IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 7, 2020, accepted September 9, 2020, date of publication September 18, 2020,
date of current version September 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3024668

Context-Based Parking Slot Detection
With a Realistic Dataset

HOSEOK DO"'-2 AND JIN YOUNG CHOI"!, (Member, IEEE)

! Department of Electrical and Computer Engineering, Automation and Systems Research Institute, Seoul National University, Seoul 08826, South Korea
2CTO Division, LG Electronics, Seoul 06772, South Korea

Corresponding author: Jin Young Choi (jychoi@snu.ac.kr)

This work was supported by the Institute for Information and communications Technology Promotion (IITP) Grant funded by the Ministry
of Science and ICT, Outdoor Surveillance Robots, under Grant 2017-0-00306.

ABSTRACT The autonomous parking of vehicles requires the ability to accurately locate an available
parking slot in the vicinity of a vehicle. Since parking slots have a variety of shapes and colors, may be
occluded by obstacles, or look different due to surroundings such as lighting, accurately locating them can
be a challenging task. In this paper, we propose a context-based parking slot detection method inspired by
the process of a human driver finding a parking slot. Our method consists of two deep network modules: a
parking context recognizer and parking slot detector. The parking context recognizer identifies the parking
environment (type, angle, and availability of a parking slot), whereas the parking slot detector locates the
exact position of a parking slot by multiple type-based fine-tuned detectors with rotated anchor boxes and
a rotated non-maximal suppression. In addition, we release a realistic parking slot dataset, which comprises
22817 images of parking slots having various attributes and external conditions. We also propose a new
evaluation metric for parking slot detection, reflecting whether a vehicle can be parked within the detected
parking slot. Through comparison and ablation study in experiments, we demonstrate that our method
outperformed the previous deep-learning-based methods, along with having a short operation time. The
source codes and the dataset are available at https://github.com/dohoseok/context-based-parking-slot-detect/.

INDEX TERMS Parking slot detection, context-based detector, rotated object detector, parking slot datatset.

I. INTRODUCTION
An autonomous parking system is essential for autonomous
vehicles. Such a system must first detect the parking slot and
then control the vehicle to park it in the designated slot. Previ-
ous methods for vision-based parking slot detection focused
on finding the accurate location of the parking slot directly
from a surrounding image. This is because most parking-
assist systems installed in many mass-produced vehicles are
operated after a person manually drives the car to a space
where parking is available. In the era of self-driving cars,
the vehicle should be able to search for available parking
spaces on its own, and then parking slot detection should
work to locate the exact position of a parking slot. During
this process, false positives in parking slot detection can cause
accidents or parking violations and thus should be avoided.
Since previous algorithms for vision-based parking slot
detection used handcrafted features such as corners and
lines [1], [2], they could not achieve satisfactory accuracy.
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In recent years, deep learning has been applied to parking slot
detection, which has significantly improved performance.
However, the deep learning approach still detects specific
shapes such as parking slot junctions and infers the park-
ing slots via post-processing of the detected shapes [3]-[5].
Therefore, the deep learning methods are also vulnerable
in the absence of specific shapes of the parking slots as in
the handcrafted feature-based methods. In the real world,
the appearance of parking slots can vary dramatically, and
some parking lines may be occluded or even non-existent.
Conversely, non-parking lines similar to a parking slot marker
can cause false positives.

This paper proposes a two-stage parking slot detection
method based on context information of the entire image. The
proposed method is inspired by the fact that when a person
parks, he first recognizes a parking context on a space where
parking is available (called parking context recognizer) and
then locates the exact position of the parking slot (called
parking slot detector). After the parking context recognizer
filters out the space without parking slots, the parking slot
detector operates only near the parking space. The parking
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context recognizer decides the availability of the parking slot
and also estimates parking information such as the parking
type and orientation of the parking slot. The parking slot
detector locates the exact position of the parking slot by
utilizing the parking information obtained by the parking
context recognizer.

The proposed two-stage approach reduces the amount of
computation and also false positive errors because the parking
slot detector utilizes useful information from the parking
context recognizer and does not operate when there are no
parking spaces in the vicinity of the car. Specifically, depend-
ing on the angle of orientation, similar-shaped parking slots
appear differently in the image. Thus, the angle information
provided by the parking context recognizer is useful for accu-
racy improvement by rotating the anchor box of the detector
to have a similar appearance to the actual parking slot.

To cover various types of parking slots in diverse envi-
ronments, we introduce a new, realistic dataset for detecting
and classifying parking slots. Our dataset includes images
of parking slots that have various attributes and external
conditions and also contains harsh data samples where part of
the parking slot is occluded by various obstacles. In addition,
data samples of a not-parking-space class with a similar
appearance to the parking slot are contained in the dataset to
mitigate the false positive problem in parking slot detection.
Examples of not-parking-space class data samples are shown
in Figure 1. Images have been acquired using three different
vehicles with fish-eye cameras on the left and right. In addi-
tion to the labeling on the parking slot location, the parking
availability and parking slot type are also labeled, which is
useful for developing autonomous parking systems.

FIGURE 1. Examples of the not-parking-space class data sample.

We propose a performance evaluation metric that consid-
ers when a parking slot detection method is applied to an
autonomous parking system. It is assumed that the vehicle
is parked according to the detected parking slot information,
and the parking score is calculated based on how well the
vehicle can be parked in that case.

The contributions of this paper are summarized as follows:

« We propose a two-stage context-based parking slot
detection method which is efficient and robust to sur-
rounding hindrance factors.

o A rotated object detector is developed to detect the
rotated parking slots by using a rotated anchor box based
on the orientation information.
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« We construct a realistic parking slot dataset with a vari-
ety of images and useful labeling information, and a new
evaluation metric that fits the actual parking problem.

Il. RELATED WORK

Vision-based parking slot detection uses the image of the
parking slot on the ground to recognize its location. The space
around the vehicle can be recognized using fish-eye cameras
such as around view monitoring (AVM) cameras mounted
on the vehicle. Distortion of the fish-eye camera is corrected
when the image is transformed to a bird’s-eye-view image.
A parking slot consists of four painted parking lines; however,
sometimes walls or curbs replace some parking lines. The
part where the vehicle enters in the parking slot is called the
entrance line, and the boundary between neighboring parking
slots is called the separating line.

The line-based method detects the parking slot by finding
two separating lines which are spaced apart. The corner-based
method first detects the corner where the entrance line and
the separating line intersect and then detects the parking slot
by combining the coordinates of the corners. However, both
the line-based method and the corner-based method could not
achieve satisfactory performance due to the limitations of the
handcrafted features.

As deep learning has developed, convolutional neural net-
works (CNNs) have been applied to various computer vision
tasks. Recently, CNN-based methods have been proposed for
the parking slot detection problem [3]-[6]. The above meth-
ods use CNNs to find junctions, which are the most common
feature of parking slots. Then, the parking slot is inferred by
heuristically combining the recognized results or with post-
processing. CNN-based methods show a great performance
improvement in comparison with the handcrafted feature-
based methods. However, there is also a limitation in CNN
methods based on a specific part of the slot such as a junction,
simply because there are some parking slots without such
junctions. In addition, some objects, such as traffic signs
rendered on the ground, appear similar to junctions. Also,
the estimated angle for the separating line may not be accurate
when only the junction marker at the entrance of the parking
slot is used to estimate the angle.

Researchers currently have access to psl.0 [6] and its
upgraded version, ps2.0 [3], which are public datasets for
the parking slot detection problem. These datasets replaced
smaller private datasets and contributed to various studies on
parking slot detection. However, in experiments reported in
published papers, the performance measured while utilizing
the ps2.0 dataset had already reached a level of over 99%.
Therefore, it was felt that further studies of parking slot
detection problems required a more difficult research dataset.
When evaluating the performance of parking slot detection
problem approaches in previous papers, the pixel error of
the vertices of the parking slot and the angular error of the
line were used to determine whether the inferred parking slot
was true or not. Compared to intersections over union (IoU),
which is the general evaluation metric of an object detection
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problem, it is more appropriate to use the above errors as
evaluation metrics of the parking slot detection problem. This
is because, unlike other general objects, a parking slot has
important information at the edge of the object. However,
a simple error value can not depict the accuracy of the per-
formance when parking a real vehicle in an inferred parking
slot.
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FIGURE 2. The overall scheme of the proposed method.

lll. PROPOSED METHOD

A. OVERVIEW

The overall scheme of our method is depicted in Figure 2.
The coordinates of the parking slot are estimated using a
two-stage deep learning model consisting of a parking con-
text recognizer (PCR) and a parking slot detector (PSD).
In the PCR, the type and the orientation, which are rough
information of the parking slot, are estimated. The coordi-
nates of the parking slot are estimated at the PSD using
the context information. From an intuitive perspective, our
method is similar to a human operator’s process of driving
and parking a vehicle. The driver roughly searches for a place
to park his car and then estimates the exact location of the
parking slot. In our method, images captured by the fish-eye
cameras on the left and right of the vehicle are converted
into bird’s-eye-view images and used as input to the PCR
and PSD.

In the PCR, the input image is classified into one of four
classes: parallel, perpendicular, diagonal, or not-parking-
space. Also, the parking slot orientation is estimated to be
an angular value between —90 and 90 degrees based on the
separating lines of the parking slots. In most cases, since the
adjacent parking slots will have the same orientation and type,
the PCR outputs one parking slot type and one angular value
per input image containing multiple slots. The PSD estimates
the coordinates of the four vertices of a parking slot. The
anchor box of the detector is rotated by the angle estimated
by the PCR. In the PSD, there are three detectors, and only
one of them works for detection according to the parking
slot type inferred by the PCR. One detector is first trained
with all the types of data, which is then copied into three
detectors. Finally, each of the three detectors is fine-tuned
with a particular type of data. When the image is classified
as not-parking-space, the PSD is not activated since parking
is not available in that space.
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B. PARKING CONTEXT RECOGNIZER

When applied to an actual parking system, the PCR operates
at all times to recognize whether a parking slot exists near
the vehicle or not. In actual situations, when parking is not
available, it is not necessary to estimate an accurate location
of the parking slot. Hence, only when the PCR recognizes that
the surrounding space is an available parking type does the
PCR provide the type and slot angle to the PSD to estimate the
exact location of the parking slot. In this way, the PCR works
as a sort of filter and can reduce the amount of calculation in
the parking system. Therefore, MobileNetV2 [7], which is a
deep learning model suitable for embedded systems and fast,
is sufficient as the backbone for our implementation.

The PCR receives 64 x 192 RGB images as input. The
backbone is followed by two sibling branches; one is for type
classification, and the other is for orientation regression. The
classification branch consists of two fully-connected layers:
a 128 hidden unit layer with rectified linear unit (ReLU)
activation and a 4 output unit layer with softmax activation.
Each of the 4 output units in the classification branch indi-
cates one of the parking slot types: parallel, perpendicular,
diagonal, or not-parking-space.

The regression branch consists of two fully-connected lay-
ers: a 128 hidden unit layer with ReL.U activation and one
output unit layer with sigmoid activation. The output unit
yields the angle of the parking slot from which the ground
truth is calculated based on the separating lines of the parking
slot. This is because the entrance line of the parking slot may
not exist, and a person usually parks the vehicle based on the
separating line. Letting the angle of the line perpendicular to
the vehicle’s direction of travel be 0 degrees, the angle for a
line rotated in a clockwise direction is set to a positive angle,
whereas the angle for a line rotated in a counterclockwise
direction is set to a negative angle. Hence, the angle has a
value in a range between —90 and 490 degrees, which is
normalized to a range between 0 and 1.

The training loss for the PCR is given by a multi-task
loss as

4
A N A
L==7) pelogpe+(1—2)0 =07,

c=1

where p. is the c-th output score in the classification branch, )
is the output value of the regression branch, whereas p. and 6
are the ground truths of the parking slot type and orientation,
respectively. A is the parameter for balancing the multi-task
loss.

C. PARKING SLOT DETECTOR

The PSD is constructed based on the structure of YOLOV3 [8]
and estimates the coordinates of the four vertices of the
quadrangle tightly containing the parking slot. Common
object detectors, including YOLOV3, estimate width, height,
and center coordinates because they aim to find a hori-
zontal bounding box enclosing an object. Parking slots are
quadrangles but are sometimes not rectangular and may
be rotated or some areas may be truncated. Our detector
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FIGURE 3. Components of the prediction box and the quadrangle using
them. In (b), the black dotted line implies the rotated anchor box, and the
blue solid line implies the parking slot.

estimates the coordinates of the four vertices of the parking
slot to accurately depict the location of the parking slot even
in the above case. The components depicting a quadrangle
predicted by the detector are designed as shown in Figure 3a.

In object detectors, anchor boxes are used to select the most
accurate coordinates among the various sizes of candidates
for an object. In the common object detectors, horizontal
bounding boxes are estimated using horizontal anchor boxes.
In contrast, in this paper, the anchor box is rotated to detect
the rotated parking slot more accurately. The rotation angle
of an anchor box is estimated by the PCR and denoted by 6.
The rotated anchor box is expressed by (b, by) and (by;, by;),
which denote the coordinates of the center and the i-th ver-
tices of the parking slot, respectively. The coordinates are
calculated as

by _ o(ty) Cx
[by} B ["(fy)} - [Cy] ’
by| b " cos
byi - by siné

i=1,2,3,4),

—sinf A,, tanh x;
cos® ||Antanhy;

where 1, t, are the feature data for estimating the center
coordinates of the parking slot; x;, y; are the feature data for
estimating the coordinates of the vertices of the parking slot;
Cx, ¢y are the base coordinates of the grid; and A,,, Aj, are
the width and height of the anchor box, respectively. These
notations are illustrated in Figure 3b. By rotating the anchor
box, the appearances of the various parking slots become
similar, as shown in Figure 4.

Fine-tuned detectors are used for each of the three types
of parking slots, and the detectors are not operated when the
parking type is classified as not-parking-space. Each detector
has unique weights for each parking slot type and is operated
only when the corresponding type is activated by the PCR.
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FIGURE 4. Example images of rotated parking slots having a similar
appearance due to the rotated anchor.

For the inference, a rotated non-maximum suppression
(rNMS) method is designed to be suitable for the pro-
posed PSD. First, we remove the parking slot proposals
that have lower objectness scores than the threshold Th,y;.
We then calculate the IoU between the remaining proposals
and remove the overlapped proposals. However, calculating
the IoU between rotated quadrangle pairs is complicated
because the intersection is not a simple rectangle and has
a variety of polygonal shapes [9]. To cope with this diffi-
culty, we rotate all proposals in the opposite direction by the
angle (¢ in Algorithm 1) of the proposal with the highest
objectness score (b* in Algorithm 1) in the image. Then,
we generate the rectangle enclosing each rotated proposal and
apply the NMS to the generated rectangles with Thy,,s as the
IoU threshold. Finally, the resulting rectangle by the NMS is
rotated back to its original coordinates to get the final result.
By using this method, the general NMS algorithm already
ported to the embedded system can be used without perfor-
mance degradation. If there are N proposals with objectness
scores greater than Th,y; in the image and the coordinates
of the i-th vertex of the n-th proposal are b? = (b;’i, b;’i),
the process of obtaining the detection result B,,,s by using
the rotated NMS is shown in Algorithm 1.

IV. DATASET

A. LABEL INFORMATION AND ACQUISITION METHOD
The dataset includes label information for each image and
label information for each parking slot in the image. Each
image has a parking slot type and an angular value of the
parking slot orientation as its label information. Each parking
slot has coordinates of four vertices and availability as its
label information. The coordinates of each parking slot are
within the image resolution range. The parking slot is labeled
as non-available when the vehicle can not be parked in the
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Algorithm 1 Rotated Non-Maximum Suppression

Input:Detection Proposal Set B = {bl, b2, ..., bY }
Output:Result Detection Set B¢

1: function INMS(B)

2: b* = argmax(B)

3 ¢ = arctan(%)

4 R={r',r2, ..., rN} where r" = Rotate(b", —¢)
5. Rums = NMS(R)

6 Foarmsz{ml,mz,...,mK}

7 sk = Rotate(mk, b)

8: return B,,,; = {s!, s2, ..., s}

9: end function

parking slot due to obstacles or a sign of prohibited parking
is present in the parking slot.

The image acquired by the fish-eye camera mounted on the
side mirror of a vehicle is transformed into a bird’s-eye-view
image and used as a data sample. The images from the right
camera are used as the basis for the dataset, and the images
from the left camera are used after rotating them 180 degrees
to fit the right image. The spatial resolution of each side image
is 768 x 256 pixels, corresponding to a 14.4 m x 4.8 m flat
physical region. The length of one pixel on the bird’s-eye-
view image corresponds to 1.875 cm on the physical ground.
Using a single image has several advantages in contrast to
using a synthesized image of multiple AVM camera images.
In the case of using multiple camera images, the detection
algorithm can only work after the vehicle’s main chipset
has synthesized the images from the multiple cameras, and
this synchronization imposes a computational burden that
causes a time delay. In contrast, if a single camera image
is used, the detection algorithm immediately works in each
individual camera module. In addition, the synthesized image
may contain image distortion, for example, the parking line
may appear disconnected when the ground is not flat [10].
In a single camera image, this kind of image distortion is not
present.

We used three types of vehicles to acquire images for our
dataset: two sedans and one sport utility vehicle (SUV). The
cameras on each vehicle had different extrinsic parameters,
intrinsic parameters, and image resolutions. By using various
types of vehicles to acquire the images, the dataset could be
constructed without being dependent on a specific camera
module or a vehicle. Therefore, our dataset is more useful
for developing algorithms for various types of vehicles.

B. NOVELTY OF THE DATASET

Our dataset consists of 22817 images, of which 18299 are for
training and 4518 for testing. The total number of images in
our dataset is 1.87 times that of ps2.0, the number of scenes
is 3.4 times, and the number of parking slots is 5.3 times as
shown in Table 1. When acquiring data samples, a series of
frames were taken, and some of them were manually labeled
and used as data samples. A scene refers to a series of frames
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TABLE 1. Numerical comparison between ps2.0 and our dataset.

ps2.0 Ours
training images 9827 18299
testing images 2338 4518

training scenes 166 571
available parking slots 7923 35829
non-available parking slots 3726 26600
images with parallel parking slots 4643 6002
images with perpendicular parking slots | 3359 12846
images with diagonal parking slots 218 1436

ps2.0 Ours
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FIGURE 5. Comparison of image diversity between ps2.0 and our dataset.

taken over a period of time, and the dataset consists of multi-
ple scenes in order to depict various parking slots in different
environments. When we split the dataset into a training set
and a testing set, it is not split randomly by image units but is
split randomly by scene units so that images of the same scene
should not be included in both the training and testing sets.
This split intends to prevent over-estimating the performance
on scenes included in both training and testing sets. Actually,
when the training and testing sets were randomly split by
image units, the performance was too high even with a small
number of training iterations.

As shown in Figure 5, our dataset samples are more
diverse than the ps2.0 dataset samples. Figure 5a shows the
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TABLE 2. Parking slot attributes, external conditions, and sample images.

Parking Slot Layout Parking Line Style Parking Line Color
Closed *Open Partially *Smgl_e *With Solid xDouble  *Striped Damaged | White Yellow *Pink
Open  Separating  Mark
|
)
A L
( iy
- T L
Parking Slot Color Non-available Slots Ground Condition
Gray *Green *Red *Blue Orange *Pink Parked *Stsairglmg *Gsri(;l:lnd Asphalt  Reflective  Brick
LW
.I m
Ground Obstacle Standing Obstacle Environment
Shadow OldLine Puddle  ‘ralen gy *Paint o Sewer |y e Pillar Human Day Night  Indoor
Leaves Drain

Crack

* mark indicates a sample case which the ps2.0 [3] dataset does not contain.

distributions of the color of the parking line for ps2.0 and our
dataset, and Figure 5b shows the distributions of the colors
inside the parking slot. Our dataset contains data samples
of various colors, but most of the parking slot colors in the
ps2.0 dataset are achromatic, with U and V values close
to 128. Figure 5c¢ shows the image intensity distributions for
ps2.0 and our dataset, and the intensity is calculated based on
the median of all pixels in the image. Our dataset contains
images with more varied brightness, from very dark to very
bright, compared to those in the ps2.0 dataset. Figure 5d
shows the distributions of the lengths of the parking slot
entrance lines for ps2.0 and our dataset. Our dataset con-
tains parking slots with more varied sizes compared to the
ps2.0 dataset.

Table 2 shows various categories of the parking slots and
sample images of each category. The categories are clus-
tered according to multiple criteria based on the parking
slot attributes and the external conditions. The slot attributes
consist of parking slot layout, line style, line color, slot color,
and availability. The external conditions consist of ground
conditions, obstacles, and environments. As shown in Table 2,
our dataset contains diverse data samples that are not included
in the ps2.0 dataset. In an autonomous parking system, it is
necessary to decide whether it is possible to park in a detected
parking slot. To cover this situation, our dataset contains data
samples of non-available parking slots which appear to be
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parking slots but are not available for parking because they
are already occupied or parking is prohibited.

C. EVALUATION METRIC

IoU, which is the most general evaluation metric for object
detection, is not suitable for the parking slot detection prob-
lem. Even when the predicted parking slots have the same IoU
values, how well the vehicle can be parked in a parking slot
can be quite different as shown in Figure 6. To mitigate this
problem, we propose a new evaluation metric, referred to as
a parking score, that reflects whether a vehicle can be parked
within the parking slot.

FIGURE 6. Examples of the predicted parking slot, its ground truth, and
the vehicle which is parked at the center of the predicted parking slot.
The black dotted line implies the ground truth, and the blue square
implies the predicted parking slot. All four examples have the same loU
value of 0.8.

The parking score S for a parking slot is calculated by mul-
tiplying the two scores: area score Sarea (On how accurately
the area of the parking slot is estimated) and location score
SLoc (on how accurately the location is estimated). The two
scores are estimated using the coordinates of the ground truth
parking slot G and the predicted parking slot P. The area score
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is calculated by comparing the areas of G and P, that is,

min{Area(G), Area(P)}
max{Area(G), Area(P)}’

The closer the two areas are to being the same size, the closer
the score is to the value 1. The location score is a value to
measure how much of the area of P is inside the area of G,
which is calculated as

SLoc = +/ Area(P’)/Area(P). )

where P’ is a scale-downed location of P so that P C G.
If P is completely contained inside G, Spoc has the max-
imum value of 1. If parking score S exceeds a threshold,
the prediction is judged as TRUE; otherwise, it is FALSE.
Precision, recall, and average precision for the entire testing
set are then calculated based on the TRUE and FALSE judg-
ments. The parking score calculation process is summarized
in Algorithm 2.

ey

SArea =

Algorithm 2 Parking Score Calculation

Input:Ground Truth Parking Slot G, Predicted Parking Slot
P

Output:Parking Score S

function CalcParkingScore(G, P)
¢ = Centroid of P

1:
2
3 if c € G then
4 Sar. — minfArea(G) Area(P)}
Area = jnax(Area(G), Area(P))
5: Scale-down P to P’ until P C G
6
7
8
9

Stoc = +/Area(P’)/Area(P)

S = Sarea X SLoc

else
S=0
10: end if
11: return S

12: end function

This scoring process is highly related to the actual parking
problem. Assuming that the vehicle will be parked in the
center of P, the location score represents the relative size
of the vehicle that can be parked inside G based on the
coordinates of P. For example, if the width of the parking
slot is 2.5 m and the width of the vehicle is 2 m, a vehicle can
be parked completely inside the parking slot only when Sy o¢
is greater than 0.8.

If the predicted parking slot is larger than the real parking
slot, an accident can occur while parking. Meanwhile, if the
predicted parking slot is smaller than the real parking slot,
there is a disadvantage of wasting time since there could be
no attempt to park in an acceptable slot. Therefore, a parking
slot predicted to be larger than the ground truth, which can
cause an accident, should be scored lower than one predicted
to be smaller. To reflect this case, P is scale-downed to P’ to be
P’ C Gin(2), whichleads to a location score less than 1 when
the parking slot size is overestimated unlike the case in which
the parking slot size is estimated smaller than the ground truth

VOLUME 8, 2020

(having a location score of 1). In both of the above cases,
the area score is the same with a value less than 1 and so gives
just a penalty since the size of the predicted parking slot is not
accurate.

For every parking slot predicted from the testing set
images, the parking score is calculated by the proposed
metric, and if the score exceeds Thgcore, the prediction is
determined TRUE. There may be multiple parking slots in
the image, but the parking slots do not overlap each other,
so each predicted parking slot corresponds to only one real
parking space. An automatic parking system needs to search
for an available parking slot in order to park the vehicle.
Therefore, we calculate the scores only for the parking slots
which are labeled as available and judge whether they are
TRUE or FALSE. The performance of the algorithms are then
compared by precision, recall, and average precision.

The size of vehicles varies widely from minicompacts to
large SUVs, and the size of parking slots can vary from
country to country. When developing an autonomous parking
system for a vehicle, the vehicle size and the target parking
slot size can be provided. The size ratio between the vehicle
and the parking slot can be used as Thgcor to measure the
performance of the parking slot detection algorithm for the
vehicle. That is, the algorithm may be further developed using
a threshold value suitable for the vehicle and the environment.

V. EXPERIMENTS

A. IMPLEMENTATION DETAILS

The proposed method was quantitatively evaluated using our
dataset and the ps2.0 dataset. Since the characteristics of the
two datasets are different, the implementation was slightly
different for each dataset. We augmented the training set
by rotating each original image to generate a number of its
rotated versions. For our dataset, 22 images per one original
image were obtained by flipping the original image vertically
and rotating the original image from —5 to 5 in 1 degree
units. For the ps2.0 dataset, 24 images per one original image
were obtained by rotating the original image from 0 to 345 in
15 degree units.

For the PCR, the size of the input image is 192 x 64 for
our dataset and 128 x 128 for the ps2.0 dataset. The weights
of the PCR were optimized by the adam optimizer whose
learning rate, 81, 82, and € were set to 0.001, 0.9, 0.999, and
10-8, respectively. The PCR was trained for 50 epochs, and
the batch size was set to 64.

The size of the input image for the PSD was 256 x 768 for
our dataset and 416 x 416 for the ps2.0 dataset. We imple-
mented our detector based on the YOLOv3 [8] architecture
using darknet-53 as the backbone. The weights of the PSD
were optimized by a momentum optimizer whose momentum
was set to 0.9. The PSD was first trained for 10 epochs with
the entire dataset and then fine-tuned for 10 epochs for each
type of detector. Each detector was trained with a learning rate
of 10~ for an initial 6 epochs, then 3 x 1075 for?2 epochs, and
107 for the last 12 epochs. The hyper-parameters for training
and inference were A = 0.1, Th,p; = 0.3, and Thy,; = 0.1.
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All the experiments were conducted using Tensorflow on
a PC with an Intel Core i7-7700 CPU @ 3.60 GHz, one
NVIDIA GeForce GTX 1080 card, and 16 GB RAM. Each
bakcbone of the PCR and the PSD were pre-trained on
ImageNet [11].

B. PARKING CONTEXT RECOGNIZER

In this experiment, we evaluated the performance of the
PCR using various networks as the backbone. The evalua-
tion was conducted on our dataset. As shown in Table 3,
MobileNetV2 [7] showed reasonable performance with the
fastest processing time and the smallest model size. The clas-
sification accuracy and orientation error of the MobileNetV2-
based model were 98.38% and 1.38 degrees, respectively. The
MobileNetV2-based models had slightly lower classification
accuracy than the other backbone-based models but had a
similar overall performance. In our method, since the PCR
module is always running, a backbone with a small amount
of computational power is suitable. In addition, the size of the
MobileNetV2-based model was the smallest, so it was rela-
tively faster than the other models when ported to the embed-
ded systems with limited memory buses. Hence, we adopted
the MobileNetV2-based model with the fastest operating time
of 4.52 ms and the smallest model size of 29.3 MB.

TABLE 3. Parking slot classification and angle regression performance on
our dataset.

Type Orientation Error ~ Time  Model Size
Method Accuracy (degree) (ms) (MB)
MobileNetV2 98.38% 1.38+4.10 452 29.3
VGG-16 98.56% 1.741+4.62 4.95 169.9
DenseNet-121 98.74% 1.31+3.72 11.47 82.9
Resnet-50 98.54% 1.44+4.16 9.03 275.5

TABLE 4. Performance evaluation of parking slot detection on our
dataset.

Method precision(%)  recall(%) mAP(%) Time(ms)
VPS-Net [5] 74.16 75.14 64.99 58.59
Ours 87.75 88.52 82.17 42.79
(4.52 + 38.27)

C. PARKING SLOT DETECTION

Table 4 shows the parking slot detection performances of
the proposed method and VPS-Net [5] on our dataset. The
detection result of VPS-Net was obtained from the publicly
available code released by its authors. The parking score
evaluation threshold Thqo. Was set to 0.8. We compared
the performance of our method with VPS-Net [5] since the
other deep-learning-based methods suggested in [3] and [4]
could not classify available parking slots and non-available
parking slots. As shown in Table 4, our method outperformed
VPS-Net. The mean average precision of our method was
82.17%, in contrast, that of VPS-Net was 64.99%. The oper-
ation time of our method was 42.79 ms, which was faster
than the 58.59 ms of VPS-Net. Since the operating time of
the PCR was 4.52 ms, only a small amount of computational
power was used when there were no parking slots. Figure 7
shows the parking slot detection results of the proposed
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FIGURE 7. Examples of parking slot detection. The green box indicates an
available parking slot, and the red box indicates a non-available parking
slot.

method and VPS-Net in various situations. It shows that the
proposed method robustly detected parking slots of various
types and filtered out the not-parking-slots that looked similar
to parking slots. In contrast, VPS-Net, which is a junction-
based method, had low detection performance for parking
slots without junctions and yielded false positives for not-
parking-slots similar to parking slots.

TABLE 5. Performance evaluation of parking slot detection on the
Ps2.0 dataset.

Method precision(%)  recall(%)
DeepPS [3] 97.26 96.63
VPS-Net [5] 98.34 98.25
Ours 98.70 97.88

Table 5 shows the parking slot detection performances on
the ps2.0 dataset. In the previous papers [3], the handcrafted
feature-based methods were not compared since they are
inferior to the deep-learning-based methods. A parking slot
detection was considered TRUE if the two junctions and
orientations were estimated within 20 pixels and 2 degrees
of error from the ground truth parking slot, respectively. The
tolerance for rotation error of 10 degrees used in the previous
paper was reduced to 2 degrees because it was too large to
be used in a real parking problem. The performance of our
method was 98.70% precision and 97.88% recall, which was
comparable to VPS-Net with 98.34% precision and 98.25%
recall and better than DeepPS with 97.26% precision and
96.63% recall.

As seen in the results of the above two experiments,
although our method showed comparable performance to the
previous methods for ps2.0, it outperformed the recent deep
learning method (VPS-Net) by a large margin on our dataset
containing many realistic parking slot images.

D. ABLATION STUDY
We conducted several ablation experiments on our dataset to
show the validity of our method. Four ablation factors were
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TABLE 6. Ablation study of our parking slot detection method.

Method precision(%)  recall(%) mAP(%)
w/o rotated anchor box 85.40 86.87 80.33
w/o INMS 88.81 84.72 79.03
w/o type classifier 86.74 88.07 80.70
Full 87.75 88.52 82.17

selected from our method and the effects of the factors were
experimentally examined as shown in Table 6: (1) rotated
anchor box, (2) INMS, and (3) type classifier.

When the rotated anchor box was not used, we estimated
the four vertices of the parking slot using the horizontal
anchor box. When the rINMS was not used, we applied the
general NMS to the horizontal bounding boxes enclosing the
rotated proposals with the same IoU threshold T#,,,;. When
the type classifier was not used, a single detector worked for
all images without pre-classifying the parking slot type and
without using the fine-tuned detectors by type.

As shown in Table 6, the rotated anchor box improved the
precision from 85.40% to 87.75% and the recall from 86.87%
to 88.52%. This means that the rotated anchor box reduced
both the false positives and false negatives despite the orien-
tation error of the PCR. The rNMS improved the recall from
84.72% to 88.52% and the average precision from 79.03% to
82.17%. By using the INMS, the correctly predicted parking
slots were less filtered. The type classifier improved the aver-
age precision from 80.70% to 82.17% since the prediction
accuracy was enhanced while fine-tuning. Also, the type
classifier improved the precision from 86.74% to 87.75%
and the recall slightly since it filtered out the not-parking-
space class. Through this ablation study, it can be seen that
the context information used in our method contributed to the
performance improvement of the PSD as intended.

VI. CONCLUSION

In this paper, we have proposed a context-based parking slot
detection method inspired by the process of a human driver
finding a parking slot. In addition, we have released a realistic
parking slot dataset, which comprises 22817 images of park-
ing slots having various attributes and external conditions.
We have also presented a new evaluation metric for parking
slot detection, which is fit for an actual parking problem.
As validated by comparison and ablation study in experi-
ments, our method outperformed the previous deep-learning-
based method, along with a short operation time. Regarding
the advantages of our work, the context information (type,
orientation of the parking slot) recognized by our method
can improve the performance and efficiency of the detector.
By using the type information, the parking-slot-like spaces
that are actually not parking slots are filtered out, and by using
the orientation information, the anchor boxes are rotated to
increase the detection performance of the rotated parking
slots. The released dataset will promote future work in the
autonomous vehicle research community, and the new evalu-
ation metric will be able to contribute to research applicable
to actual environments.
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