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ABSTRACT In a graph G, two spanning trees T1 and T2 are rooted at the same vertex r . If, for every
v ∈ V (G), the paths from v to the root r in T1 and T2 are internally vertex-disjoint, they are called independent
spanning trees (ISTs). ISTs can be applied in numerous fields, such as fault-tolerant broadcasting and
secure message distribution. The (n,k)-star graphs Sn,k constitute a generalized version of the star network.
The method of constructing ISTs in (n,k)-star graphs remains unknown. In this paper, we propose one
recursive algorithm and one parallel algorithm for constructing ISTs on (n,k)-star graphs. The main ideas
of the recursive algorithm are to use induction to change small trees into large trees, to use a modified
breadth-first search (MBFS) traversal to create a frame for an IST, and to use a breadth-first search (BFS)
traversal to connect the rest of nodes. The main ideas of the parallel algorithm are to create frames through
MBFS traversals in parallel, and to use some specific rules to connect the rest of nodes in parallel. We also
present validation proofs for both algorithms, and analyze the time complexities of both algorithms. The
time complexity of the recursive algorithm in Sn,k is O(n × n!

(n−k)! ), where
n!

(n−k)! is the number of nodes
of Sn,k . The time complexity of the parallel algorithm can be reduced to O( n!

(n−k)! ) if the system has n − 1
processors computing in parallel. Both algorithms are correct with the stated time complexity values; the
parallel algorithm is more efficient than the recursive algorithm.

INDEX TERMS Independent spanning trees, (n,k)-star graphs, breadth-first search, recursive algorithm,
parallel algorithm.

I. INTRODUCTION
In a graph G, two spanning trees T1 and T2 are rooted at the
same vertex r . If, for every v ∈ V (G), the paths from v to
the root r in T1 and T2 are internally vertex-disjoint, they
are called independent spanning trees (ISTs). ISTs can be
applied in numerous fields, such as fault-tolerant broadcast-
ing and secure message distribution [1], [22]. Assume that a
network N has k ISTs rooted at node r , and N contains at
most k − 1 faulty nodes. These applications are illustrated as
follows [17]:

• In fault-tolerant broadcasting, node r broadcasts a mes-
sage to every non-faulty node v in N through the k ISTs.
Because the number of faulty nodes is less than k , at least
one of the k internally disjoint paths from r to v is fault
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free; this promises the message can be delivered to every
node in N reliably;

• In secure message distribution, node r divides a message
into k packets, and sends each packet to the destination
through a different IST. Thus, each node in N receives
at most one of the k packets except the destination node,
which receives all k packets.

Scholars have described how to construct ISTs in graphs.
Zehavi and Itai proposed a conjecture that there exist k ISTs
in a k-connected graph [28]. The conjecture has been proven
correct for k-connected graphs such that k ≤ 4 [9], [12], [18],
but it is still unknown for graphs such that k ≥ 5. However,
the problem is considerably challenging for arbitrary graphs,
and from 2007 to 2020, researchers have published studies on
specifying ISTs in interconnection networks.

The constructions of ISTs on several interconnection net-
works have been solved, including crossed cubes [7], Möbius
cubes [8], twisted cubes [24], locally twisted cubes [13], [21],
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hypercubes [26], parity cubes [23], folded hypercubes [27],
and bubble-sort networks [19], [20], alternating group net-
works [16]. In those studies, some parallel algorithms have
been proposed on twisted cubes [5], locally twisted cubes [4],
parity cubes [3], and hypercubes [25], [26]. To the best of
our knowledge, the method of constructing ISTs in (n,k)-star
graphs is still unknown. In this paper, we concentrate on
(n,k)-star graphs.
An (n, k)-star graph Sn,k refers to a generalized version

of an n-star graph Sn, where Sn,n−1 and Sn are isomorphic
and Sn,1 is obviously a complete graph Kn. Scholars have
computed or derived some basic properties of graphs of the
form Sn,k , such as diameter [10], connectivity [10], broadcast-
ing [6], average distance [11], embedding [2], Hamiltonic-
ity [14], spanning connectivity [15], and wide diameter [15].
These results demonstrate that Sn,k graphs have excellent
topological properties.

In this paper, we propose one recursive algorithm and one
parallel algorithm. Both of which construct ISTs in (n,k)-star
graphs. The main ideas of the recursive algorithm are to use
induction to extend small trees into big trees, use a modified
breadth-first search (MBFS) traversal to create a frame of an
IST, and use a breadth-first search (BFS) traversal to connect
the remaining nodes. The main ideas of the parallel algorithm
are to create frames through MBFS traversals in parallel and
use the specific rules to connect the rest of nodes in parallel.
In this paper, we validate both algorithms, and analyze the
time complexity of both algorithms. The time complexity of
the recursive algorithm in Sn,k is O(n× n!

(n−k)! ), where
n!

(n−k)!
is the number of nodes of Sn,k , whereas that of the parallel
algorithm can decline to O( n!

(n−k)! ) if the system has n − 1
processors computing in parallel. Both algorithms are correct
with the stated time complexity; furthermore, the parallel
algorithm is more efficient than the recursive algorithm.

The remainder of this paper is organized as follows:
Section II explains preliminary considerations, Section III
presents both algorithms, Section IV proves the relevant
claims, Section V analyzes and compares both algorithms,
and Section VI concludes the paper.

II. PRELIMINARY CONSIDERATIONS
Let 〈n〉 = {1, 2, . . . , n} and 〈k〉 = {1, 2, . . . , k}.
Definition 1 ( [10]): An (n, k)-star graph, denoted by Sn,k ,

is specified by two integers n and k , where 1 ≤ k < n.
The node set of Sn,k is denoted by {p1p2 . . . pk | pi ∈
〈n〉 and pi 6= pj for i 6= j}. The adjacency is defined as
follows: p1p2 . . . pi . . . pk is adjacent to

(1) pip2 . . . pi−1p1pi+1 . . . pk through an edge of dimen-
sion i, where 2 ≤ i ≤ k (swap p1 and pi) and

(2) xp2 . . . pk through dimension 1, where x ∈ 〈n〉 − {pi |
1 ≤ i ≤ k}.

The node of type (1) is referred to as friend i of
p1p2 . . . pi . . . pk , and the node of type (2) is referred to as
child z of p1p2 . . . pi . . . pk , where z is the ordinal number of x
in 〈n〉 − {pi | 1 ≤ i ≤ k} in ascending order.

S3,1 is depicted in Figure 1. Node 3 has two children,
namely node 1 (child 1) and node 2 (child 2). S4,2 is dis-
played in Figure 2. Node 34 has two children and one friend
as presented in Figure 3. S5,3 consists of 60 nodes and
120 edges, as displayed in Figure 4, and is composed of five
instances S4,2.

FIGURE 1. S3,1.

FIGURE 2. S4,2.

FIGURE 3. Children and friend of node 34 in S4,2.

FIGURE 4. S5,3.

Like the n-star graph Sn, an Sn,k can be decomposed into n
instances of Sn−1,k−1. That is, an Sn,k can be decomposed
into n vertex-disjoint instances of Sn−1,k−1 in k − 1 dif-
ferent ways by fixing the symbol in any position i, such
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that 2 ≤ i ≤ k . This decomposition can be conducted
recursively on each Sn−1,k−1 to obtain smaller subgraphs.
Lemma 1 ([10]): (n, k)-star graphs is vertex symmetric.

According to Lemma 1, any node in Sn,k can be the root in
the process of constructing ISTs.
Lemma 2 ([10]): (n, n−1)-star graph Sn,n−1 is isomorphic

to the n-star graph Sn

III. ALGORITHMS
Notations used here are defined as follows:

• the root: node (n− k + 1)(n− k + 2)(n− k + 3) . . . n;
• cluster A: a set of nodes whose last symbol is A;
• the root cluster: the set of nodes whose last symbol is
identical to that of the root. In Sn,k , the root cluster is
cluster n;

• frame: a set of nodes with the same last symbols created
by buildFrame function, which is defined later in a later
passage;

• germ: the starting node of a frame;
• T n,kj : the jth IST of Sn,k , and the last symbol of its frame
is j;

• tid : the last symbol of the germ, namely j of T n,kj .

Sn,k is partitioned into n instances of Sn−1,k−1. Every node
is classified into a cluster by its last symbol. Thus, Sn,k has
n clusters. For example, S4,2 can be divided into four
instances of S3,1. S4,2 has four clusters, as illustrated
in Figure 5.

FIGURE 5. Four clusters of S4,2.

Each node in Sn−1,k−1 can be transformed into some node
in Sn,k if one symbol n is appended to the tail of the sequence
in the k position. We thus construct the ISTs of Sn,k by taking
advantage of that of Sn−1,k−1.
In Sn,k , the root is incident to n − 1 edges and adjacent to

n−1 nodes. Considering the n−1 nodes adjacent to the root,
n− 2 nodes can be constructed from the nodes in Sn−1,k−1 if
one symbol n is appended to the kth position, but the friend k
is a new node. Each of the n−2 nodes except for friend 2 has
a new edge that is adjacent to a node that is called a germ
and the friend k itself is also a germ. We use germs to create
a frame to connect other clusters.

The concept is illustrated in Figure 6. Each of the central
white nodes can be formed from some node in Sn−1,k−1
if a single symbol n is appended to the kth position.

FIGURE 6. Germs (ri = n− k + i ; hence, rk = n).

Child 1 of the root in Sn,k uses its new edge to make the germ
of T n,k1 . Child 2 of the root in Sn,k uses its new edges to make
the germ of T n,k2 . The root in Sn,k uses its new edge to make
the germ of T n,kn−k+1, namely friend k . Friends 3 to k−1 of the
root in Sn,k use their new edges to make the germs of T n,kn−k+3
to T n,kn−1. T

n,k
n−k+2 does not conduct any buildFrame func-

tion; consequently, it has no germ, and that is why we skip
friend 2 in Figure 6.
Basic variable and functions:
• tary: an array of ISTs of this iteration; it is a
two-dimensional array, and tary[tid][node] stores its
parent. Therefore, every IST includes all nodes. If the
node has not yet been traversed, tary[tid][node] = −1.

• ptary: an array of the trees of the previous iteration.
• dedge: an associative array for storing all direct
edges only used in the recursive algorithm. Initially,
a dedge[from][to] = 1 means an unused direct edge; a
dedge[from][to] = 0 means a used direct edge.

• function getChild(parent): returns the children of
parent .

• function getFriend(parent , p): returns the friend p of
parent by swapping the first and the pth symbols of
parent .

• function checkChild(tary, tid , dedge, parent , children):
returns true if any child of parent in children is unvisited
in Tree tid , false otherwise. dedge is not required and set
to false in the parallel algorithm.

A. buildFrame FUNCTION
A frame tree can be constructed from a germ through a mod-
ified BFS (MBFS) traversal. However, the MBFS traversal
must stop when it encounters a node of which the last symbol
differs from that of the germ.

BFS order. In the buildFrame function, each node in frQue
must traverse all unvisited nodes connected to it in this order:

1. child 1,2, 3 . . ., n− k;
2. friend 2, 3, 4, . . ., k − 1.
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Function checkChild(tary, tid , dedge, parent , children)
Input : tary, tid , dedge, parent , children
Output: true or false

1 for each child c in children do
2 if dedge == false then
3 if tree[tid][c] == −1 then
4 return true;

5 else
6 if tree[tid][c] == −1 and

dedge[parent][c] == 1 then
7 return true;

8 return false;

MBFS traversal. Because Sn,k is symmetric, some child c
of one node v may be traversed by another node w earlier.
In such case, we should transfer c’s parent from w to v. For
instance, in Sn,n−2, the graph presented in Figure 7(a) occurs.
We set the edge (marked with a blue X) from used to unused
and use another edge (marked with a blue arrow) to traverse c.
Hence, the triangle shape is retained. Figure 7(b) illustrates
this idea.

FIGURE 7. BFS and MBFS traversals.

For example, in Figures 8, 9, and 10, the frame nodes
of T 5,3

1 , T 5,3
2 , and T 5,3

3 are indicated by ellipses with blue
borders.

B. BuildLeaf FUNCTION
The buildLeaf function connects all unvisited nodes one step
at a time from a tree after the buildFrame function. For
example, in Figure 11, the leaf nodes of T 5,3

4 in the first, sec-
ond, third, and fourth buildLeaf executions are indicated by
ellipses with brown, gold, gray, and red borders, respectively.

C. RECURSIVE ALGORITHM
The recursive algorithm is presented in Algorithm 1.
Sn−k+1,1, the basic part, is a complete graph, hav-

ing n − k independent spanning trees that are illustrated
in Figure 12.
Copy previous trees.At the end of each iteration, the trees

that had been used must be stored in a tree array called ptary
so that correct information can be used in the next iteration.
At the start of every iteration, the program should copy previ-
ous trees to the tree array tary. Table 1 presents the mapping

Function buildFrame(tary, tid , dedge, germ)
Input : tary, tid , germ
Output: the frame of tary[tid]

1 frQue = array(germ); F Put germ into frQue.
2 for j = 0; j < |frQue|; j = j+ 1 do
3 v = frQue[j]; F the (j+ 1)th element of frQue
4 children = getChild(v);
5 // any child unvisited
6 if checkChild(tary, tid, dedge, v, children) then
7 for each element c in children do
8 if c has been visited then
9 remove c from frQue;
10 dedge[tary[tid][c]][c]++;
11 // Set the edge (from c’s parent to c)
12 // unused (from 0 to 1).

13 // visit child c
14 tary[tid][c] = v; F (1)
15 dedge[v][c] = 0; F (2)
16 frQue[] = c; F (3)

17 // visit friend 2 to |germ| − 1
18 for i = 2; i ≤ the number of symbols of germ− 1;

i = i+ 1 do
19 fd = getFriend(v, i);
20 if tary[tid][fd] == 0 and dedge[v][fd] == 1

then
21 tary[tid][fd] = v; F (1)
22 dedge[v][fd] = 0; F (2)
23 frQue[] = fd ; F (3)

24 // (1)Set its parent.
25 // (2)Set the edge used (from 1 to 0).
26 // (3)Put it into frQue.
27 // Red text indicates a portion that differs from the
28 // buildFrameP function.

TABLE 1. Tree id and previous tree id mapping.

a new tree and an old tree. In a typical iteration, T n,k1 copies
information from T n−1,k−11 and T n,kn−1 copies information from
T n−1,k−1n−k+1 . T n,kn−k+1 is a new tree, and thus no previous tree is
copied.

Create a framelist. A framelist is an array for storing the
germs. The germs are created from the root. In S4,2, we can
create three germs, namely 41, 42, and 43 to establish frames,
as illustrated in Figure 13.

For example, S5,3 has four trees and three germs: 541 in
T 5,3
1 , 542 in T 5,3

2 , and 543 in T 5,3
3 , as presented Figures 8, 9,

and 10, respectively. As indicated in Figure 11, T 5,3
4 does

not execute any buildFrame function, but it does conduct
buildLeaf functions.
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FIGURE 8. T 5,3
1 germ: 541 (underlined). Frame nodes (blue border), and leaf nodes (brown, gold, and

gray border).

FIGURE 9. T 5,3
2 germ: 542 (underlined). Frame nodes (blue border), and leaf nodes (brown, gold, and gray

border).

FIGURE 10. T 5,3
3 germ: 543 (underlined). Frame nodes (blue border), and leaf nodes (brown, gold, and

gray border).

D. BuildFrameP FUNCTION
The frame of an IST comprises nodes of the same tail portion
within this IST. The frame of an IST can be constructed
from a germ through a modified breadth-first search (MBFS)
traversal displayed in Figure 7. However, the MBFS traversal

must stop when it encounters a node of which the last tailN
symbol(s) differ(s) from that of the germ.

BFS order. In the buildFrameP function, every node in
frQue queue must visit all hitherto unvisited nodes connected
to it in the following order:
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FIGURE 11. T 5,3
4 . No germ exists no buildFrame operation exists. Leaf nodes (brown, gold,

gray, and red border).

FIGURE 12. n− k ISTs of Sn−k+1,1.

1. child 1,2, 3 . . . , n− k;
2. friend 2, 3, 4, . . . , k − tailN .
In Figure 14, 15, 16, 17, and 18, the frame nodes are

underlined. The buildFrameP function will not encounter any
node whose last tailN symbol(s) is(are) different from that of
the germ because it does not visit the last tailN friend(s).

E. FindParent FUNCTION
Let Framen,kj denote that the frame of T n,kj . In T n,kj construc-
tion, each unvisited node child whose last symbol is z should
be connected to Framen,kj after the buildFrameP functions.
The findParent function is used to find the parent of child
in T n,kj by means of the findTarget function according to the
following rules.

• P1 rule:
If child’s first symbol is j, the findTarget function swaps
the first and last symbols of child to return the target
node;

• P2 rule:
If child’s first symbol is not j, the findTarget function
moves j to first position of child by child, or friend
operation to return the target node;

• P3 rule:
If the target node has been used by Framen,kz , the target
is changed to n − k + 2, and the findTarget function is
used again to move n− k + 2 to the first or last position
of child to return another target node;

• Tn−k+1 rule:
If child is in the root cluster and j is n − k + 1, the

FIGURE 13. Germs, frame nodes, and leaf nodes in S4,2.

findParent function swaps the first and last symbols of
child to form its parent.
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Function buildLeaf(tary, tid , dedge, first , n, k)
Input : tary, tid , dedge, first , n, k
Output: nodes can be visited by tary[tid] in a step

1 // global means using global variable
2 global lfQue; F a two-dimensional array storing
3 F nodes visited by Ttid not to visit all nodes next time
4 global lfQIx; F the starting position in lfQue[tid]
5 if first == true then
6 // first execution
7 for every node v in tary[tid] do
8 //only T n,kn−k+2 can grow from the root cluster
9 if v has parent and ( ( tid 6= n− k + 2 and the

last symbol of v 6= the last symbol of the root) or
tid == n− k + 2) then

10 children = getChild(v);
11 for each element c in children do
12 // visit child c
13 if tary[tid][c] == 0 and

dedge[v][c] == 1 then
14 tary[tid][c] = v; dedge[v][c] = 0;
15 lfQue[tid][] = c; F (1)(2)(3)

16 // visit the friend 2 to k
17 for i = 2; i ≤ k; i = i+ 1 do
18 fd = getFriend(v, i);
19 if tary[tid][fd] == 0 and

dedge[v][fd] == 1 then
20 tary[tid][fd]=v; dedge[v][fd]=0;
21 lfQue[tid][] = fd ; F (1)(2)(3)

22 else
23 qs = count(lfQue[tid]); F the size of lfQue[tid]
24 // New element will be put into lfQue[tid], but
25 // will be checked in next execution.
26 for y = lfQIx[tid]; y < qs; y = y+ 1 do
27 v = lfQue[tid][y];
28 children = getChild(v);
29 for each element c in children do
30 // visit child c
31 if tary[tid][c] == 0 and dedge[v][c] == 1

then
32 tary[tid][c] = v; dedge[v][c] = 0;
33 lfQue[tid][] = c; F (1)(2)(3)

34 // visit the friend 2 to k
35 for i = 2; i ≤ k; i = i+ 1 do
36 fd = getFriend(v, i);
37 if tary[tid][fd] == 0 and

dedge[v][fd] == 1 then
38 tary[tid][fd] = v; dedge[v][fd] = 0;
39 lfQue[tid][] = fd ; F (1)(2)(3)

40 lfQIx[tid] = y; F the position for next execution

41 // (1)Set its parent. (2)Set the edge used (from 1 to 0).
42 // (3)Put it into lfQue[tid].

Algorithm 1 Recursive Algorithm
Input : n and k F the dimensions of Sn,k
Output: the ISTs from Sn−k+1,1 to Sn,k

1 for t = n− k + 1; t ≤ n; t = t + 1 do
2 if t == n− k + 1 then
3 basic part, a complete graph;

4 else if t ≥ n− k + 2 then
5 Copy previous trees of the previous iteration to

the trees of this iteration;
6 Create a framelist; F an array storing germs
7 for every germ in the framelist do
8 Execute buildFrame function; F (1)

9 // buildLeaf block
10 if t == n− k + 2 then
11 // Sn−k+2,2 executes buildLeaf function
12 // three times.
13 for i = 0; i < 3; i = i+ 1 do
14 for j = 1; j ≤ t − 1; j = j+ 1 do
15 if i == 0 then
16 buildLeaf(tary, j, dedge, true, n,

k);
17 else
18 buildLeaf(tary, j, dedge, false, n,

k);

19 else if t ≥ n− k + 3 then
20 // Every tree executes buildLeaf function
21 // four times.
22 for i = 0; i < 4; i = i+ 1 do
23 for j = 1; j ≤ t − 1; j = j+ 1 do
24 if i == 0 then
25 buildLeaf(tary, j, dedge, true, n,

k);
26 else
27 buildLeaf(tary, j, dedge, false, n,

k);

28 buildLeaf(tary, n− k + 1, dedge, true, n, k);
F (2)

29 ptary = tary;
30 F tary must be stored to use in next iteration.

31 /* Comments:
32 (1) Tree n− k + 2 executes a buildLeaf function to

produce friends along the root cluster, Tree n− k + 2
first occurs in Sn−k+3,3, and it copies Tree n− k + 1 of
Sn−k+2,2 to its own tree array, namely tary[n− k + 2].

33 (2) Relative to the other trees, Tree n− k + 1 needs one
more buildLeaf function to connect the root cluster. */

Basic function:

• substring(string, start , length): returns length symbols
of string from the startth position. Suppose the position
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Function buildFrameP(tary, tid , germ, tailN )
Input : tary, tid , germ, tailN
Output: the frame of tary[tid] whose last tailN

symbol(s) is(are) fixed
1 frQue=array(germ); F Put germ into frQue
2 F initially.
3 for j = 0; j < |frQue|; j = j+ 1 do
4 v = frQue[j]; F the (j+ 1)th element of frQue.
5 children = getChild(v);
6 // any child unvisited
7 if checkChild(tary, tid, false, v, children) then
8 for each element c in children do
9 if c has been visited then
10 remove c from frQue;

11 // visit child c
12 tary[tid][c] = v; F Set c’s parent.
13 frQue[] = c; F Put c into frQue.

14 // visit the friend 2 to |germ| − tailN
15 for i = 2; i ≤ the number of symbols of

germ− tailN ; i = i+ 1 do
16 fd = getFriend(v, i);
17 if tary[tid][fd] == 0 then
18 tary[tid][fd] = v; F Set fd’s parent.
19 frQue[] = fd ; F Put fd into frQue.

20 // Red text indicates a portion that differs from the
21 // buildFrame function.

Function findTarget(child , target)
Input : child , target
Output: child’s target node

1 p = the position of target in child ;
2 if p == false then
3 return target+substring(child , 2, the length of child -

1); F target is not in child .

4 else if p == 1 then
5 // Swap the first and last symbols of child .
6 return getFriend(child , the length of child);
7 F P1 or P3 rule (target is n− k + 2).

8 else
9 return getFriend(child , p);
10 F Swap the first and pth symbols of child .

starts at 1. If start > |string| or length = 0, an empty
string is returned.

If the last symbol of child is identical to the dimension
n of Sn,k , we can reduce the dimension until the last sym-
bol of child is not identical to the dimension n of Sn,k .
According to Table 2, the (n − k + 1)th IST in Sx,x−n+k is
part of the last IST Sx+1,x+1−n+k . Namely T x,x−n+kn−k+1 is used
by T x+1,x+1−n+kx .

Function findParent(tary, tid , child , diff )
Input : tary, tid , child , diff F diff = n− k ,

F where n and k are the dimensions of Sn,k
Output: child’s parent in tary[tid]

1 len = the number of child’s symbols; F len is the
2 F original dimension k of Sn,k .
3 dim = 0; F dim is the reduced dimension k of Sn,k .
4 ls = empty string; F the last symbol
5 // reduce the dimensions of Sn,k
6 for dim = len; dim ≥ 2; dim = dim− 1 do
7 ls = child’s dimth symbol;
8 if ls 6= dim+ diff then
9 break; F The dimension has been confirmed.

10 else if tid > diff + 1 and tid==dim+ diff − 1 then
11 tid=diff+1; F Because T x,x−n+kn−k+1 is used by
12 F T x+1,x+1−n+kx .

13 else if tid==diff+1 then
14 return getFriend(substring(child , 1, dim), dim) +

substring(child , dim+ 1, len− dim);
F Tn−k+1 rule

15 front = substring(child , 1, dim);
16 back = substring(child , dim+ 1, len− dim);
17 // back is the last n− dim symbol(s) of child which
18 // is(are) identical to that of the root.
19 // back may be a empty string if the last symbol of
20 // child is not equal to that of the root initially.
21 if tid == diff + 2 then
22 temp = findTarget(front , dim);
23 F Because Tn−k+2’s frame is the root cluster.

24 else
25 temp = findTarget(front , tid);

26 if ls == diff + 2 then
27 return temp+ back; F P2 rule.
28 // Because Tn−k+2’s frame is the root cluster,
29 // the target node is not used by Framen,kn−k+2.

30 else if ls == diff + 1 and dim < len and
tary[dim+ diff ][child] == temp+ back then

31 return findTarget(front , diff + 2)+back;
32 F P3 rule.
33 F Because T x,x−n+kn−k+1 is used by T x+1,x+1−n+kx .

34 else if tary[ls][child] == temp+ back then
35 return findTarget(front , diff + 2)+back;
36 F P3 rule.

37 else
38 return temp+ back; F P1 or P2 rule.

F. PARALLEL ALGORITHM
The parallel algorithm is presented in Algorithm 2.

Construct the n− k ISTs of Sn−k+1,1 by hand. Sn−k+1,1
has n− k ISTs illustrated in Figure 12.
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Algorithm 2 Parallel Algorithm
Input : n and k F the dimensions of Sn,k
Output: the ISTs of Sn,k

1 Construct the n− k ISTs of Sn−k+1,1 by hand;
2 if n ≥ n− k + 2 then
3 Create a FrameGermSet; F See Algorithm 3.
4 for each germ in the FrameGermSet do in parallel
5 Execute buildFrameP function;

6 for j = 1; j ≤ n− 1; j = j+ 1 do in parallel
7 for each node v in T n,kj do in parallel
8 if v has no parent then
9 Find and set v’s parent;

Algorithm 3 Create a FrameGermSet
Input : n and k F the dimensions of Sn,k
Output: a FrameGermSet

1 children = getChild(root);
2 for w = 2; w ≤ k; w = w+ 1 do
3 glist is an array (a map) that associates

values (germs) to keys (tid).
4 temp = n− k + 1;
5 if w+ n− k < n then
6 temp = w+ n− k; F Because Tw+n−k,wn−k+1 is
7 F used by Tw+1+n−k,w+1w+n−k .

8 // Put germs into glist[tid] for T1 to Tn−k .
9 for each child i in children do
10 glist[i] = getFriend( child i, w );
11 tary[i][glist[i]] = child i;
12 F Set the parent of Tw+n−k,wi ’s germ.

13 glist[temp] = getFriend(root , w); F Put the germ
14 F of Tw+n−k,wtemp into glist[temp].
15 tary[temp][glist[temp]] = root;
16 F If w+ n− k < n, set the parent of
17 F Tw+1+n−k,w+1w+n−k ’s germ. If w == n,
18 F set the parent of T n,kn−k+1’s germ.
19 // Put germs into glist[tid] for Tn−k+3 to
20 // Tn−k+w−1.
21 for i = 3; i <= w− 1; i = i+ 1 do
22 glist[i+n− k]= getFriend(getFriend(root ,i),w);
23 tary[i+ n− k][glist[i+ n− k]] =

getFriend(root , i); F Set the parent of germs
24 F from Tn−k+3 to Tn−k+w−1.

25 for each mapping (tid, germ) in glist do
26 Put (germ, tid , k − w+ 1) into FrameGermSet;

F k − w+ 1 is tailN .

G. CREATE A FrameGermSet
The germs are created from the root. In the recursive algo-
rithm to construct the ISTs of Sn,k , we should construct the

FIGURE 14. Germs, tail portions, frames in S4,2.

ISTs of Sn−k+1,1 to Sn,k sequentially and iteratively. In the
iteration of Sx,x−n+k , the ISTs of Sx,x−n+k must be retained
in the next iteration to construct ISTs of Sx+1,x+1−n+k as
presented in Table 2. The meanings of the symbols in Table 2
are as follows:

• Hand: the IST is constructed by hand;
• New: the IST is constructed without copying the previ-
ous ISTs;

• space: No IST exists;
• T x−1,x−1−n+kj : in a lattice(Sx,x−n+k , Ty), nodes of

T x−1,x−1−n+kj are appended a symbol x and becomes
part of T x,x−n+ky .

In the parallel algorithm, we create all germs initially,
and then construct all ISTs in table 2 except for T n−k+1,11 ,
T n−k+1,12 , . . . , T n−k+1,1n−k (constructed by hand), and T n−k+3,3n−k+2 ,
T n−k+4,4n−k+2 , T n−k+5,5n−k+2 . . .T n−1,k−1n−k+2 (no buildFrame operation
required) in parallel. Notably, n − k + 1th IST in Sx,x−n+k
must be part of the last IST of Sx+1,x+1−n+k . Namely
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TABLE 2. The previous ISTs used in each dimension of Sn,k .

FIGURE 15. Germs (gray nodes): 415 (tailN 2) and 541 (tailN 1); tail portions (black words); frames (underlined) of T 5,3
1 .

T x,x−n+kn−k+1 is used by T x+1,x+1−n+kx . The process is presented
in Algorithm 3.

A FrameGermSet stores elements whose data structure as
below:

• a germ;
• tid to indicate which IST uses the germ to create a frame;
• a tail number denoted by tailN to indicate the number
of last symbols of a node identical to that of the germ,
namely the tail portion. If tailN ≥ 2, the last tailN − 1
symbol(s) of the tail portion is(are) identical of that of
the root, and the dimension term of Sn,k changes from
(n, k) to (n− tailN + 1, k − tailN + 1).

In S4,2, to establish frames, we can create three germs: 41,
42, and 43. The tail number of each is 1. They are represented
as gray nodes in Figure 14. In S5,3 has four ISTs and six
germs: 415 (tailN is 2) and 541 (tailN is 1) of T 5,3

1 , 425
(tailN is 2) and 542 (tailN is 1) of T 5,3

2 , 543 (tailN is 1) of
T 5,3
3 , and 435 (tailN is 2) of T 5

4 as gray nodes presented
in Figures 15, 16, 17, and 18, respectively. Tree n−k+2 does
not execute any buildFrame function in Sn−k+3,3 to Sn,k , but
T n−k+2,2n−k+1 is used by T n−k+3,3n−k+2 . The tail portion is represented
as black symbols behind nodes.

H. PATH COMPOSITION
Finally, the outcome paths from the root to other nodes con-
tain the frame portions and the leaf portions, as illustrated

in Figure 19. The tree frames have germs, except in the case
of Tn−k+2.

Because Tn−k+2 done not execute any buildFrame func-
tion, it appends the last symbol of the root to its previous tree
as its frame. For instance, the green nodes in T 5,3

4 (Figure 11)
come from T 4,2

3 (Figure 13(c)), and the symbol 5 appended
to these nodes to form the frame of T 5,3

4 .

IV. PROOFS
Lemma 3: In Sn,k , each node belongs to a complete graph

of n− k + 1 nodes.
Proof: In Sn,k , each node has n − k children. Those

n−k+1 nodes are adjacent to each other and form a complete
graph. �
Lemma 4: In the frame portion, if one node has one child,

it must have the other n− k − 1 children.
Proof: The MBFS traversal is applied in the buildFrame

function; hence each parent will have n − k children in the
frame. �
Lemma 5: In Sn,k , each node supplies an incoming edge

for each tree.
Proof: We know that Sn,k is connected and n − 1 ISTs

exist. Assume that some node in Sn,k supplies its two incom-
ing edges to some tree, then this node must be traversed twice
by the tree. The situation is not reasonable, and will not occur.
This notion is represented in Figure 20, where different colors
represent different trees. �
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FIGURE 16. Germs (gray nodes): 425 (tailN 2) and 542 (tailN 1); tail portions (black words); frames (underlined) of T 5,3
2 .

FIGURE 17. Germ (gray node): 543 (tailN 1); tail portions (black words); frames (underlined) of T 5,3
3 .

FIGURE 18. Germ (gray node): 435 (tailN 2); tail portions (black words); frames (underlined) of T 5,3
4 .

Lemma 6: Each tree can traverse all nodes in cluster
n− k + 2 in at most two steps.

Proof:We know that Tn−k+2 does not execute any build-
Frame function. Thus, all edges in cluster n − k + 2 are not

used. In cluster n−k+2, each node is linked directly by some
tree. If some node in cluster n − k + 2 is not directly linked
by a tree, it can link its children and friends to reach the tree.
Let X = n− k+ 2. Consider one node cdX in cluster X . Tree
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FIGURE 19. Path composition.

FIGURE 20. Incoming and outgoing edges.

c links this node directly, and trees a, b, and d approach it in
two steps, as illustrated in Figure 21. �
Lemma 7: The possibilities are limited to only five pat-

terns: P1, P2, P3, P4, and P5 in the leaf portions of all ISTs
in Sn,k , as illustrated in Figure 22.

Proof:
Pattern P1:
Suppose the pattern of node v in Tx is P1. v is a leaf node

traversed by Tx in the first execution of buildLeaf function,
and v’s first symbol is x.
Pattern P2:
Suppose the pattern of node v in Tx is P2. v is a leaf

node traversed by Tx in the second execution of buildLeaf
function. v can approach Tx by its children or friends whose
first symbol is x.

Pattern P3:
Suppose that node v’s last symbol is A, and v wants a

middle node m to approach the frame of Tree x through m.
However, the edge from m to v is used in the frame of Tree A.
We know that Tree n−k+2 does not conduct any buildFrame
function and the last symbol of its frame nodes is the same as
the last symbol n of the root. Thus, node v takes advantage of
the symbol n− k+2 to find a node w according to Lemma 5.
w’s first symbol is n − k + 2. Finally, node w can use its
symbol x to approach the frame of Tree x.

P1, P2, and P3(type 1 and type 2) patterns are illustrated in
the following examples.

In S6,4, the ISTs have five paths from the root to node
5431 as follows:

3456→1456→6451→3451→5431 (frame)
3456→2456→6452→3452→5432→1432→2431→5431
(P2)
3456→6453→1453→4153→5143→1543→3541→4531
→5431(P3 type1)
3456→4356→1356→3156→5136→4136→1436→6431
→5431(P2)
3456→5436→6435→1435→5431 (P1)
Node 5431’s last symbol is 1; hence, node 5431 is T 6,4

1 ’s

FIGURE 21. Connections of cluster n− k + 2 (cluster X ).

FIGURE 22. Five leaf patterns.

frame node. In T 6,4
1 , node 3451 is node 5431’s parent, and

node 3451 use 3 to visit node 5431. Therefore, T 6,4
3 is not

able to use 3 to visit node 5431. Finally, node 5431 uses 4 to
reach the frame of T 6,4

3 .
In S6,4, the ISTs have five paths from the root to node 4351 as
follows:
3456→1456→6451→3451→4351 (frame)
3456→2456→6452→3452→4352→1352→2351→4351
(P2)
3456→6453→1453→4153→3154→1354→4351
(P3 type2)
3456→4356→1356→6351→4351 (P2)
3456→5436→6435→1435→4135→3145→1345→5341
→4351 (P2)
Node 4351’s last symbol is 1; hence, node 4351 is T 6,4

1 ’s
frame node. In T 6,4

1 , node 3451 is node 4351’s parent, and
node 3451 must use 3 to visit node 4351; Therefore, T 6,4

3 is
not able to use 3 to visit node 4351. Finally, node 4351 uses
4 to reach the frame of T 6,4

3 .
Pattern P4:
The concept of P4 is similar to that of P3. Suppose that

node v’s last symbol is A, and v wants a middle node m1 to
approach the frame of Tree x through m1. However, the edge
fromm1 to v is used in the frame of Tree A. Thus, node v takes
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advantage of the symbol n−k+2 to find a nodew according to
Lemma 5. w’s first symbol is n− k + 2. Then, node w wants
a middle node m2 to approach the frame of Tree x through
m2. However, the edge from m2 to w is still used in the frame
of Tree A. Thus, node w must take advantage of the symbol
n−k+2 to find a node z according to Lemma 5. Notably, w’s
first symbol is n−k+2; therefore z’s last symbol is n−k+2.
Node zmust use its symbol x to approach the frame of Tree x.
Node z only passes one node in cluster n− k + 2 to reach the
frame of Tree x according to Lemma 6.
The following example demonstrates P4 pattern. There are

five paths from the root to node 6421 in S6,4.
3456→1456→6451→2451→5421→6421 (frame)
3456→2456→6452→5462→1462→2461→6421 (P2)
3456→6453→2453→5423→1423→3421→6421 (P2)
3456→4356→1356→3156→2156→5126→4126→1426
→6421 (P1)
3456→5436→6435→4635→2635→3625→4625→5624
→1624→4621→6421(P4)
Node 4621’s parent in T 6,4

1 is node 5621, and node 5621’s
first symbol is still 5. Hence, node 4621 in T 6,4

5 should use
4 to approach the frame of T 6,4

5 as follows.
3456→1456→6451→4651→2651→5621→4621(frame)
3456→2456→6452→4652→5642→1642→2641→
4621(P2)
3456→6453→4653→2653→5623→1623→3621
→4621(P2)
3456→4356→1356→3156→2156→5126→4126→1426
→6421→4621 (P2)
3456→5436→6435→4635→2635→3625→4625→5624
→1624→4621 (P3 type 2)

Pattern P5:
P5 only occurs in Tree n−k+1 for some nodes of the root

cluster. The parents of those nodes belong to P4. For instance,
in S6,4, the paths from the root to node 5426 are as follows.
3456→1456→5416→2416→1426→5426

3456→2456→5426
3456→6453→4653→2653→5623→4623→3624→5624
→4625→6425→5426(P5)
3456→4356→2356→3256→4256→5246→2546→4526
→5426
3456→5436→2436→3426→5426 �
Lemma 8: No common node exists in both the frame por-

tion of Tree A and the leaf portions of other trees in the paths
from the root to node v in all trees.

Proof: The leaf portion has five patterns: P1, P2, P3, P4,
and P5 according to Lemma 7. For P1 and P2, suppose that
Tree x is going to traverse node v.
P1:
v’s first symbol is equal to x and Tree x can traverse v by

a friend operation in a step. Thus, no common node exists in
both Tree A’s frame portion and Tree x’s leaf portion.

P2:
Tree x traverses node v through a middle node w in

cluster A. Because edge w → v is unused in Tree A’s frame

and Tree x can connect node w by a friend operation in a
step, there is no common node exists between Tree A’s frame
portion and Tree x’s leaf portion.
P3:
Suppose that nodes are composed of {a, b, c, d, e, . . . A},

and we omit the rear portion. We exhaust the possibilities
with the following three cases. Triangles represent complete
graphs.

Case 1: a complete graph
Suppose that node ade requires a node of which the

first symbol c approaches Tree c’s frame, as illustrated
in Figure 23(a). Because we have applied theMBFS traversal,
no node such as node cde does not possess all children
according to Lemma 4. Thus, it cannot occur that a common
node appears in node cde.

FIGURE 23. P3 does not occur in frames.

Case 2: child frame
Node bde in cluster A requires the symbol c to approach

to Tree c’s frame, but c is used by node cde, as illustrated
in Figure 23(b). Hence, node bde uses the symbol b to walk
to node dbe. Then, node dbe walks to node cbe, and node
bde walks back to Tree c’s frame at the end. If a common
node appeared in node cbe in Tree A’s frame, the path would
exist: cbe→bce→dce→cde (marked red lines). We apply the
MBFS traversal in buildFrame functions. If the function has
traversed node cbe, it would use the purple lines in lieu of
the red lines and blue line to traverse node bde in the MBFS
traversal. Thus, a common node does not exist due to the
shortest path rule.

Case 3: friend frame
Node dbe in cluster A requires the symbol b to approach

Tree b’s frame, but b is used by node bde, as illustrated
in Figure 23(c). Hence, node dbe uses d to walk to node
ebd . Then, node ebd walks to node bed , and node dbe
walks back to Tree b’s frame finally. If a common node
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appeared in node bed in Tree A’s frame, the path would
exist: bed→deb→edb→bde (marked red lines). We apply
the MBFS traversal in buildFrame functions. If the function
has traversed node bed , it would use the purple lines in lieu of
the red lines and blue line to traverse node dbe in the MBFS
traversal. Thus, a common node does not exist due to the
shortest path rule.

P4:
As depicted in Figure 22, P2 pattern does not appear in

the frames, and Tn−k+2 does not execute any buildFrame
function. Hence, no common node would appear in the frame.

P5:
It belongs to some nodes of the root cluster in Tree n−k+1.

Thus, no common node exists in the frame. �
Lemma 9: The nodes of the root cluster must be traversed

ultimately in Tn−k+1.
Proof: The root cluster in all ISTs except for Tn−k+1

originate from the previous trees. Because the root cluster’s
incoming edges are not used and Tn−k+1 has no previous tree,
the root cluster must be traversed ultimately in Tn−k+1. For
instance, the five paths of T 6,4

1 to T 6,4
5 from the root to node

5426 as follows:
3456→1456→5416→2416→1426→5426
3456→2456→5426
3456→6453→4653→2653→5623→4623→3624→5624
→4625→6425→5426
3456→4356→2356→3256→4256→5246→2546→4526
→5426
3456→5436→2436→3426→5426
Node 5426 in T 6,4

1 , T 6,4
2 , T 6,4

4 , andT 6,4
5 originate from the

previous trees in S5,3. In T
6,4
3 , node 5426 must be traversed

finally. �
Theorem 1: The recursive algorithm can construct n − 1

ISTs in Sn,k .
Proof:Weprove the theorem bymathematical induction.

If we know Sx,y, then we know Sx+1,y+1. When y = 1 and
x = n − k + 1, a complete graph of n − k + 1 nodes holds.
There are n− 1 ISTs as illustrated in Figure 12.
Suppose that y = k and x = n holds. When y = k + 1 and

x = n + 1, Sn+1,k+1 is made up of n + 1 instances of Sn,k .
We partition nodes into clusters by the last symbol of each
node. First, we copy T n,k1 to T n+1,k+11 , T n,k2 to T n+1,k+12 , . . .,
T n,kn−k to T

n+1,k+1
n−k , T n,kn−k+1 to T

n+1,k+1
n , T n,kn−k+2 to T

n+1,k+1
n−k+2 ,

T n,kn−k+3 to T
n+1,k+1
n−k+3 , . . ., T n,kn−1 to T

n+1,k+1
n−1 . Second, we find

germs as explained in Table 3.

TABLE 3. Germs in Sn+1,k+1.

Third, we use the buildFrame function to create frames.
Fourth, we use buildLeaf functions to create leaf portions. For
cluster n + 1, all trees in Sn,k are independent and T

n+1,k+1
n−k+1

traverses cluster n + 1 through other clusters; hence, all
paths of all trees from the root to cluster n + 1 should be
internally node-disjoint. For other clusters, each path is made
up of frame and leaf portions. The frame portions are distinct
and the leaf portions of all paths can be classified into to
one leaf pattern of P1, P2, P3, P4, and P5, which have no
common node with the frame portion in accordance with
Lemma 8. Thus, the n ISTs in Sn+1,k+1 are independent,
and the recursive algorithm can construct n − 1 ISTs in Sn,k
correctly by the induction hypothesis. �
Theorem 2: n− 1 independent spanning trees in Sn,k con-

structed by the parallel algorithm are independent.
Proof: The ISTs of Sn−k+1,1 are constructed by hand,

as presented in Figure 12. The buildFrame function is an
instance of the buildFrameP function with tailN set to 1.
We can use tailN to fix the last tailN symbol(s) to reduce
the dimensions of Sn,k and create all frames of ISTs from
Sn−k+2,2 to Sn,k simultaneously, whereas in the recursive
algorithm the dimensions increase one in each iteration,
and ISTs constructed in this iteration must be copied to
ISTs next iteration. According to Algorithm 3, we create a
FrameGermSet , and the germs of Sn,k are identical to that
of Sn−k+2,2 to Sn,k in the recursive algorithm. Therefore,
the frames created by both algorithms are the same. The
findParent function produces five leaf patterns displayed
in Figure 22 as the buildLeaf function does. Thus, the ISTs
of Sn,k constructed by the parallel algorithm and the recursive
algorithm are the same. According to Theorem 1, the parallel
algorithm can construct n− 1 ISTs in Sn,k accurately. �

V. ANALYSIS AND COMPARISON
Weprogrammed in PHP and created illustrations in Graphviz.
The test cases are presented in Table 4. We tested whether
all paths in all trees were internally vertex-disjoint. The
results proved that all paths in all trees were internally vertex-
disjoint. Both algorithms are correct.

TABLE 4. The cases tested.

Because all nodes and all directed edges are traversed
once, the time complexity of Sn,k is the summation of the
numbers of nodes and directed edges from Sn−k+1,1 to Sn,k .
The number of nodes in Sn,k is n!

(n−k)! and the number of
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directed edges in Sn,k is n!
(n−k)! × (n − 1). We can compute

the summation:
k∑
i=1

( (n−k+i)!(n−k)! +
(n−k+i)!
(n−k)! × (n−k+ i−1)) = (n+1)!−(n−k+1)!

(n−k)! ,

and the time complexity is O( (n+1)!−(n−k+1)!(n−k)! ) = O( (n+1)!(n−k)! ) =

O( (n+1)×n!(n−k)! ) = O(n× n!
(n−k)! ).

However, the time complexity of Sn,k in the parallel algo-
rithm is the summation of the numbers of nodes and directed
edges of Sn,k . Thus it is O( n!

(n−k)! +
n!

(n−k)! × (n − 1)) =
O(n × n!

(n−k)! ), and it can decline to O( n!
(n−k)! ) if the system

has n− 1 processors computing in parallel.
The functions of the recursive algorithm are buildFrame

and buildLeaf, and both of them are BFS-based. In the parallel
algorithm, the buildFrameP function is BFS-based, but the
findParent function is rule-based. The concept of the recur-
sive algorithm is simpler than that of the parallel algorithm.
The two algorithms are compared in Table 5.

TABLE 5. The comparison of recursive and parallel algorithms.

VI. CONCLUSION
In this paper, we proposed one recursive algorithm and one
parallel algorithm for constructing ISTs in (n,k)-star graphs.
The recursive algorithm is a top-down approach, and the
parent of a node in an IST is not determined by any rule.
The parallel algorithm combines top-down and bottom-up
approaches. In this paper, correctness, proofs, and time com-
plexity analyses were presented for both algorithms. We also
described PHP implementations of both algorithms. The test
results for different fifty-nine cases are in Table 4. The results
prove that all trees of all cases in Table 4 are ISTs for both
algorithms. We conclude that our algorithms are not only cor-
rect but also efficient, and furthermore, the parallel algorithm
is more efficient than the recursive algorithm. We hope that
our contribution can aid in novel IST research.
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