) Ranking loss: it is applied to evaluate the average of

pairs of labels that are misordered for the instance. This
evaluation index is computed as follows.

Ranking loss =
1
N

N∑
i=1

1

|Yi||Ȳi|

∣∣{(lj, la) : ri (lj) > ri (la) ,
(
lj, la

)
∈ Yi × Ȳi

}∣∣ (14)

here, Ȳi represents the irrelevant label set of xi, |Ȳi| represents
the number of the irrelevant labels for xi.
(3) Hamming loss: it is applied to evaluate how many

times, on average, an instance-label pair is misclassified,
i.e., an irrelevant is predicted or a relevant label is not in
the prediction result. This evaluation index is computed as
follows.

Hamming loss =
1
N

N∑
i=1

Dif (Yi,Zi)
k

(15)

here, Dif (Yi,Zi) represents the symmetric difference for Yi
and Zi.

(4) One-error: it is applied to evaluate how many times
the top-ranked label is not in the possible label set. This
evaluation index is computed as follows.

One− error =
1
N

N∑
i=1

δ
(
arg minlj∈L ri

(
lj
))

(16)

here, arg minlj∈L ri
(
lj
)
represents the top-ranked label of xi.

If arg minlj∈L ri
(
lj
)
/∈ Yi, then δ

(
arg minlj∈L ri

(
lj
))
= 1,

otherwise 0.
(5) Average-precision: it is applied to evaluate the average

fraction of relevant labels ranked higher than a particular
label. This evaluation index is computed as follows.

Average− precision

=
1
N

N∑
i=1

1
|Yi|

∑
lj∈Yi

∣∣∣l ′j ∈ Yi : ri (l ′j) ≤ ri (lj) ∣∣∣
ri
(
lj
) (17)

The characteristics of these evaluation indexes are shown
in TABLE 2. In the value indication column, ↓ represents that
the smaller the value, the better the multi-label classification
performance. ↑ represents that the larger the value, the better
the multi-label classification performance.

TABLE 2. The characteristics of five common evaluation indexes.

D. EXPERIMENTAL SETUP AND RESULT ANALYSIS
In this experiment, the radial basis function, i.e., K (x, y) =
exp(−γ ‖x − y‖22) is used in the proposed AEDC-MLSVM
classification algorithm and the other three comparablemulti-
label classification algorithms. Symbol γ indicates the scale
factor of kernel and symbol ‖ · ‖2 indicates the Euclidean
distance. In order to obtain the optimal representative set,
parameters P, V and ε need to be set in AEDC-MLSVM
classification algorithm. And to obtain the optimal solution
of the divide-and-conquer strategy, parameters w and β also
need to be set. The meaning of the five parameters refers
to Algorithm 1. In addition, two parameters, i.e., judgment
basis of allowing termination e and loss function punishment
parameter C need to be set in the four multi-label classifica-
tion algorithms. For different data sets, above parameters are
obtained through cross validation. The experiment is run on
a computer with Intel i7-8565U CPU and 8GB RAM.

Through cross validation, the parameter settings of data set
TMC2007-500 are as follows, P = 30, V = 15, ε = 1.7,
w = 2, β = 3, e = 1.95e−5 and C = 4. TABLE 3 and
4 show the experimental results of four different multi-label
classification algorithms in this data set.

TABLE 3. Experimental results of data set TMC2007-500.

From TABLE 3 and 4, it can be seen that the per-
formance of AEDC-MLSVM on five common evaluation
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TABLE 4. Time cost of data set TMC2007-500.

indexes is pretty close to that of ML-LIBSVM, but its train-
ing and testing time only accounts for 27.9% and 23.4% of
ML-LIBSVM’s training and testing time respectively. At the
same time, the performance of AEDC-MLSVM on five com-
mon evaluation indexes is much better than that of ML-CVM
and ML-BVM, especially on average-precision, the value
rises at least 15.3%, and its training and testing time is less
than that of ML-CVM and ML-BVM.

Through cross validation, the parameter settings of data set
Mediamill(exp1) are as follows, P = 50, V = 30, ε = 0.2,
w = 2, β = 3.3, e = 1.95e−5 and C = 8. TABLE 5 and
6 show the experimental results of four different multi-label
classification algorithms in this data set.
TABLE 5. Experimental results of data set Mediamill(exp1).

TABLE 6. Time cost of data set Mediamill(exp1).

It can be seen from TABLE 5 and 6 that the performance
of AEDC-MLSVM on five common evaluation indexes is
similar to that of ML-LIBSVM, but its training and testing
time only accounts for 10.3% and 11.2% of ML-LIBSVM’s
training and testing time respectively. At the same time, the
performance of AEDC-MLSVM on the indexes of Hamming
loss, One-error andAverage-precision ismuch better than that
ofML-CVM andML-BVM, especially on average-precision,
the value rises at least 21.1%, and its training and testing time
is less than that of ML-CVM and ML-BVM.

Through cross validation, the parameter settings of data set
EukaryoteGO are as follows, P = 30, V = 14, ε = 3.34,
w = 2, β = 12, e = 1e−5 and C = 1/4. TABLE 7 and
8 show the experimental results of four different multi-label
classification algorithms in this data set.

TABLE 7. Experimental results of data set EukaryoteGO.

From TABLE 7 and 8, it can be seen that the per-
formance of AEDC-MLSVM on five common evaluation
indexes is pretty close to that of ML-LIBSVM, but its train-
ing and testing time only accounts for 23.5% and 9.5% of
ML-LIBSVM’s training and testing time respectively. At the
same time, the performance of AEDC-MLSVM on five com-
mon evaluation indexes is much better than that of ML-CVM

TABLE 8. Time cost of data set EukaryoteGO.

and ML-BVM, especially on average-precision, the value
rises at least 28.6%, and its training and testing time is less
than that of ML-CVM and ML-BVM.

V. CONCLUSION
In this paper, to solve the problem that the application
of multi-label SVM classification algorithm in large-scale
data sets is seriously restricted by heavy time complex-
ity, AEDC-MLSVM classification algorithm is proposed.
This algorithm improves the traditional multi-label SVM
classification algorithm by combining approximate extreme
points method and divide-and-conquer strategy, and the DEC
method is used to deal with the label imbalance problem.
All of these can greatly improve the applicability of this
algorithm in large-scale multi-label data sets. The experimen-
tal results in three public real-world data sets show that the
performance of AEDC-MLSVM algorithm is pretty close to
that of ML-LIBSVM on the five commonly-used evaluation
indexes, and superior to that of ML-CVM and ML-BVM. Its
training and testing time is reduced greatly. We will further
improve the classification performance of this algorithm by
using the correlation information among labels in the future.
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