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ABSTRACT In this article, we propose a method based on principal component analysis (PCA) to restore
data after the occurrence of data loss due to sensor defects or environmental factors. In the L2-PCA feature
space, the feature vector, which consists of principal components of the data, converges to a point known as
the ‘‘convergence point’’ as the extent of data loss increases. Using these characteristics, we approximately
linearly estimated the principal components of the original data from the feature vectors of the lossy data.
The estimated principal components are used as coefficients in the linear combination of the projection
vectors of the PCA feature space for data restoration. The restoration performance of the proposed method
is not only superior; the method is also computationally more efficient than other data restoration methods.
Experimental results for gas measurement data and facial image data confirm the excellent data restoration
performance of the proposed method.

INDEX TERMS Data restoration, principal components, lossy data, approximately linear estimation, feature
space, convergence point.

I. INTRODUCTION
A variety of methods for the analysis of sensor data [1]–[4]
and the extraction of meaningful patterns from these data
have been proposed in recent decades [5]. Data collected
by various sensors such as image, voice, electromyog-
raphy (EMG) and chemical sensors are used for differ-
ent applications such as image recognition [6]–[8], speech
recognition [9], [10], gesture recognition [11]–[14] and gas
classification [15]–[20].

The performance of classification techniques using sensor
data varies greatly depending not only on the amount of data
collected but also on the quality of the data. In particular,
when data are collected in a real environment rather than in a
well-controlled laboratory environment, some of the data val-
uesmay be lost owing to defects in the sensor itself or because
of environmental variables. For example, data acquisition
may either be temporarily interrupted as a result of unsta-
ble power supply, or dead pixels, in which a specific pixel
value becomes 0 because of a defective image sensor, may
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be generated. These data, which are regarded as outliers com-
pared to normal data, cause performance degradation when
data are represented or recognized [18].

To overcome this problem, statistical methods have been
proposed to restore the lossy data. For example, methods
that identify the feature space that best represents the given
data and project lossy data into the space to obtain the
feature values were proposed [21], [22]. Then, the lossy
data values are restored by employing a linear combination
of the projection vectors using the feature values as the
weights. Specifically, the projection vectors and features are
extracted [21] to minimize the L2-Norm-based error between
the original data and the data sample that was reconstructed
using conventional principal component analysis (L2-PCA).
However, this data reconstruction method is sensitive to out-
liers [23], although it minimizes the reconstruction error from
the viewpoint of themean squared error. This is because when
the covariance matrix is calculated in the process of obtaining
the projection vectors of L2-PCA, the outliers are squared,
which excessively affects the covariance values. Other
studies [22], [24] conducted PCA based on the L1-norm
(L1-PCA) instead of the L2-norm. Although data

172244
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0462-0050


Y. Lee, S.-I. Choi: Data Restoration by Linear Estimation of the Principal Components From Lossy Data

reconstruction methods using L1-PCA are less susceptible
to outliers than L2-PCA and show reliable restoration perfor-
mance, they are computationally costly. To reduce the com-
putational burden, PCA-L1 [22] that maximizes the L1-norm
was proposed. The robust PCA [26] presented a method
to recover the low-rank of the data matrix using convex
optimization when a data matrix corrupted by noise or loss
is provided. In other words, robust PCA aims to obtain
the true low rank, i.e., projection matrices W and V from
contaminated data. Another study [25] led to the develop-
ment of an iteratively re-weighted fitting (IRF) strategy to
repeatedly update feature values in the PCA feature space.
The advantage of this approach is that the features are updated
such that the reconstruction error of the data is reduced.
Consequently, IRF improves the restoration performance
rather than using the PCA feature values as they are; however,
this also results in the iterative process becoming more
computationally intensive.

In this article, we propose a new data restoration method
that approximately linearly estimates the principal compo-
nents of the original lossless data from the principal compo-
nents of the lossy data. When a lossy data sample is projected
onto the L2-PCA feature space, the data samples gradually
approaches to one point of the feature space as the loss
increases. Because all of the components in the data become
‘‘0’’ when loss occurs for all times or intervals, each data is
converged into a single point in feature space regardless of the
feature space. Regardless of the unique properties or informa-
tion of the data in the event of loss, it all becomes the same
zero-vector. Therefore all data samples converge to one point,
so called ‘‘convergence point (CP)’’, in the feature space.

Therefore, if the loss rate of a given sample of data is
known, the feature vector of lossless data can be approxi-
mately linearly estimated from the point at which data loss
occurred, based on the straight line between the convergence
point and the feature vector of the lossless data. The estimated
feature values of the original data are used to restore the data
as weights to the linear combination of the projection vectors
that are the basis of the L2-PCA feature space (Fig. 1).

The restoration performance of the proposed method is not
only high compared to that of existing methods, it also per-
forms data restoration in a computationally simple manner.
The experiments were conducted on three datasets to evaluate
the restoration performance of the proposed method: the first
comprised a collection of facial images [27], the second
comprised gas data captured by an electronic nose [15],
and the third comprised the occupancy rates [28] col-
lected from car lanes on freeways. Our experimental results
showed that the proposed method restores data more effi-
ciently and accurately than other PCA-based reconstruction
methods.

This article is organized as follows. Section II describes the
PCA methods used for data restoration. Section III explains
the relationship between the principal components of the
original data and the lossy data, and presents the data restora-
tion by estimating the principal components of the original

data from the lossy data. The experimental results on data
restoration and data classification are described in Section IV.
The discussions and conclusions follow in Section V.

II. RELATED WORK
Several methods can be used to extract the principal com-
ponents from a given data matrix [21], [22], [24]. Principal
component analysis (PCA) [29], [30] is a statistical method
based on multivariate analysis. PCA finds the projection vec-
tors (wt = [wt1,wt2, . . . ,wtn]T , t = 1, . . . , n′) to construct
the feature space that best represents the data. Let us consider
the set X = {x1, . . . , xN } of n-dimensional data samples
xks. Each data sample xk = [xk1, xk2, . . . , xkn]T can be
represented by a linear combination of projection vectorswts
with principal components ykts in the PCA feature space.
L2-PCA [21] and L1-PCA [24] define their objective function
using the L2-norm and L1-norm, respectively, as follows.

WL2
PCA = argmin

W

N∑
k=1

||xk −
n′∑
t=1

yktwt +m||22

WL1
PCA = argmin

W

N∑
k=1

||xk −
n′∑
t=1

yktwt +m||1, (1)

where m = [m1,m2, . . . ,mn]T is the mean of X . By solv-
ing the above objective functions, each method obtains the
projection matrices WL2

PCA = [wL2
1 , . . . ,w

L2
n′ ] and WL1

PCA =

[wL1
1 , . . . ,w

L1
n′ ], respectively, and the projection vectors con-

stituting each projection matrix are the basis of their feature
spaces. PCA-L1 [22] was used with the aim to maximize the
L1 dispersion using the L1-norm in the feature space to obtain
a subspace, which is not only robust to outliers and invariant
to rotation, by using the following objective function.

WL1′
PCA = argmax

W

N∑
k=1

n′∑
t=1

n∑
i=1

|yktwti(xki − mi)|

subject to WTW = I (2)

The process of finding the solution to the above equation is
described in [22].

A feature vector y composed of principal components
for a given data sample x can be represented by using
WPCA, which is obtained by solving the objective function, as
y =WT

PCA(x−m).

III. PROPOSED METHOD
Wefirst constructed the L2-PCA feature space from the origi-
nal data unaffected by loss. The restoration was carried out by
approximately linearly estimating the principal components
of lossless data from the principal components of lossy data.

A. RELATIONSHIP BETWEEN LOSSY DATA AND THEIR
PRINCIPAL COMPONENTS
Let WL2

PCA and VL2
PCA be the projection matrix obtained by

L2-PCA from normal training data without loss and its trans-
pose matrix, respectively. Then, the feature vector y for input
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FIGURE 1. Overall procedure of the proposed method.

data x can be rewritten as follows.

y = (WL2
PCA)

T (x−m) = VL2
PCA(x−m)

=


v11x1 + · · · + v1nxn
v21x1 + · · · + v2nxn

...

vn′1x1 + · · · + vn′nxn

− VL2
PCAm

= x1


v11
v21
...

vn′1

+ · · · + xn

v1n
v2n
...

vn′n

− VL2
PCAm

= x1v1 + · · · + xnvn − VL2
PCAm (3)

In (3), each element xi of the input data is a coefficient of
the column vector vi. If the i-th element of the input data is
lost, the contribution of vi is 0 in determining y, and thus the
difference between the feature vectors (y and ȳ) of the original
data without loss (x) and the lossy data x̄ is xivi. In the worst
case, if all elements of the n-dimensional data sample are lost,
the difference in the feature space is

∑n
i=1 xivi.

Let us define a flag vector L(k) ∈ Rn×1, of which the
element L(k)i indicates whether the i-th element of the k-th
data sample xk is as follows.

L(k)i =
{
1, if loss occurred at xki
0, otherwise

(4)

For a given n-dimensional data sample, if a loss occurs in
r elements, the loss rate l for this data sample becomes
l =

∑n
i=1 L(k)i
n =

r
n . For a single data sample, because the

number of cases of loss occurrence at the same loss rate is

FIGURE 2. (a) Process of generating lossy data according to the loss rate.
(b) error between lossy and lossless data in the feature space.

Nl =n Cr = n!/r !(n− r)!, the average error (φ(ē|l)) between
the lossy data and the lossless data in the feature space for a
given loss rate l is calculated as

φ(ē|l) = 1/Nl
Nl∑
k=1

n∑
i=1

xkiviL(k)i (5)

On the other hand, the process of loss occurring from
data is characterized by a relationship between data samples
in which r elements are lost and those in which r − 1
elements are lost. For example, let us consider three-
dimensional lossless data x (Fig. 2). For loss rate l = 1/3,
it is possible to generate three types of loss data
([0, x2, x3]T , [x1, 0, x3]T , [x1, x2, 0]T ), whereas another three
types of loss data ([x1, 0, 0]T , [0, x2, 0]T , [0, 0, x3]T ) can be
generated for loss rate l = 2/3. In Fig. 2(a), [0, 0, x3]T with a
loss rate of 2/3 result from [0, x2, x3]T and [x1, 0, x3]T with
a loss rate of 1/3, but loss cannot occur from [x1, x2, 0]T .
This means that the type of data sample with l = 2/3 is
dependent upon the previous state of l = 1/3. Fig. 2(b)
shows the error between the lossless data and the lossy
data in the feature space according to the loss rate l. If the
process in Fig. 2(b) is extended to the case of n-dimensional
data samples, the average error for loss rate l in (5) can be
expressed as follows.

φ(ē|l) = l
n∑
i=1

xivi (6)
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In (6), as l increases, the average error increases propor-
tionally, and when all the data values are lost (l = 1),
the data samples always converge to one point (the conver-
gence point, CP) in the feature space. In other words, in the
PCA feature space, as the input data becomes increasingly
lossy, the feature vector of the lossy data approximately
linearly approaches the CP.

This is demonstrated by using the following toy example.
We generated 10 samples of 1,000-dimensional data and
plotted the samples in the L2-PCA feature space composed of
two dominant projection vectors (Fig. 3). In Fig. 3, the color
of a point represents the type of data sample, and the shape
of a point represents the different loss rate of each lossy
data value(square→ diamond→ circle). As shown in Fig. 3,
regardless of the type of data, as the loss rate increases,
the samples gradually converge to the CP.

FIGURE 3. Toy example for convergence of feature vectors as the loss
rate (l ) increases.

B. DATA RESTORATION BY PRINCIPAL COMPONENT
ESTIMATION OF LOSSLESS DATA
The solution (WL2

PCA) for the objective function of L2-PCA
in (1) can be obtained by singular value decomposition
(SVD) [31] on the covariance matrix of the training data
samples Ctr =

1
N−1

∑N
i=1(xi −m)(xi −m)T , (Ctr ∈ Rn×n),

where m is the mean of the training samples. The projection
matrix WL2

PCA consists of projection vectors (wt ), which are
the eigenvectors of Ctr . Then, the feature vector ȳ composed
of the principal components yt , t = 1, . . . , n′ for the lossy
sample x̄ is (WL2

PCA)
T (x̄−m).

On the other hand, as previously mentioned, the feature
vector (ȳ) for the data sample (x̄) with the loss rate l in
the L2-PCA feature space is located on the straight line that
connects the feature vector of the lossless data (y) with the
CP. Thus, when the loss rate for x̄ is known, the feature vector
of the original data can be estimated approximately linearly
from ȳ by using the proportional equation. As the loss rate l
increases, ȳ gradually approaches CP, the estimation (y+) for
y can be calculated by multiplying the reciprocal of (1 − l)

by ȳ− CP as follows.

y+ =
(ȳ− CP)
ε(1− l)

+ CP (7)

Here, ε is a regularization term to prevent the L2-PCA feature
space from over-fitting to the training data.

The restored data x+ for x̄ can be obtained by the following
linear combination using the feature vector y+ estimated
by (7) and the n′ projection vectors (wt , t = 1, . . . , n′)
constituting the L2-PCA feature space.

x+ =
n′∑
t=1

y+t wt +m (8)

Here, we set the value of n′ as N − 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
We demonstrated the effectiveness of the proposed method
(LEPC) by performing data restoration experiments on
the aforementioned three datasets containing facial image
data [27], electronic nose (E-nose) data [15] and PEMS
dataset [28] (Table 1). In addition, we compared the results
of the proposed method (x+LEPC ) with those of other data
restoration methods using L2-PCA (x+L2PCA) [17] PCA-L1
(x+PCAL1) [22], and PCAL1+IRF (x+L1+IRF ) [18].

TABLE 1. Characteristics of the datasets used in the experiments.

We evaluated the data restoration performance of each
method by measuring the root mean squared (RMS)
error [32], [33] and the peak signal-to-noise ratio (PSNR)
from the reconstructed sample of lossy data and the original
lossless data sample. In addition, we showed the effectiveness
of the proposed method indirectly by conducting classifica-
tion experiments on the reconstructed data samples. This was
achieved by extracting discriminant features for classification
using the discriminant common vector (DCV) [34] and the
one nearest neighbor rule was used as a classifier with the l2
norm as the distance metric.

A. AR FACIAL IMAGE DATASET
The AR face database [27] consists of over 4,000 frontal
images of 126 subjects differentiated by facial variations such
as illumination, expression, and occlusion. We chose a subset
of the database consisting of facial images of 64male subjects
and 54 female subjects. Among these, images without partial
occlusion were used in the experiments. The center of each
eye was manually located and the eyes were rotated to be
aligned horizontally as in [35], [36]. Each facial image was
cropped and rescaled such that the center of each eye was
placed at its fixed point in an image of 80× 80 (pixels) [35].
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FIGURE 4. AR facial images. (a) original lossless data; (b) lossy data
(l = 0.2); (c) restored data by using the proposed method; (d) restored
data by using L2-PCA; (e) restored data by using PCA-L1; (f) restored data
by using PCAL1+IRF.

TABLE 2. RMS error and PSNR between the restored data and original
data (AR facial image).

The training set consisted of 826 images with variations in
lighting and facial expression. The other 118 facial images
that were not included in the training set were used for testing.
We randomly selected 25% of all the pixels in each test image
to create lossy data by setting the values of these pixels to 0,
after which the proposed method was used to restore the
data (ε = 0.7).

Fig. 4 shows the original images, images with loss
(l = 0.2), and the images restored by using several methods.
In Fig. 4, the images reconstructed by other methods (x+L2PCA,
x+PCAL1, and x+L1+IRF ) seem to have a cleaner skin texture
than the images obtained by the proposed method (x+LEPC ).
However, the shapes of the facial components such as the
eyes, nose, and mouth that reflect the characteristics of indi-
vidual faces are more clearly preserved when using x+LEPC .
Table 2 shows the RMS error and PSNR between the original
and the restored data. In Table 2, when the loss rate is small
(l = 0.1), all methods show similar performance in RMS
error and PSNR. However, as the loss rate increases (l = 0.2
and l = 0.3), LEPC performed better than the other methods.

FIGURE 5. Comparison of classification rates between the proposed
method and other methods (AR facial image).

Fig. 5 shows the classification rates corresponding to
each dimension of DCV feature space for x+L2PCA, x

+

PCAL1,
x+L1+IRF , and x

+

LEPC . As shown in Fig. 5, the classification rate
of the data restored by the proposed method was higher than
that of the other methods. Similar to the results in Table 2,
as the loss rate increases, LEPC showed better classification
performance than the other methods.

B. ELECTRONIC NOSE DATASET
The E-nose dataset [15] contains measurements of eight
different gases. More specifically, the dataset consists of
a total of 160 gas data samples, i.e., 20 samples for each
type of gas (Table 1). Each sample comprises measure-
ments of 2,000 points collected within 200 seconds at
a sampling frequency of 10 Hz. The measurements col-
lected from all 16 channels were stored in the form of a
2, 000×16 matrix and were then transformed into a vector in
32,000-dimensional spaces by using a lexicographic ordering
operator [17]. All data samples used in the experiments were
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FIGURE 6. Representation of electronic nose data sample in vector form.
(a) original lossless data; (b) lossy data (l = 0.3); (c) data restored by
using the proposed method.

normalized to the mean and standard deviation of the training
data samples [15]. Of the 160 samples in the dataset, 80 data
samples were randomly selected for the training set and the
remaining 80 samples were tested. We lost some elements
at a loss rate l from each test sample, and then restored the
lost elements by using the proposed method (ε = 1.001).
To increase the statistical confidence, the above procedure
was repeated ten times and the average results were reported.

Fig. 6 shows the original lossless data sample expressed
as a 32,000-dimensional vector (x), lossy data samples with
loss (x̄) with l = 0.3, and data samples restored by the
proposed method. The blue solid line in Fig. 6(c) represents
the RMS error between the original data and the restored
data. As shown in Fig. 6(c), the proposed method was able
to reconstruct the shapes of the data samples such that they
closely resembled the respective shapes of the original data.
Table 3 lists the RMS error and PSNR between the original
data and the restored data. These results show that the RMS
error of the proposed method is 0.38 ∼ 0.60 times lower than
that of L2-PCA, L1-PCA, and PCAL1+IRF for l between
0.1 and 0.3. In the case of the PSNR, the proposed method
outperformed the other methods by 1.18 ∼ 1.45 times.

The efficacy of the proposed method was also verified by
assessing the gas classification performance. Fig. 7 shows
the classification rates corresponding to each dimension of
DCV feature space for x+L2PCA, x

+

PCAL1, x
+

L1+IRF , and x+LEPC
with different loss rates. As shown in Fig. 7, the classification
rate of the data reconstructed by the proposed method was
approximately 0.85% and 38.98% higher than that of the

TABLE 3. RMS error and PSNR between the restored data and original
data (electronic nose).

FIGURE 7. Comparison of classification rates between the proposed
method and other methods (electronic nose).

other methods. In Fig. 7, as the loss rate gradually increases
from l = 0.1 to l = 0.3, the classification performance
of the other methods is greatly reduced, whereas that of the
proposed method (x+LEPC ) remains at a high level of 100.00%
even when l = 0.3.

C. PEMS TRAFFIC DATASET
The PEMS dataset [28] consists of an occupancy rate
(between 0 and 1) collected from car lanes on the freeways
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TABLE 4. RMS error and PSNR between the restored data and original
data (PEMS traffic data).

FIGURE 8. Comparison of classification rates between the proposed
method and other methods (PEMS traffic data).

in California, USA. A total of 440 data samples were col-
lected from Monday to Sunday (indexed 1, 2, 3, 4, 5, 6, 7)
except holidays. Each data sample was measured at intervals
of 10 minutes for 24 hours using 963 sensors and recorded as
138, 672 (24× 6× 963)-dimensional vector. As provided in
the PEMS dataset, we used 267 data samples as training data
and the remaining 173 samples as test set (ε = 1.0).

In Table 4, the proposed method outperformed the other
methods in both RMS and PSNR.

In the classification experiments of Fig. 8, contrary to other
methods that revealed the rapid degradation of classification
performance with the increase of the loss rate, the proposed
method appeared stable as the classification performance was
maintained over 95%.

V. DISCUSSIONS AND CONCLUSION
In this article, we proposed a method based on principal com-
ponent analysis to effectively reconstruct data from which
some data values were lost. A data sample was represented
by a feature vector, of which the elements are the principal
components, in the L2-PCA feature space. Because each
principal component value is calculated by projecting the data
sample onto the projection vectors of L2-PCA, the feature
vector approaches the convergence point as the amount of
lossy data increases. This characteristic enabled the proposed
method to approximately linearly estimate the feature vector
of the original lossless data from the feature vector of the
lossy data. The estimated feature values were then used as
coefficients in the linear combination of projection vectors
to restore the data. The proposed method is highly effective
when the data loss rate is already known as a result of an anal-
ysis of the physical defects of a sensor or the occurrence of
environmental instability such as temporary power interrup-
tion. We confirmed the effectiveness of the proposed method
by performing data restoration and classification experiments
on several datasets. The experimental results confirmed that
the proposed method restores data efficiently and accurately
compared to other methods based on principal component
analysis.

The proposed method is motivated from the observation
that the feature vector converges to CP in the principal com-
ponent space as the amount of data loss increases. Therefore,
this article does not directly deal with the case where data is
corrupted by non-zero value noise rather than loss. However,
when the noise value is small, data restoration methods using
conventional principal component analysis can be effectively
used, noise components of unusual values outside the normal
range of data values can be treated with zero and then the
proposed method can be applied. In the future, we plan to
investigate ways to effectively restore data in a variety of
situations by developing a method to accurately measure the
extent of data loss from the data itself.
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