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ABSTRACT A robust control method is proposed to address the satellite formation flying problem subject to
communication delays. Each satellite dynamics involves nonlinear dynamics, parametric uncertainties, and
external disturbances. Communications between neighboring satellites are affected by time delays. For each
satellite, the resulted controller includes a translational controller to maintain the desired formation pattern,
and a rotational controller to align the attitude. Theoretical analysis and simulation results are provided to
verify the advantages of the proposed formation flying controller.

INDEX TERMS Formation control, robust control, nonlinear system, uncertain system, satellite.

I. INTRODUCTION
Satellite formation flying is a timely and challenging problem
in aerospace. Compared to a traditional single satellite or
complex spacecraft, satellite formation flying can effectively
improve overall system performance, and has multiple advan-
tages: high reliability, flexibility, and low cost. As such, there
are broad application prospects related to deep space explo-
ration, near-earth surveillance, and commercial communica-
tion, as shown in [1]–[3]. However, there exist challenges
in the design of the satellite distributed formation controller,
because each satellite dynamics involves nonlinear dynam-
ics, parametric uncertainties, and external disturbances. The
parameter of inertia can be perturbed because of the satellite
on-board fuel consumption, and unknown external distur-
bances such as the Earth’s non-spherical gravity and solar
radiation pressure. Third body gravity cans also influence the
formation flying controller. An additional challenge relates
to the communication between neighboring satellites, which
introduces time delays that can degrade the formation control
performance and affect the stability of the global closed-loop
control system.

Previous results on the centralized formation control prob-
lem have been reported in [4]–[8]. In [4], a simplified linear
motion was used to describe satellite dynamics, and a linear
system control algorithm for satellite formation flying was
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introduced. In [5], a filter based on variable structure con-
trol concept was presented for satellite attitude synchroniza-
tion. In [6], a relative position keeping problem in satellite
formation flying was studied, and a composite nonlinear
feedback controller was established by using an algebraic
Riccati inequality and a low-and-high gain control strategy.
In [7], the formation control problem for a team of tethered
satellites actuated by reaction wheels and electromagnetic
dipoles was investigated, and a robust sliding mode controller
was designed for both translational and rotational dynamics.
However, for these designed centralized formation control
methods, the resulted centralized control structure introduces
requirements for the communication network bandwidth, as
shown in [4]–[8].

Moreover, considerable works have been done on the dis-
tributed control methods of satellite formation flying, while
undirected and directed graphs have been used to design the
distributed formation control protocol. Based on the undi-
rected graph approach, a suboptimal distributed controller
using linear matrix inequalities was designed in [9], and a
distributed optimal formation algorithm was studied in [10]
to solve the spacecraft formation control problem. Undirected
communication requires that each satellite can receive and
send information, while directed communication can reduce
requirements for communication equipment and links among
satellites. Satellite formation flying controllers based on the
directed graph approach were discussed in [11]–[14]. Dis-
tributed cooperative attitude synchronization and tracking
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problems were discussed in [11], but the influence from
uncertainties and disturbances on the global system was
ignored. Considering parametric uncertainties and external
disturbances, distributed controllers were developed based
on an adaptive control architecture in [12], while a bounded
output feedback control protocol was constructed in [13], and
a robust formation controller was designed in [14] and [15].
However, the effects of the communication delays between
neighboring satellites were ignored in the stability analysis
of the aforementioned controller design methods, as shown
in [9]–[15].

Due to the limitation of communication equipment and
distance, there usually exist time delays in the process of
information transmission among satellites. The influence of
time delays on satellite formation control systems were con-
sidered in [16]–[18]. In the presence of external disturbances
and communication time delays, a sliding mode control strat-
egy was designed in [16] to achieve the spacecraft formation
flying. The attitude control problem for satellite formation
with time delays was discussed in [17]. However, the con-
trol protocol designed in [16] and [17] were based on the
undirected graph. In [18], the attitude synchronization con-
trol problem for spacecraft formation flying with commu-
nication delays was dealt with, but the implementation of
the controller required a known amount of time delay and
only external constant perturbations were considered. How-
ever, the disturbance rejection problems subject to nonlinear
dynamics, multiple uncertainties, and communication delays
simultaneously were not further studied by these control
methods, as shown in [16]–[18].

It is challenging to design robust formation controller
for a group of satellites with communication delays when
the dynamics of each satellite involve nonlinearities and
uncertainties in both the position and attitude motions. First,
simplified dynamic models in [4] were used to describe
the satellite motion, but it is not accurate enough in com-
plex aerospace. The trajectory formation and attitude coor-
dination problems were discussed separately in [5], [19].
Second, uncertainty rejection problems were ignored in
satellite formation control problems reported in [11], [20],
and limited types of uncertainties were discussed in sta-
bility analysis of the constructed global closed-loop con-
trol systems as shown in [12], [20]. An on-line parameter
adaptation and a robust control law are involved in [21]
which were used to handle the matched parametric uncer-
tainty and the matched disturbance. An output feedback
robust controller is proposed by integrating an extended
state observer and a novel robust controller in [22] with
which one can estimate the unmeasurable system states and
the additive disturbances only with the output measure-
ment and delayed control input. However, the effects of the
communication delays between neighboring satellites were
ignored in the stability analysis of the aforementioned papers.
The effects of the communication delays between neigh-
boring satellites were also ignored in the stability analysis
in [3]–[5], [11]–[14]. Therefore, robust formation control for

a group of satellites considering communication delays is still
open.

Therefore, to the best of the authors’ knowledge, the prob-
lem to restrain multiple uncertainties and communication
delays on the global satellite formation control system is
still challenging, while the communication is described by
the directed graph and multiple uncertainties include non-
linear dynamics, parametric uncertainties, and external dis-
turbances. In this article, the robust control problem for
satellite formation flying subject to communication delays is
addressed. Compared to previously published papers, the new
contributions in the current manuscript can be illustrated as
follows:

First, each satellite dynamics includes nonlinear dynam-
ics, parametric uncertainties, and time-varying external dis-
turbances. It is proven that the translational and rotational
tracking errors of the global nonlinear and uncertain control
system can converge into a given neighborhood of the origin
in a finite time. However, the nonlinear dynamics of the
satellites in the formation was simplified in [19], and the
disturbance rejection problems were not further addressed
in [20].

Second, the influence of the communication delays
between neighboring satellites on the global uncertain
closed-loop control system can be restrained, simultaneously.
The communication time delays and the uncertainties involv-
ing parametric perturbations and external disturbances are
included in the equivalent disturbances, and a robust com-
pensating control input based on the signal compensation
theory is introduced to counteract the effects of the equivalent
disturbances on the global system. However, the effects of the
communication delays were not fully studied in [3], for the
global uncertain satellite formation flying system.

Third, the communication topology among satellites is
described by the directed graph, and the resulted satellite for-
mation controller is distributed. For each satellite, the resulted
formation controller only depends on the state information
from itself and its neighbors. But, the distributed formation
control problems were not further studied in [18].

The outline of this article is shown as follows. The prob-
lem formulation including the graph theory, satellite model
description, and control objectives is introduced in section II.
The robust formation controller for the satellite group is
designed in section III. IV and V describe the robustness
properties and simulation results, respectively. VI concludes
the whole work.

II. PROBLEM FORMULATION
A. GRAPH THEORY
To describe the communication topology among finite homo-
geneous satellites in the formation, a basic knowledge of the
graph theory is introduced here. Let 8 = {1, 2, · · · ,N } and
the satellites are numbered from 1 to N . Denote G = {V ,E}
as a directed graph with V = {v1, v2, · · · , vN } a finite set
of nodes and E ∈

{(
vi, vj

)
: vi, vj ∈ V

}
a finite set of edges.
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Node vi represents satellite i and an edge
(
vi, vj

)
∈ E the

information can flow from satellite i to satellite j. Define a
connectivity matrix A =

[
aij
]
∈ RN×N . The element aij is

positive, if
(
vj, vi

)
∈ E ; aij = 0, otherwise. Besides, aii = 0.

Denote the in-degree of node vi as di (vi) =
∑N

j=1 aij, and
D = diag {di (vi)} ∈ RN×N the in-degree matrix. The graph
Laplacianmatrix is defined as L = D−A. If there is a directed
path from a node to every other node, the graph has a spanning
tree and the node is called the root of the tree.
Notations: Denote IN ∈ RN×N as an identity matrix,

cN ,j ∈ RN×1 a column vector with all 0 except for 1 on the j-th
element, 0a×b ∈ Ra×b a zero matrix, s the Laplace operator,
and

⊗
the Kronecker product. Define a skew-symmetric

matrix S (·) for a vector b = [b1 b2 b3]T ∈ R3×1 as:

S(b) =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 .
B. MODEL DESCRIPTION
In this article, the leader satellite can be considered as a
virtual leader for the group of satellites and follows a circular
reference orbit. Let ÊI =

{
êIx , ê

I
y, ê

I
z

}
denote an Earth-fixed

inertial frame, ÊM=
{
êMx , ê

M
y , ê

M
z

}
a leader satellite-fixed

frame attached to its mass center, and ÊBi=
{
êBxi, ê

B
yi, ê

B
zi

}
a

body-fixed frame rigidly attached to satellite i. As shown in
[12], for satellite i, the relative translational dynamics can be
modeled as follows:

p̈xi = ω2
0Lpxi + 2ω0L ṗyi + µg/r

2
0L + uxi + dxi

−µg
(
r0L + pxi

)
/r3i ,

p̈yi = ω2
0Lpyi − 2ω0L ṗxi − µgpyi/r

3
i + uyi + dyi,

p̈zi = −µgpzi/r3i + uzi + dzi, (1)

where pi =
[
pxi pyi pzi

]T
∈ R3×1 represents the relative

translational position in ÊM and uti=
[
uxi uyi uzi

]T
∈ R3×1

the relative control acceleration vector. ω0L =

√
µg

/
r30L

indicates the orbital angular velocity of the leader satellite,
µg the Earth’s gravitational constant, r0L the leader satellite’s

orbit radius, ri =
√(

r0L + pxi
)2
+ p2yi + p

2
zi the distance

between satellite i and Earth, and dpi =
[
dxi dyi dzi

]T
∈

R3×1 the acceleration caused by external disturbances includ-
ing the Earth’s non-spherical gravity, solar radiation pressure,
and third body gravity.Most of the parameters of the subscript
represent the dynamic parameters of a single satellite, and the
dimension is 3× 1.

The attitude kinematics for a rigid satellite i can be
described by modified Rodrigues parameters (MRPs) as

σ̇i = H (σi) ωi, (2)

where σi=[σ1i, σ2i, σ3i]T is a parameter vector, ωi =[
ωxi ωyi ωzi

]T
∈ R3×1 the angular velocity vector in ÊBi,

H (σi) =
(
(1− σiTσi)I3 + 2σiσiT + 2S(σi)

)
/4 an invertible

matrix. The rotational dynamics for satellite i can be written
as

Jiω̇i = −S(ωi)Jiωi + τi + dτ i, (3)

where Ji = diag
{
Jxi, Jyi, Jzi

}
∈ R3×3 is the inertia matrix of

each satellite, τi=
[
τxi τyi τzi

]T
∈ R3×1 the internal control

torque, and dτ i=
[
dτxi dτyi dτ zi

]T
∈ R3×1 the external dis-

turbances. By combining (2) and (3), one can obtain that the
Lagrangian expression with respect to MRPs as:

M (σi) σ̈i + C (σi, σ̇i) σ̇i = uτ i + H (σi)−1dτ i, (4)

where uτ i=H−1(σi)τi is defined as the torque control
input, M (σi) = H−1 (σi) JiH−1 (σi), and C (σi, σ̇i) =
H−1(σi)

(
JiḢ (σi)+ S (H (σi)σ̇i) JiH (σi)

)
. From (1) and (4),

one can see that the translational and the rotational models
are highly nonlinear.Altitude and size of flying agents can
affect the model parameters of these agents which have great
influence on the controller design.

C. PROBLEM DESCRIPTION
In this article, the control objectives for the satellite group are
to form desired time-varying formation patterns and trajecto-
ries, and achieve the satellite attitude consensus. Denote ζpij
and ζσ ij(i, j ∈ 8) as the desired translational and rotational
deviations between satellite i and satellite j, respectively. Let
pr ∈ R3×1 and σ r ∈ R3×1 represent the desired trajectory
and attitude of the virtual leader, and assume that the sec-
ond derivatives of pr and σ r satisfy p̈r=0 and σ̈ r=0. Let
ζpij = ζpi − ζpj and ζσ ij = ζσ i − ζσ j(i, j ∈ 8), where
ζpi and ζσ i indicate the desired translational and rotational
deviations between the leader satellite and satellite i, and∑N

i=1 ζpi=03×1. In order to make all satellites reach a con-
sistent attitude, ζσ ij is set to be 03×1 and thus ζσ i = 0.
To analyze the robust control problem, the real parame-

ter of the satellite motion model can be divided into two
parts: one is the nominal part expressed by superscript N ,
the other is the uncertain part expressed by superscript 1.
Therefore, for example, Ji = JNi + J

1
i andM (σi)=MN (σi)+

M1(σi). The parametric uncertainties are bounded and satisfy∥∥M−1(σi)M1(σi)
∥∥
1 < 1. The feedback linearization control

scheme is first applied to the satellite translational model (1)
and the rotational model (4). Design the virtual translational
and rotational control inputs upi =

[
upxi upyi upzi

]T
∈ R3×1

and uσ i =
[
uσ1i uσ2i uσ3i

]T
∈ R3×1 to cancel nonlinearities

as:

upxi = uxi − µg
(
r0L + pxi

)
/r3i + µg/r

2
0L ,

upyi = uyi − µgpyi/r3i ,

upzi = uzi − µgpzi/r3i ,

uσ i = MN (σi)
−1
(
uτ i − CN (σi, σ̇i) σ̇i

)
. (5)

Then the satellite motion (1) and (4) can be rewritten as

p̈i = CN
p1iṗi + C

N
p2ipi + upi +1pi,

σ̈ = uσ i +1σ i, i ∈ 8, (6)
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where

CN
p1i =

 0 2ω0L 0
−2ω0L 0 0

0 0 0

 ,
CN
p2i =

ω2
0L

0 0
0 ω2

0L
0

0 0 0

 .
1pi ∈ R3×1 and 1σ i ∈ R3×1 in (6) represent equivalent
disturbances, involving parametric perturbations and external
disturbances, which we’re dealing with to restrain the effects,
and satisfy the following equations

1pi = dpi,

1σ i = M−1(σi)H−1(σi)dτ i
−M−1(σi)M1(σi)uσ i
−M−1(σi)C1 (σi, σ̇i) σ̇i. (7)

The external disturbances dpi and dσ i are assumed to be
bounded.
Remark 1: It can be observed from (6) that the real motion

model of the satellite includes a nominal model and the
equivalent disturbances. In fact, the satellite model (6) can
be regarded as the nominal model by ignoring the equivalent
disturbances 1pi and 1σ i.

III. FORMATION CONTROLLER DESIGN
In this section, a formation controller is proposed for the satel-
lite group, which includes a translational formation controller
to form the desired formation patterns and track the desired
trajectories, and a rotational formation controller to make the
satellite attitude consensus.

A. TRANSLATIONAL FORMATION CONTROLLER DESIGN
The translational control input upi (t) for satellite i is designed
as:

upi (t) = uNpi (t)+ u
R
pi (t) , i ∈ 8, (8)

where uFpi ∈ R3×1 is the nominal part for the nominal model
to achieve desired tracking properties, and uRpi ∈ R3×1 is
the robust compensating part to restrain the effects of 1pi
in (6) on the closed-loop control system. It should be noted
that there exists a communication delay h when satellite i
receives information from its neighbors. The communication
delays are nonnegative and assumed to be uniformly bounded
functions, satisfying h̄ = max ‖h‖∞ < ∞ and h̄d =
max

∥∥ḣ∥∥
∞

< 1. In this case, by ignoring the equivalent
disturbance 1pi, the nominal translational control input uNpi
can be designed to achieve desired translational tracking
properties as:

uFpi = −αF
∑
j∈N

aijKp
(
pi (t)− pj (t − h)− ζpi

)
−αF

∑
j∈N

aijKṗ
(
ṗi (t)− ṗj (t − h)− ζ̇pi

)

−αFβliKp
(
pi (t)− ζpi − pr (t)

)
−αFβliKṗ

(
ṗi (t)− ζ̇pi − ṗr (t)

)
, (9)

where αF ∈ R1×1 represents a scalar coupling gain, βli
is a constant indicating the connection between the virtual
leader and satellite i. When βli = 1, the virtual leader
can transmit information to satellite i, otherwise βli = 0.
Kp,Kṗ ∈ R3×3 are diagonal nominal controller parameter
matrices to be determined. Define Mp = MT

p ∈ R6×6 and
5p = 5T

p ∈ R3×3 are symmetric and positive definite
matrices. Let Kp̄=

[
Kp Kṗ

]
and

Az =
[
03 I3
03 03

]
,Bz =

[
03
I3

]
.

Then the nominal position controller parameter matrix Kp̄
can be given by Kp̄ = 5−1p BTz Qp, where Qp is the positive
definite solution to the following Riccati equation as:

ATz Qp + QpAz +Mp − QpBz5−1p BTz Qp = 0.

Considering the communication delays, one can obtain the
new equivalent disturbance 1∗pi in the translational model,
satisfying

1∗pi (t) = 1pi (t)+1hpj (t)−1hpj (t − h) , (10)

where 1hpj (t) = αF
∑
j∈N

aijKppj (t) + αF
∑
j∈N

aijKṗṗj (t), and

1hpj (t)−1hpj (t − h) represents themismatched term caused
by the communication delays. Based on a robust filter Fpi(s),
uRpi can be constructed as:

uRpi (s) = −Fpi(s)1
∗
pi (s) , i ∈ 8, (11)

where Fpi(s) = diag{Fp1,i(s),Fp2,i(s),Fp3,i(s)}, Fpl,i(s) =
f 2pl,i/

(
s+ fpl,i

)2(l = 1, 2, 3)with the positive robust filter
parameters fpl,i to be selected, and fpi = diag

{
fpl,i

}
∈ R3×3.

From [23], [24], one can see that lager robust filter parameters
yield wider frequency bandwidths. In this case, Fpi (s) can
get closer to a unit matrix, and thus uRpi (s) can get closer
to the equivalent disturbance 1∗pi. However, 1

∗
pi cannot be

measured directly in practical applications. Then, from (6),
one has that

1∗pi = p̈i − CN
p1iṗi − C

N
p2ipi − upi. (12)

Therefore, substituting (12) to (11), one can obtain the real-
ization of uRpi (t) by the following state-space form as:

żp1i (t) = −fpiz
p
1i (t)+ upi (t)

−

(
f 2pi + C

N
p1fpi − C

N
p2

)
pi (t) ,

żp2i (t) = −fpiz
p
2i (t)+

(
2fpi + CN

p1

)
pi (t)+ z

p
1i (t) ,

uRpi (t) = −f
2
pipi (t)+ f

2
piz

p
2i (t) , i ∈ 8, (13)

where zp1i (t) , z
p
2i (t) ∈ R3×3 are the filter states.

Remark 2: It should be pointed out that h represents the
communication delay when satellite i obtains information
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from its neighbor. In fact, h is involved in the control input,
which can affect the global closed-loop control system.
It should be noted that there exists a communication delay
h when satellite i receives information from its neighbors.
The communication delays are nonnegative and assumed to
be uniformly bounded functions, satisfying h̄ = max ‖h‖∞ <

∞ and h̄d = max
∥∥ḣ∥∥
∞
< 1.

B. ROTATIONAL FORMATION CONTROLLER DESIGN
Similarly to the design process of the translational formation
controller, the virtual rotational control input uσ i (t) can be
divided into the following two parts:

uσ i (t) = uFσ i (t)+ u
R
σ i (t) , i ∈ 8, (14)

where uFσ i (t) , u
R
σ i (t) ∈ R3×1 are the nominal control part

and robust control part, respectively. The nominal control part
uFσ i (t) is designed similarly to uFpi (t) as:

uFσ i = −ηF
∑
j∈N

aijKσ
(
σi (t)− σj (t − h)− ζσ i

)
− ηF

∑
j∈N

aijKσ̇
(
σ̇i (t)− σ̇j (t − h)− ζ̇σ i

)
− ηFβliKσ

(
σi (t)− ζσ i − σ r (t)

)
− ηFβliKσ̇

(
σ̇i (t)− ζ̇σ i − σ̇ r (t)

)
, (15)

where Kσ ,Kσ̇ ∈ R3×3 are diagonal nominal controller
parameter matrices. Let Kσ̄=

[
Kσ Kσ̇

]
. Considering sym-

metric and positive definite matrices Mσ = MT
σ ∈ R6×6

and 5σ = 5T
σ ∈ R3×3, one can obtain Kσ̄ by Kσ̄ =

5−1σ BTz Qσ , where Qσ is the positive definite solution to the
Riccati equation

ATz Qσ + QσAz +Mσ − QσBz5−1σ BTz Qσ = 0.

By considering the communication delays, one can obtain
the new equivalent disturbance 1∗σ i in the rotational model,
satisfying

1∗σ i (t) = 1σ i (t)+1hσ j (t)−1hσ j (t − h) , (16)

where1hσ j (t) = αF
∑
j∈N

aijKσσj (t)+αF
∑
j∈N

aijKσ̇ σ̇j (t), and

1hσ j (t)−1hσ j (t − h) indicates the mismatched term caused
by the communication delays, which will affect communi-
cation between satellites and reduce the performance of the
controller. Similarly, the robust part uRσ i can be constructed
as:

uRσ i (s) = −Fσ i(s)1
∗
σ i (s) , (17)

where Fσ i(s) = diag{Fσ1,i(s),Fσ2,i(s),Fσ3,i(s)} and
Fσ l,i(s) = f 2σ l,i/

(
s+ fσ l,i

)2(l = 1, 2, 3) with the positive
robust filter parameters fσ l,i, and fσ i = diag

{
fσ l,i

}
∈ R3×3.

uRσ i (t) can be realized in a similar way as the following
equations:

żσi1 (t) = −fσ iz
σ
i1 (t)− f

2
σ iσi (t)+ uσ i (t) ,

żσi2 (t) = −fσ iz
σ
i2 (t)+ 2fσ iσi (t)+ zσi1 (t) ,

uRσ i (t) = −f
2
σ iσi (t)+ f

2
σ iz

σ
i2 (t) , i ∈ 8. (18)

Remark 3: A relative motion model including the leader
satellite and the deputy satellites was discussed in [12], and
the resulted formation controller was distributed based on
the model. In the current paper, the proposed formation con-
trollers expressed in (8), (9), (11), (14), (15), and (17) are
distributed, because controller design only needs information
from satellite i and its neighbors.

IV. ROBUSTNESS PROPERTIES
Define the translational and rotational tracking errors of
satellite i as epi =

[
epj,i

]
= pi − ζpi − pr ∈ R3×1

and eσ i =
[
eσ j,i

]
= σi − ζσ i − σ r ∈ R3×1.

Let Xpi =
[
eTpi ė

T
pi

]T
=
[
Xpj,i

]
∈ R6×1 and Xσ i =[

eσ Ti ėTσ i
]T
=
[
Xσ j,i

]
∈ R6×1. Then, by combining (6), (8),

(9), (14), and (15), one can obtain the error system model for
satellite i as follows:

Ẋpi (t) = −ηFBz
∑
j∈N

aijKp
(
epi (t)− epj (t)

)
− ηFBz

∑
j∈N

aijKṗ
(
ėpi (t)− ėpj (t)

)
− ηFβliBz

(
Kpepi (t)+ Kṗėpi (t)

)
+AzXpi (t)+ Bz

(
uRpi (t)+1

∗
pi (t)

)
,

Ẋσ i (t) = −ηFBz
∑
j∈N

aijKσ
(
eσ i (t)− eσ j (t)

)
− ηFBz

∑
j∈N

aijKσ̇
(
ėσ i (t)− ėσ j (t)

)
− ηFβliBz (Kσ eσ i (t)+ Kσ̇ ėσ i (t))

+AzXσ i (t)+ Bz
(
uRσ i (t)+1

∗
σ i (t)

)
. (19)

Now, the global closed-loop error system can be rewritten as:

Ẋp (t) = (IN ⊗ Bz)
(
uRpi (t)+1

∗
pi (t)

)
+ (IN ⊗ Az − ηF (L + BL)⊗ BzKp̄)Xpi (t)

= Ap̄Xp (t)+ Bz̄1̃p (t) ,

Ẋσ (t) = (IN ⊗ Bz)
(
uRσ i (t)+1

∗
σ i (t)

)
+ (IN ⊗ Az − ηF (L + BL)⊗ BzKσ̄ )Xσ i (t)

= Aσ̄Xσ (t)+ Bz̄1̃σ (t) , (20)

where BL = diag {βli} ∈ RN , Xp ∈ R6N×1 and Xσ ∈ R6N×1.
Let λi(i ∈ 8) represent the eigenvalues of (L + BL) and
λmin = mini∈8Re(λi). From Theorem 1 in [26], when the
graph G has a spanning tree and the root can obtain the
information from the virtual leader, if ηF ≥ λmin/2, Ap̄
and Aσ̄ are asymptotically stable. Because the effectiveness
of the nonlinear model for satellite has been validated by
the experiments and our proposed robust formation control
method has been checked by simulation tests based, our
proposed robust formation control method can be suitable for
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the multiple satellite s to achieve the real flying formations in
experimental tests.

The robust compensating inputs uRpi (t) in (11) and uRσ i (t)
in (17) can be represented by the following sate-space
forms:

ẊRkl,i(t) = ARkl,i(fkl,i)XRkl,i(t)+ c2,11∗kl,i,

uRkl,i(t) = −c
T
2,2fkl,iXRkl,i(t), k = p, σ ; l = 1, 2, 3, (21)

where

ARkl,i(fkl,i) =
[
−fkl,i 0
fkl,i −fkl,i

]
.

Let XRp(t) =
[
XTRp1,i(t),X

T
Rp2,i(t),X

T
Rp3,i(t)

]T
∈ RN×1,

XRσ (t) =
[
XTRσ1,i(t),X

T
Rσ2,i(t),X

T
Rσ3,i(t)

]T
∈ RN×1, X̂k (t) =[

XTk (t),X
T
Rk (t)

]T (k = p, σ ), A1 = diag
{
−cT2,2fkl,i

}
∈

R3N×6N , AR = diag
{
ARkl,i(fkl,i)

}
∈ R6N×6N , B12 =

diag
{
c2,1

}
∈ R6N×3N (l = 1, 2, 3),B11 = Bk1, and1∗k (t) =[

1∗ki(t)
]
∈ RN×1. From (20) and (21), the translational and

rotational error models can be rewritten as:

˙̂Xk (t) = Âk X̂k (t)+ B̂k1∗k (t), k = p, σ, (22)

where

Âk =
[

Ak̄ Bz̄A1
06N×6N AR

]
, B̂k =

[
B11
B12

]
.

The equivalent disturbances involved communication delays
1∗p and 1

∗
σ are assumed to satisfy

∥∥1∗k (t)∥∥ ≤ 1∑
l=0

λekl ‖E(t − hl(t))‖+
1∑
l=0

λukl ‖uk (t−hl(t))‖

+ γkd , k = p, σ ; l = 0, 1,

where λekl and λukl are positive constants, γkd is uniformly
bounded positive function involving the external disturbance

dk , and E(t) =
[
eTp (t), ė

T
p (t), e

T
σ (t), ė

T
σ (t)

]T
. From (4)

and (8), the equivalent disturbances 1∗p and 1∗σ satisfy
that ∥∥1∗k (t)∥∥ ≤ 1∑

l=0

λekl ‖E(t − hl(t))‖ + γkd

+

1∑
l=0

λukl(λkE ‖E(t − hl(t))‖)

+

1∑
l=0

λukl(fkm ‖XRk (t − hl(t))‖), (23)

where λkE (k = p, σ ) are positive constants, XRk (t) =
diag(XRk1(t),XRk2(t),XRk3(t)), fkm = ‖fki‖, h̄e =

maxl‖hl‖∞, h̄de = maxl
∥∥ḣl∥∥∞, and h0(t) = 0. Define κ =∥∥∥5−1p BTz

∥∥∥, λuk0 and λuk1 are positive constants and selected

to satisfy 2κλuk1< [1− κ(3λuk0 + λuk1)](1− h̄e). The delay
h̄e cannot be arbitrarily increased. Denote Pk (k = p, σ ) as the

solution to the Lyapunov equation: Pk Âk + ÂTk Pk = −I12N .
From (12), one can obtain that the matrix Âk is Hurwitz,
therebyPk is positive definite. There exists a positive constant
λBk satisfy ∥∥∥Pk B̂k∥∥∥ ≤ λBk f −1km , k = p, σ.

Theorem 1: Consider the translational and rotational
model of the satellite in (1) and (4), and the robust formation
controller proposed in Section III. For a given initial time t0,
a given bounded and piecewise continuous initial state E (τ ),
τ ∈

[
t0 − h̄e, t0

]
, and a positive constant ε, there exist posi-

tive constants ki (k = p, σ ) and T such that for any f , Ek (t) is
uniformly bounded for t ≥ t0 and satisfies that ‖E (t)‖ ≤ ε,
∀t ≥ T .

Proof: Consider the Lyapunov function candidate with-
out the communication delays as:

V1(X̂ (t)) =
∑
k=p,σ

X̂Tk (t)Pk X̂k (t). (24)

One can yield its derivative as follows:

V̇1(X̂ (t)) = −
∑
k=p,σ

(
‖Ek (t)‖2 + ‖XRk (t)‖2

)
+

∑
k=p,σ

2X̂Tk (t)Pk B̂k1k (t)

≤ −

∑
k=p,σ

(
‖Ek (t)‖2 + ‖XRk (t)‖2

)
+

∑
k=p,σ

2 (‖Ek (t)‖+‖XRk (t)‖) λBk f
−1
km

∥∥1∗k (t)∥∥.
(25)

Define ξek =
∑1

l=0 λBkλukl , ξefk =
∑1

l=0 λBkλekl +∑1
l=0 λBkλuklλkE , ξuk =

∑1
l=0 λBkλukl ,

ξufk =
∑1

l=0 λBkλekl +
∑1

l=0 λBkλuklλkE , ξesfk =

2
∑1

l=0 λBkλekl , ξusk = 2
∑1

l=0 λBkλekl , and ξγ k =

2λBkγkd . Substituting (23) into (25), one can obtain
that

V̇1(X̂ (t))

≤ −

∑
k=p,σ

(1− ξek − ξefk f
−1
km )‖Ek (t)‖2

−

∑
k=p,σ

(1− ξuk − ξufk f
−1
km )‖XRk (t)‖2

+

∑
k=p,σ

ξesfk‖Ek (t − hl(t))‖2f
−1
km

+

∑
k=p,σ

ξusk‖XRk (t − hl(t))‖2

+

∑
k=p,σ

ξγ k ‖Ek (t)‖f
−1
km

+

∑
k=p,σ

ξγ k ‖XRk (t)‖f
−1
km . (26)
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FIGURE 1. Communication graph of satellites.

Then, the communication delays are introduced to obtain the
final Lyapunov function candidate as:

V (X̂ (t), t) = V1(X̂ (t))

+

∑
k=p,σ

∑1

l=0
ξNR

∫ t

t−hl (t)
‖XRk (τ )‖2dτ

+

∑
k=p,σ

∑1

l=0
ξNE

∫ t

t−hl (t)
‖Ek (τ )‖

2

dτ , (27)

where ξNE and ξNR are positive constants, and satisfy
1− 2ξNE > ξek , 1− 2ξNR > ξuk , and 2(1− h̄de)ξNR > ξusk .
By differentiating (27), one can obtain that

V̇ (X̂ (t), t)

≤ V̇1(X̂ (t))+
∑
k=p,σ

1∑
l=0

ξNE‖Ek (t)‖2

−

∑
k=p,σ

1∑
l=0

ξNE (1− h̄de)‖Ek (t − hl(t))‖2

+

∑
k=p,σ

1∑
l=0

ξNR‖XRk (t)‖2

−

∑
k=p,σ

1∑
l=0

ξNR(1− h̄de)‖XRk (t − hl(t))‖2. (28)

Let πek = 1 − 2ξNE − ξek − ξefk f
−1
km , πRk = 1 − 2ξNR −

ξuk − ξufk f
−1
km , πesk = 2(1 − h̄de)ξNE − ξesfk f

−1
km , πRsk =

2(1 − h̄de)ξNR − ξusk , and πγ k = ξγ k f
−1
km . Substituting (26)

into (28), one can obtain that:

V̇ (X̂ (t), t)

≤ −

∑
k=p,σ

πek‖Ek (t)‖2 −
∑
k=p,σ

πRk‖XRk (t)‖2

−

∑
k=p,σ

πRsk‖XRk (t − hd (t))‖2

−

∑
k=p,σ

πesk‖Ek (t − hd (t))‖2

+

∑
k=p,σ

πγ k ‖Ek (t)‖ +
∑
k=p,σ

πγ k ‖XRk (t)‖. (29)

FIGURE 2. Structure of the proposed controller.

FIGURE 3. Three-dimensional trajectory by the proposed controller.

FIGURE 4. Velocity response by the proposed controller.

One can observe that if the robust filter parameters fkm(k =
p, σ ) satisfy

fkm > ξefk
/
(1− 2ξNE − ξek ),

fkm > ξufk
/
(1− 2ξNR − ξuk ),

fkm > ξesfk
/
2(1− h̄d )ξNE , k = p, σ,
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FIGURE 5. Translational tracking error by the proposed controller.

FIGURE 6. Rotational response by the proposed controller.

then, πek and πRk are positive, while πRsk , πesk , and πγ k are
nonnegative. Therefore, for a given initial time to, a given
bounded and piecewise continuous initial state E (τ ), τ ∈[
t0 − h̄e, t0

]
, and a positive constant ε, there exist positive

constants fki (k = p, σ ) and T such that for any fki > fki,
Ek (t) is uniformly bounded for t ≥ t0 and satisfies that
‖E (t)‖ ≤ ε, ∀t ≥ T . �

V. SIMULATION RESULTS
In this section, numerical simulation results of four satellites
have been given to verify the effectiveness and advantages of

FIGURE 7. Three-dimensional trajectory by the leader-following
controller.

FIGURE 8. Velocity response by the leader-following controller.

the proposed formation controller, and thus 8={1, 2, 3, 4}.
The satellite model in Section II is used in the simulation
test with the Earth’s gravitational constant µg=3.986 ×
1014, the nominal inertia matrix of each satellite JNi =

diag{4.34, 4.33, 3.66}, and the leader satellite’s orbit radius
r0L = 7.4 × 106, and all parameters are in interna-
tional units. The trajectory of the virtual leader is given by
pr =

[
0.2t 0.2t 0.2t

]T and the desired attitude is σ r =[
0.05 0.05 0.05

]T . The four satellites are required to form
a pentagon formation pattern as ζ1 = 10

(
1− e−t

)
c3,1,

ζ2 = 10
(
1− e−t

)
c3,2, ζ3 = −10

(
1− e−t

)
c3,1, and ζ4 =

−10
(
1− e−t

)
c3,2. Only satellite 1 can obtain the informa-

tion from the virtual leader, and thereby βl1=1, βl2= 0,
βl3= 0, and βl4= 0. The topological relationship of the four
satellites is described as Fig. 1 and structure of the proposed
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FIGURE 9. Translational tracking error by the leader-following controller.

FIGURE 10. Rotational response by the leader-following controller.

controller is described as Fig. 2. The adjacency matrix A is
given by

[
Aij
]
=


0 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0

 .
The initial conditions of the four satellites are given

as: p1(0) =
[
5 0 0

]T , p2(0) = [
0 5 0

]T , p3(0) =[
−5 0 0

]T , p4(0) = [ 0 −5 0
]T , ṗi(0) = [ 0 0 0

]T
(i ∈ 8),

σ1(0) =
[
0.1 0.1 0.1

]T , σ2(0) = [
0.12 0.12 0.12

]T ,

FIGURE 11. Rotational tracking error of four satellites with 0.3 s
communication delay.

FIGURE 12. Rotational response of four satellites with 0.3 s
communication delay.

σ3(0) =
[
0 0 0

]T , and σ4(0) = [
−0.04 −0.04 −0.04

]T .
The external disturbances used in [12] were time-invariant.
However, in the current paper, time-varying and non-
vanished disturbances are considered to simulate complex
space environment. The real satellite parameters are cho-
sen to be 15% larger than the nominal parameters and
the external disturbance torques are selected as: dp =[
5 sin t 5 sin t 0.1 sin t

]T for the position control input and
dτ = 0.3

[
sin 0.5t sin 0.5t sin 0.5t

]T for the attitude torque.
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FIGURE 13. Velocity response of four satellites with 0.3 s communication
delay.

FIGURE 14. Translational tracking error of four satellites with 0.3s
communication delay.

The scalar coupling gain is set to be αF = 1. The communica-
tion delays are assumed that ‖he(t)‖∞ ≤ 0.1s. The nominal
controller parameters are selected as: Kp = diag {20, 20, 5},
Kṗ = diag {25, 25, 7}, Kσ = diag {100, 100, 100}, and Kσ̇ =
diag {90, 90, 90}. The robust filter parameters are selected as
fpi = diag {7, 7, 30} and fσ i = diag {7, 7, 7} according to
Remark 4 for better control performance.

Figs. 3, 4, 5, and 6 depict the three-dimensional trajectory
pi, velocity response ṗi, translational tracking error epi, and
rotational response σi of the four satellites, respectively. The
red, blue, pink, and black solid lines indicate Satellites 1-4,

FIGURE 15. Rotational tracking error of four satellites with 0.6 s
communication delay.

FIGURE 16. Rotational response of four satellites with 0.6 s
communication delay.

and the black dotted line represents the formation pattern.
It can be seen that the steady-state translational and rotational
tracking errors are nearly 0.2 m and 0.003. Besides, the
proposed robust formation controller in Section 3 is compared
to a leader-following controller introduced in [27] for the
satellite group. Limited types of uncertainties were discussed
in stability analysis of the constructed global closed-loop con-
trol systems, the effects of the communication delays between
neighboring satellites were ignored in the stability analysis of
the [27]. The experimental result is a proof of theory. In addi-
tion to the above reasons, [27] depict the rotational response
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FIGURE 17. Velocity response of four satellites with 0.6 s communication
delay.

FIGURE 18. Translational tracking error of four satellites with 0.6 s
communication delay.

of the four satellites by the proposed controller. Since the
error of following two followers is independent of each other,
the algorithm error is easy to diverge without feedback and
compensation, which cannot affect the proposed controller.
Figs. 7, 8, 9 and 10 show the formation trajectory, velocity
response, translational tracking error and rotational response
of the satellite group respectively, and the steady-state transla-
tional and rotational tracking errors are approximately 0.5 m
and 0.03, by the leader-following formation control scheme.
In Fig.6 and Fig.10, three rotational responses are close but
different, the initial condition and the trace condition are close

FIGURE 19. Rotational tracking error of three satellites with 0.1 s
communication delay.

FIGURE 20. Rotational response of three satellites with 0.1 s
communication delay.

to each other. But they will be slightly different caused by
disturbance and uncertainty.

To test the effects of the delay, three sets of different
time delays, i.e., h=0.1 s, h=0.3 s, h=0.6 s are set up
respectively. At the same time, a different group is set up to
test the effects of the number of satellites for the response
comparison, with three satellites. Figs. 11, 12, 13 and 14
show the rotational tracking error eσ i, rotational response
σi, velocity response ṗi, and translational tracking error epi
of four satellites with a communication delay of 0.3 s.
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FIGURE 21. Three-dimensional trajectory of three satellites with 0.1 s
communication delay.

FIGURE 22. Velocity response of three satellites with 0.1 s
communication delay.

Figs. 15, 16, 17 and 18 show the rotational tracking error eσ i,
rotational response σi, velocity response ṗi, and translational
tracking error epi of four satellites with a communication
delay of 0.6 s. Figs. 19, 20, 21, 23 and 23 show the rotational
tracking error eσ i, rotational response σi, three-dimensional
trajectory, velocity response ṗi, and translational tracking
error epi of three satellites with a communication delay of
0.1 s. It can be seen that the mutual influence between the
satellites, the degree of curve fluctuation and the convergence
time increase as the communication delay increases. And the
impact decreases as the number of satellites decreases.

From these simulation results, one can observe that the
desired translational and rotational tracking control can be
better achieved under the influence of nonlinear dynamics,
parametric uncertainties, external disturbances, and commu-
nication delays.

FIGURE 23. Translational tracking error of three satellites with 0.1 s
communication delay.

VI. CONCLUSION
A robust formation controller design method is proposed to
address the problem of satellite formation flying subject to
nonlinear dynamics, parametric uncertainties, external distur-
bances, and communication delays. The proposed formation
controller includes a translational controller and a rotational
controller, to govern the translational motion and the rota-
tional motion respectively. It is proven that the translational
and rotational tracking errors of the global closed-loop con-
trol system can converge into a given neighborhood of the
origin in a finite time. The numerical simulation results are
given to demonstrate the effectiveness and advantages of the
designed formation flying controller. The proposed method is
applicable to almost all other flying agents, not just satellites.
In future, the robust optimal controller via the reinforcement
learning method will be studied to achieve the desired satel-
lite formation flying. The new formation controller will be
designed, independently of satellite model parameters.
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