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ABSTRACT Recently, the deep neural network has achieved considerable success in the field of machine
learning. However, for most tasks, the current neural network models are still considered as the ‘‘black-box’’
structure, essentially because the knowledge a neural network learns from data is often unpredictable and
unexplainable. Similar to neural coding in the brain, one neuron may be simultaneously involved in encoding
one or even several tasks. Information may be transmitted between neurons along a particular neural-path
(neural circuit) to end neurons that encode a specific decision. Inspired by this, we aim to explore the reason
for the performance of a neural model based on a neural-path. First, for a trained neural model, we quantify
the neural-path in which the role of a neuron was assumed to control the amount of information that can be
passed through; Second, we define a Euclidean distance (ED) for every two neural-paths, and by analyzing
the EDs between two classes of a neural classifier, we explain the ease of prediction for some classes, whereas
others are not. We performed extensive experiments for architectures of ResNet and DenseNet models on
several benchmark datasets, and determined that the shorter the distance between the neural-paths of two
classes, the easier it is to make mistakes. Finally, we proposed a method for controlling the formation of
a ‘‘neural-path’’ to build a partially understandable neural model. For the new ResNet model, each feature
map in redirect layers was assigned to participate in encoding only one class. The feasibility of the method
is also verified through experiments.

INDEX TERMS Interpretable neural network, neural-path, ResNet, DenseNet.

I. INTRODUCTION
Deep neural network (DNN) has become one of the impor-
tant basic theories in several fields [4], [5], such as artifi-
cial intelligence, big data, and machine learning, because
of its strong ability of learning and knowledge expression.
In recent years, with the breakthrough of DNN models in
the field of image processing, the application of DNN has
experienced an explosive growth [6]–[8]. These DNN mod-
els have been deployed to a variety of applications such as
automatic driving, cancer detection, recognition system, and
complex games, and have reached or exceeded the level of
human beings in several scenarios. Although the DNNmodel
achieves superior performance in several fields, only a bunch
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of seemingly meaningless model parameters and very high
fitting judgment results can be obtained.

Despite this progress, DNNs are still expected to make
greater progress in theory to improve their comprehension.
There remains no significant insight into DNN internal opera-
tion and behavior or its ability to achieve such a performance.
For most tasks, the current DNN models are still considered
as a ‘‘black box’’ structure. Unexplainable also means dan-
ger. In fact, in several fields, there are concerns about the
application of deep learning model, not only the model itself
cannot give sufficient information but also more or less about
security. For example, application systems constructed near
AI will often be involved and affect several fields, such as
redefine medical interventions, autonomous transportation,
criminal justice, financial risk management, and several other
areas of society. However, considering the above challenges
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FIGURE 1. Overview of neural-path in a deep neural network. (a) Initial neural network; (b). We hypothesis that the learning process is to
learn the knowledge that we called ‘‘neural-path’’ in the image recognition task, which information flow of different classes may be
transmitted along a particular ‘‘neural-path’’ from neurons in the input layer to some specific neurons in the output layer; (c). We proposed
a method to control the learning process to obtain the particular ‘‘neural-path’’ that we expected.

highlighted, the usefulness, fairness, and security of these AI
systems will be gated by our ability to understand, explain,
and control them. Consequently, it is becoming increasingly
important to construct an understandable and interpretable
neural network model. The fundamental issues why we do not
understand the neural models are noted in our manuscript as
follows:

Q1. We generally do not understand and even do not know
what knowledge a neural network learns in a task.

Q2. The knowledge learned by a neural network is unpre-
dictable; generally, we just passively accept what the
model has learned.

Q3. The decision made by a neural model is generally not
evaluable, i.e., For example, why did the agent do that
and not something else? When does the agent succeed
and when does it fail? When can I trust the agent?

We can explain or understand the role of neurons (acti-
vation function) from different perspectives. For example,
from the mathematical perspective, neurons can perform the
role of nonlinear mapping, which makes the neural network
model have more powerful learning ability; from the perspec-
tive of neural information coding, different information was
selectively passed through a neuron in the brain in which
information may be transmitted from start neurons along
a particular ‘‘neural-path’’ from start to end that encode a
specific decision. In the field of neuroscience, a substantial
proportion of studies have been conducted on the structural
details of a neural circuit (analogy to ‘‘neural-path’’), which is
the key point to reveal the working mechanism of the nervous
system [3], [9].

Inspired by the above neural coding, we hypothesize that a
‘‘neural-path’’ also exists in a DNN and encodes one class
or a decision. The learning of a DNN can be regarded as
the formation process of the neural-path, i.e., ‘‘neural-path’’
was regarded as the knowledge that a DNN learned in a
task. Whether we can find and even control the formation
of each neural-path in the learning of a DNN is meaningful
to understand the working mechanism of a neural model.
In one sense, each ‘‘neural-path’’ can be regarded as one
standard template that is expressed a class. When a sample
being calculated by a neural model can generate a current
‘‘neural-path,’’ by analyzing the matching degree of current
and standard ‘‘neural-path,’’ wemay explore the performance
of a neural model.

In this study, we aim to test and verify the validity of this
neural-path hypothesis. We define the concept of a ‘‘neural-
path’’ as what explores and explains the decision-making of
a neural network, regarded as the knowledge learned by a
neural network model in a task, as illustrated in FIGURE 1.
For a RELU based feed-forward neural network [10], only
a portion of the activated neurons are involved in encoding
one type of information in each layer. These neurons, residing
in hierarchical layers, form a neural-path, which we assume
encodes the information of a class. First, for a trained neural
network model, we defined that if the average activation
frequency of a neural node (neuron or a map) for all samples
from the same class were greater than a threshold, the node
was considered involved in encoding this class. Each neural-
path encodes one class consisting of different nodes in each
layer. Next, we defined an ED for every two neural-paths.
Analyzing the distances between each two neural-paths of a
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trained ANN classifier explains the performance of models.
Finally, we proposed a method to control the formation of a
‘‘neural-path’’ in the learning process to construct an under-
standable model.

II. RELARED WORKS
In recent years, the construction of an interpretable DNN
model has been garnering increasing attention. In this study,
we divide the related work into two parts as follows: 1.
Research on the interpretability of visualization method; that
is, the hidden layer of neural network is transformed into
an image that we can understand and visualize using certain
methods; 2. The interpretability research based on the model;
that is, using the understandable agent model or method to
approach the DNN as follows.

A. VISUALIZATION METHODS
A very intuitive way to understand the concepts and features
that are learned in each layer of neural network is to use
some visualizationmethods to transform the hidden layer into
an image with practical meaning that can be understood by
human beings to help us intuitively understand the learning
process or its working mechanism of deep learning [1], [2].
For example, Ramprasaath et al. generated a thermal map
of the gradient of the convolution layer and visualized it to
display and label the important pixels in the input image,
which helps us understand the learning area of the DNN [11],
[12]; Yosinski et al. visualized the knowledge learned by
neural network by identifying the most active neurons in the
input image [13], [14]; another type of method is the visual-
ization of the significance or importance of the features—this
method uses standard back propagation to calculate the par-
tial derivative of the class score relative to the input features to
measure the sensitivity of the classification score to the small
change in the pixel value [15], [16]; Li et al. attempted to
minimize the nonconvex loss function by visualizing DNN to
determine the effect of the architecture and parameters on the
loss situation [17]. These visualization methods make people
have a direct impression on the internal mechanism of the
DNN. However, because such methods cannot understand the
internal structure of themodel, it is difficult to directly explain
the decision-making logic of the model. Therefore, the black
box problem of the neural network has not been substantially
solved.

B. MODEL DIAGNOSIS
There are two types of interpretability analysis based on
model: agent model and automatic feature extraction. The
method of proxy model involves constructing a new model
to simulate the input and output of the black box model,
and to understand the original black box model. A linear
agent model for the description of model independent local
interpretability was proposed by [18]–[20]; Zhang et al.
added loss to filters in the convolution layer to obtain the
interpretable semantic representation in the convolution layer,
and they also proposed a prediction logic for quantitative

interpretation of convolution network through a decision tree
[21], [22]. The works [23], [24] sought to interpret neural
networks from the perspective of geometry. Another field
[25] is the brain-inspired models, which aim to design a
biologically interpretable model. Automatic feature extrac-
tion is another method of DNN interpretability research. For
example, KT method uses if-then rules to automatically
extract features of each layer and neuron, and sensitivity
analysis method to determine the importance of input vari-
ables through connection weight, deflection, and change of
input variables. Studies [26] on the types of features neural
networks mainly rely on in image recognition tasks, and the
corresponding results are strongly biased towards recogniz-
ing textures rather than shapes, which is in stark contrast to
human behavioral evidence and reveals fundamentally dif-
ferent classification strategies. Although these methods can
analyze the decision logic of the existing neural network to
some extent, they cannot directly build an interpretable neural
network.

C. SUMMARY
The above study can reveal whether the network is well
trained (by analyzing the feature maps in each layer) or
the part of the input image that is sensitive to the neural
network model or the features that have been learned by the
neural model. This is important to understand the working
mechanism of the neural network, but still not sufficient to
interpret the neural network. For example, we still cannot
understand the features learned by a neural model; we still
cannot expect what neural models learned; and we still cannot
interpret the performance of the models. Our contributions
are summarized as follows:

(1) We hypothesize a concept ‘‘neural-path’’ as the knowl-
edge that was learned using a neural model in a task,
and we verified its effectiveness.

(2) Based on the matching degree of ‘‘neural-path’’ of
different classes, we interpret the performance of a
neural model. For example, ‘‘why are some classes
easily predicted, while others are not?’’

(3) We proposed a method to construct a partially under-
standable neural model by controlling the formation of
the neural-path.

III. APPROACH
A. ABOUT NEURAL-PATH
In a well-trained neural classifier, each neuron can be con-
sidered as learning a type of feature. Lower layers appear
concerned with low-level features such as color, edge, and
texture. The higher the layer, the more abstract and complex
the associated features are [27]. As we know, the features of
samples from the same class are essentially similar. There-
fore, when a trained neural network calculates different sam-
ples from the same class, the distribution of frequency of
active neural nodes and non-active neurons in the network
are assumed to be similar; that is, in a well-trained network
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FIGURE 2. Diagrammatic sketch of a ‘‘Neural-path,’’ the ‘‘neural-path’’ for
class 1 was made up of the red neural nodes, which encoded the
information of class 1; while the gray nodes were not participated in
encoding the class 1.

model, samples from the same class have a high probability
of taking the similar neural-path through the network, and
eventually converge to an output neural node that represents
this class label. Thus, in this study, a ‘‘neural-path’’ is essen-
tially the flow direction of information in a hierarchical neural
network.

B. DEFINE NEURAL-PATH
1) FULLY CONNECTED LAYER
FIGURE 2. illustrates a neural-path of a class consisting
of red nodes in hierarchical layers. Gray nodes are not in
this neural path. In once forward calculation for a specific
class, nodes with zero or a small activation value offer no
contribution to the nodes in the next layer, and are regarded as
not participating in coding this class. Consequently, defining
the neural-path for a specific class entails finding the ‘‘red
nodes,’’ which participate in encoding this class. For a trained
neural network model, we calculated the average activation
of each neuron for all samples of one specific class. In each
layer, we sorted all neural nodes according to their average
activation value, and selected m nodes with the largest value
as the nodes of this neural-path.

Taking one class as an example, (1), (2), (3) denote the
quantification of neural-path.

Vlk [i] = 1
n

∑n
j=0 vlk [j] (1)

Nvlk :
{
Vlk [1], Vlk [2], · · · Vlk [i], · · · Vlk [m]

}
(2)

npclass[1] : { · · · Nv[h], Nv[h+ 1], · · · } (3)

Term Vlk [i] denotes the average node value of the ith node
in the k th layer in which vlk denotes the node value (activation
value) for the sample Xj. Term n denotes the number of
samples of class[1]. Additionally, the value of one neural node
was regarded as the amount of information that can pass
through this neuron. Term Nvlk denotes the response of the

FIGURE 3. The procedure of convolutional operation to full connection.

k th layer that we selected; npclass[1] indicates the neural-path
for class 1.

2) CONVOLUTIONAL LAYER
The two main advantages of the convolutional layer as com-
pared to the fully connected layer are local connections and
weight sharing, typically operated inter one feature map.
If one feature map was regarded as a node (global aver-
age or sum pooling a feature map), the convolutional layer
transformed into a fully connected layer as illustrated in
FIGURE 3. Thus, we can obtain node values in fully con-
nected layers according to the previous section.

Convolution kernels in lower layers appeared involved in
low-level features such as color, edge, and texture, whereas
those in higher layers involve increasingly abstract and com-
plex features. For any natural image, the lower the feature,
the more similar it is [27]. We consider that distinguishing an
object is mainly based on high-level characteristics. Conse-
quently, we defined the neural-path as initiating from middle
and higher convolutional layers.

C. DEFINING THE DISTANCE OF NEURAL-PATH
A trained n-classifier model typically has n output neurons.
Ideally, the input sample from class-i sets the activation value
of the ith neuron in the output layer to 1 and others to 0. The
previous section demonstrated that we could obtain a neural-
path that includes a set of node values in the hierarchical lay-
ers for each class, according to (1), (2), (3). The information
of each class only passes through neural nodes with positive
node values in a neural-path. In this way, we can obtain n
neural-path and n(n-1) EDs in an n-classifier neural model,
which can encode the information of each class in samples
respectively. We define ED of the ith and jth classes based on
their neural-paths, as defined in (4).

||Dij||2 = (NPi − NPj)2

=
1

n− Lk

n∑
L:l=Lk

1
Nl

Nl∑
N :m=0

(NLl_i[m]− NLl_j[m])2

(4)

Term ||Dij||2 quantitatively represents the similarity of
the ith and jth classes. Intuitively, the smaller the ED
||Dij||2 between the ith class and jth class (where ||Dij||2 <
||Dik ||2, j! = k), the greater the probability that the ith class is
predicted as the jth class. If ||Dih||2 between the ith class and
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other classes (where h = 1, 2, . . . , n) are clearly smaller than
||Djh||2 (where h = 1, 2, . . . , n, i ! = j), the trained model
should perform more poorly for the ith class samples than for
those of the jth class.

D. CONTROLLING THE FORMATION PROCESS OF
NEURAL-PATH
In the above sections, we defined ‘‘neural-path’’ as the
knowledge that a neural network learned, and we can regard
the learning process of a neural network as the forma-
tion of a neural-path for each class in a classification task.
However, such a neural-path obtained through learning was
unpredictable in a traditional way, and we usually passively
accepted such information learned by a neural model, which
was considered as one of themain reasons for their unexplain-
able. Herein, we attempt to design a neural network with a
predictable neural-path in a classification task.

For a CNN, our approach is to assign only specific fea-
ture maps Xpart−0 in a selected layer to encode a particular
class, it is 0 herein, whereas other maps (Xpart−1) in this
layer encode class 1, as illustrated in FIGURE 5.(a). We can
achieve this target by designing special loss functions, as (5),
(6), (7). Losspass(x0): mean of sum of squares of feature maps
Xpart−0 assigned approaches a constant c for all samples of
class 0, indicating that only Xpart−0 allows information of
class 0 to pass through. Lossforbid(x0): squares of feature
maps Xpart−1 assigned approaches 0, indicating that feature
maps Xpart−1 forbid information of class 0 to pass through.
Lossredirect is the weighted sum of losspass and lossforbid,
achieving only Xpart−0 encoding class 0. lossclassification
was cross entropy loss function for classification. For a
classification task, final function can be expressed as (8)
as follows

losspass(x0) =
1
m

∑
i
(Xpart−0[i]− c)2 (5)

lossforbid (x0) =
1
m

∑
i
(Xpart−1[i])2 (6)

lossredirect = losspass + lossforbid (7)

loss = α · lossredirect + β · lossclassification (8)

IV. EXPERIMENTS AND ANALYSES
We demonstrated the effectiveness of the proposed method
for MLP and CNN models on several benchmark datasets
(including MNIST, Cifar10 [28], Cifar100, and ImageNet
[29]). Cifar10 dataset consists of 50,000 training and
10,000 testing images from 10 classes; Cifar100 dataset con-
sists of 60,000 natural images from 100 classes, each class
contains 500 training images and 100 testing images; Ima-
geNet32 dataset is a down-sampled version of the original
ImageNet, and consists of 1.2 million images for training and
50,000 for validation from 1,000 classes. The classification
task for the ImageNet32 dataset was more complex than that
of the Cifar dataset. We performed the training experiments
on the training dataset and evaluated the results using the test
dataset.

FIGURE 4. The smaller ED of each pair of neural-path will get more higher
incorrect decision rate whatever samples with different levels of noise.

A. MLP MODEL ON MNIST
We first illustrate the proposed approach on a trained MLP
model on the MNIST dataset. For the MLP classifier,
we employ a structure of 784∗400∗400∗400∗10 with three
hidden layers with 97.91 % to obtain a specific number of
incorrect decisions, where the neuron models in the hidden
layer are ReLU and end with Softmax layer.

We obtain the neural-path for each class based on (1), (2),
(3). We first analyzed the relationship of EDs of each two
neural-paths and their wrong decisions. FIGURE 6 illustrates
each ED between one neural-path that encodes one class
and others, and their corresponding incorrect decisions. The
statistics note that the ED of two classes is approximately
inversely proportional to the number of wrong decisions in
these classes, i.e., the smaller the ED of two neural-paths,
the more frequently the two classes encoded by these two
neural-paths incorrectly predict each other. Consequently,
the ED of each two neural-paths can be regarded as one
type of measurement of their similarity, i.e., the shorter the
distance between them, the more similar they are.

To obtain more test examples with incorrect decisions,
we add different intensity of noises to the MNIST test dataset
(with 97, 90, 80, and 70 %). From a statistical perspec-
tive, more samples will accurately exhibit such a rule. Here,
we provided general statistics on samples where the neural
model issued incorrect decisions. FIGURE 6 indicates that
approximately the top 20%minimal EDs account for approx-
imately 49.5–62% of all incorrectly predicted examples; the
ED is indirectly proportional to the increase in the number
of incorrect decisions. We can therefore determine that most
incorrect decisions made by a neural model are more likely
to occur in samples with a small ED of the neural-path. From
the curves with different number of samples, we can note that
such rules are clearer in tests with more samples.

B. CNN MODELS ON CIFAR-10
We often consider that the deeper the network, the stronger
the expression ability. However, the experiments identified
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FIGURE 5. (a). Learning a desired neural-path for a DNN by assigning some particular neurons; For a CNN (2 classification
tasks), step (b) ->(c)->(d), we first select a specific layer that we named ‘‘redirect layer’’, and split the feature maps into two
parts, each part only participate in encoding one class (part 0 for dog, and part 1 for cat).

FIGURE 6. ED between each pair of neural-paths and corresponding number of incorrect decisions for an MLP model on MNIST, from
classes 0 to 9. Upper graph of each sub-figure depicts EDs of one class with others, whereas lower graph depicts the number of wrong
decisions on other classes.

two problems: gradient dispersion or disappearance, and
performance degradation with network deepening [5], [31].
ResNet [32] alleviates the problem using a shortcut struc-
ture, and DenseNet [33] further improves the transmission
efficiency of information and gradients in the network, now
extensively used in several fields. Consequently, we demon-
strated the effectiveness of the proposed method on ResNet
and DenseNet models.

1) NETWORK ARCHITECTURE FOR RESNET AND DENSENET
We evaluated ourmethod in the ResNet andDenseNetmodels
on the CIFAR-10 dataset. For ResNet, the first layer was a

3× 3 convolution kernel. Thereafter, we used a stack of 6∗n
layers with 3×3 convolution kernels on feature maps of sizes
32, 16, and 8, respectively, with 2∗n layers for each feature
map. The numbers of filters were 16, 32, and 64 respectively
(16∗k, 32∗k, and 64∗k respectively for Wide ResNet [34],
where k is the coefficient). The sub-sampling was performed
by convolutions with a stride of 2. For DenseNet, a convolu-
tional layer with 24 output channels was first used with the
input images. For convolutional layers with kernel size 1× 1
and 3× 3 (bottle block). We used 1× 1 convolution followed
by 2 × 2 average pooling as transition layers between two
dense blocks. At the end of the last block (both ResNet and
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FIGURE 7. Visualization part of node value of feature maps of the last 18 layers of ResNet-56 for 10 classes.

DenseNet), a global average pooling was performed and then
a Softmax classifier attached. The feature map sizes in the
three blocks were 32× 32, 16× 16, and 8× 8, respectively.

2) IMPLEMENTATION
This study aimed to verify our neural-path concept that cod-
ing the information that is learned by a neural network, but not
to push the state-of-the-art results. Thus, we did not explore
a specific skill in the training process, and thus, we only
adopted similar implementations (including data preprocess-
ing and training skill [32]) with the original models. For
20-layer (and 56-layer) ResNet and Wide ResNet models,
feature maps of the last 10 (and 28) layers were selected to
define the neural-path for each class. Feature maps of each
layer were first passed through a batch normalization layer
[35], regarded as a type of sparse. We summed the node
activation values for all training samples to determine node
values corresponding to the feature map, and obtained each
neural-path and ED according to (1), (2), (3), (4).

3) RESULTS AND ANALYSES
We had trained the neural models (including ResNet-20,
ResNet-56, WRN-20, and DenseNet-BC-40) with 91.13 %,
92.78 %, 93.02 %, and 92.73 % on test datasets respectively.
We obtained the neural-path of each class based on (1), (2),
(3) for ResNet and DenseNet models, as illustrated in Fig.7.
This illustrates that the value of the same node for different
classes is frequently different, indicating that one node par-
ticipates in encoding different class information to different
degrees. We consider the node with values close to zero as
having no contribution to that class. Information from the
previous layer flows along the neural-path.

First, we provided general statistics on samples where the
neural model issued incorrect decisions. Fig.8 indicates that

FIGURE 8. Incorrect decision for all EDs of each two neural paths.

the top 20% (and top 30%)minimal ED accounts for approx-
imately 40–60 % (and 55–70 %) of all incorrectly predicted
examples; the larger the ED, the smaller the increase in the
number of incorrect decisions. We can therefore determine
that most incorrect decision making for all neural models
occurs in samples with a small neural-path. ED.

We further analyzed all EDs of each two neural paths on
ResNet and DenseNet models. FIGURE 9 and FIGURE 10
illustrate each ED between one neural-path and others, and
the corresponding incorrect decisions. The statistics indicate
that the ED of two classes is inversely proportional to the
number of wrong decisions in these classes, i.e., the smaller
the ED of two neural-paths, the more frequently the two
classes incorrectly predict each other. Therefore, the ED of
each pair of neural-paths can be regarded as a proportional
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FIGURE 9. Statistics of ED between each pair of neural-paths, and their corresponding number of incorrect decision-makings for ResNet-20 model
on Cifa10.

FIGURE 10. Statistics of ED between each pair of neural-paths, and their corresponding number of incorrect decision-makings for
Densenet-40 model on Cifa10.

measurement of their similarity, i.e., the shorter the distance
between them, the more similar they are.

From the curves of each class in FIGURE 9 and
FIGURE 10 respectively, the two trends of the same class
for two models are very similar, for example, if one class
performs poorly on the ResNet model, and it is likely that
it will not perform well on the DenseNet model, which also
indicates an interesting phenomenon that these two models
are likely to make similar mistakes for the same dataset.

C. CNN MODELS ON CIFAR100
1) NETWORK ARCHITECTURE AND IMPLEMENTATIONS
Section IV depicts the architecture of ResNet and DenseNet
models. We only used the similar implementations of the
original models. We selected feature maps of the last
10 layers (in the last block layer) to define the neural-path
for each class. Other details are the same as in previous
sections.

2) RESULTS AND ANALYSES
We trained the neural models ResNet-32, Wide ResNet-20,
and DenseNet-40 with 75.54 % and 73.54 % on Cifar100 and
51.96 % on ImageNet32 datasets, respectively. We obtained
the neural-path of each class from (1), (2), (3) for ResNet
and DenseNet models. First, we provided general statis-
tics on the incorrect decision samples of the neural model.
From the statistics in FIGURE 11(a), the top 10 % (and top
20 %) minimal ED accounts for approximately 50–60 %
(and 64–74 %) of all incorrectly predicted examples; the
larger the ED, the smaller the increase in the number of
incorrect decisions. The similar results can be obtained in
FIGURE 11(b).

D. CONTROL THE FORMATION OF NEURAL-PATH
1) NETWORK ARCHITECTURE DESIGNING
We named the module of controlling the neural-path of infor-
mation as the redirect module, and we called a convolution
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FIGURE 11. Overall statistics on the samples with incorrect decision of Resnet and Densenet. (a). on Cifar100 and (b). on Imagenet32.

FIGURE 12. Training process of ResNet-50 with redirect modules and
normal one.

layer with a redirect module as the redirect layer. We selected
two convolution layers in the third and fourth residual blocks
as redirect layers. The details for controlling the formation
of a neural-path of a 2-classification task, if the number of
channels is 128, we assigned the half of feature maps to
class 0 and the other half of feature maps to class 1 in first
redirect module; similar operations were adopted in the sec-
ond redirect module. Only feature maps that assigned to a
specific class participate in encoding this class, others have no
means to this class. In the construction of network structure,
we used a 50-layer Residual Net as the basic network struc-
ture, but we decreased up to four times the filter numbers in
each convolution because the experimental dataset can only
include two classes. Architecture designing was summarized
in TABLE 1.

2) IMPLEMENTATION
We select dogs vs. cats dataset in Kaggle to verify this idea.
The dataset consisted of 25,000 images including ‘‘dog’’ and

FIGURE 13. The amount of information that can be passed through the
assigned neurons of the first redirect layer in the training process for the
train dataset, horizontal axis notes the average node-value (Xpart-0,
Xpart-1 as illustrated in FIGURE 3 (c)); Longitudinal axis notes the training
step; Height of mountain note the number of sample of the current batch.

FIGURE 14. Similar exhibition in the training process for the validation
dataset.

‘‘cat’’. Each class contains 12,500 training images. We split
the dataset into 20,000 training and 5,000 validation images.
We resize by randomly cropping training images size to
[224,224] and the horizontal flip and rotation image augmen-
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TABLE 1. Network architecture for Residual Net with redirect layers.

FIGURE 15. Visualization of part of feature maps in redirect layers and normal layers. For the samples with the correct decision,
in the redirect layer, only the preassigned nodes participated in encoding the information, which was not obvious in a normal layer.

tation is in use. Thereafter, dividing images by 255 to provide
them in range [0,1] as input. We use Adam optimizer [35] to
train the model with mini-batch size of 64 and total training
iteration is 58000.

3) RESULT AND ANALYSIS
FIGURE 12 illustrates the training and validation accuracy
curves of the Resnet-50 with and without redirect modules
in the training procedure. We noted that the model with
redirect modules exhibited a lower training accuracy and
almost similar to the original model on the train datasets.

The new model can also obtain a very close accuracy on the
validation dataset compared to the original model (97.92 %
vs 98.02 %). Consequently, the learning and generalization
abilities of such Resnet-50 with redirect modules have not
declined significantly.

FIGURE 13 and FIGURE 14 illustrate the controlling
process of the neural-path in the one redirect layer on
train and validation datasets respectively. Average node-
value of feature maps in redirect layers indicates the
amount of information that can be passed through. From
the training process, initially, all the maps (or neurons)
participated in encoding the information in the form of
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FIGURE 16. Visualization of part of feature maps in the two redirect layers for the samples that with
incorrect decision. For example, the image of ‘‘dog’’ was mistakenly identified as ‘‘cat’’, and ‘‘cat’’ was
mistakenly identified as ‘‘dog’’, from the redirect layers, we can observe that the nodes assigned to ‘‘cat’’
(‘‘dog’’) participated in encoding the ‘‘dog’’ (‘‘cat’’), leading the incorrect decisions.

normal distribution. As the learning process continues,
to the greatest extent, information (increasing samples) is
allowed to pass or not allowed to pass, which is charac-
terized by two node values one close to 1 and another
close to 0.

For two specific examples as illustrated in FIGURE 15,
we visualized the feature maps of a normal layer and a
redirect layer in the trained ResNet-50 model in which we
can observe that only particular feature maps in the redirect
layer were activated by only the samples from one class,
i.e., only the preassigned nodes encodes the information of
a specific class. Meanwhile, in a normal layer (non-redirect
layer), we can observe that almost all the nodes more or
less participate in information coding. For the samples with
incorrect decision, as illustrated in FIGURE 16, some nodes
that are not assigned for this class more or less participated in
encoding such a class, i.e., the information was not transmit-
ted along with the preassigned ‘‘neural-path’’, leading to the
model making mistakes.

Through experiments, we can assign some specific neu-
rons to encode a particular class. Consequently, we can
hypothesize that the information of examples with correct
decision-making is most likely to go through the pre assigned
nodes in the redirect layer in which the node-value of the
assigned maps is close to 1 and others are close to 0; Con-
versely, if information flows far away from 1 or 0, for example
close to 0.5, the decision-making is more likely to be untrust-
worthy.

V. DISCUSSION AND FUTURE WORKS
In summary, first, we assume that a neural model can encode
information through the ‘‘neural-path’’ as what the neural

network learned in a task in which we considered neurons to
control the amount information that can be passed through.
We also quantify the neural-path and make further analy-
sis for ResNet and DenseNet models on several benchmark
datasets; Second, we attempt to construct a partially under-
standable and expectable neural model based on a neural-
path, and we proposed a method to control the formation of a
neural-path by assigning only the expected neurons to encode
the particular information.

The experimental results supported this hypothesis signifi-
cantly. From the results, first,we note that if the samples from
class-i are predicted incorrectly compared to other classes,
which were more likely to be the several specific classes that
with small neural-paths’ ED, we attempt to answer question
Q3: why some classes are easily predicted, while others are
not?; Second, we also observe an interesting phenomenon in
which a neural model was likely to make similar mistakes
for some dataset; Finally, we constructed a new model based
on baseline ResNet model, which performs almost as well
as the baseline model; however, only the expected nodes
of the new model participated in encoding the preassigned
information, and this newmodel was partially understandable
and expectable for us.

In future studies, we would focus on building the under-
standable neural models by designing expectable neural-path,
and try to explore the following: when does the agent succeed
and when does it fail? and when can I trust the agent?
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