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ABSTRACT Large-scale image datasets with numerous occlusion patterns prevail in real applications. The
classification scheme based on subspace decomposition-based estimation with squared l2-norm regular-
ization (SDBE_L2) has shown promising performance for the classification of partially occluded images.
For the large-scale image datasets with numerous occlusion patterns, it however suffers from a high labor
intensity in acquiring extra image pairs and a large consumption of computational resources in the training
stage. To reduce the labor intensity, this paper enumerates several useful types of extra image pairs to guide
the collection of extra images and introduces an intra-class random pairing method to semi-automatically
form the extra image pairs. To alleviate the consumption of computational resources, this paper proposes
two dictionary compression approaches: 1) uncentered PCA-based single partition compression (UPSPC),
which compresses the dictionary to a size not larger than twice the column vector length without affecting
the classification accuracy, and 2) uncentered PCA-based intra-class partition compression (UPIPC), which
can further shrink the occlusion error dictionary (or class dictionary) when it has a small number of occlusion
classes (or image classes). The proposed approaches are based on the property of SDBE_L2 being invariant to
the uncentered PCA of sub-dictionaries. The extensive experiments on the Caltech-101 dataset and Oxford-
102 flower dataset demonstrate the enumerated examples and the intra-class random pairingmethod facilitate
acquiring the extra images and forming the extra image pairs only with a small loss in the classification
accuracy. The experimental results on a large-scale occluded image dataset synthesized from the ILSVRC
2012 classification dataset with numerous occlusion patterns show that the proposed dictionary compression
approaches reduce the dictionary size by over 11 times and shorten the training time by more than 39 times
without loss in the classification accuracy.

INDEX TERMS Convolutional neural networks, SDBE, occlusion, image classification, principal compo-
nent analysis.

I. INTRODUCTION
CClassification of partially occluded images is a long-
standing challenge in computer vision [1]–[6]. Recently,
many research attempts have been made to introduce the
rapidly developing deep learning techniques [7]–[15] into
this field. Under the deep learning framework, occlu-
sion can be tackled in a low-level representation, e.g. the
image itself [16]–[22] or low-level deep feature map [23],
or a high-level representation, e.g. the deep feature vector
(DFV) [24], of the image. None of these approaches, how-
ever, can handle the classification on large-scale generic
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image datasets with numerous occlusion patterns, which pre-
vails in real applications.

To cope with the occlusion, the variations introduced by
occlusion are usually needed to be modeled. For the low-level
representation, the diversity of the occlusion-related vari-
ations are much richer than that for the high-level repre-
sentation, since the low-level representation contains more
details than the high-level representation. Consequently, for
the low-level representation, much more training images,
especially occluded training images, are usually required to
model the occlusion-related variations than for the high-level
representation.

For a large-scale image dataset with numerous occlusion
patterns, the diversity of the occlusion-related variations in

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 170883

https://orcid.org/0000-0002-0825-385X
https://orcid.org/0000-0002-8174-6167


F. Cen et al.: Classification of Occluded Images for Large-Scale Datasets With Numerous Occlusion Patterns

the low-level representation is extremely rich and thus a huge
number of occluded training images are usually required
for the approaches based on the the low-level representa-
tion. Acquiring and labeling the occluded training images
for the classification task, however, is a labor-intensive
and time-consuming work. Lack of sufficient task-specific
occluded training images discourages the development and
application of the low-level representation based approaches.
In contrast, much fewer occluded training images are needed
for the high-level representation due to less diversity. There-
fore, handling occlusion in the high-level representation
seems more practicable for the large-scale datasets with
numerous occlusion patterns.

In [24], a high-level representation based approach,
namely subspace decomposition-based estimation (SDBE),
was proposed to improve the classification performance
against the occlusion on the occluded generic image datasets.
The SDBE_L2 implementation of SDBE, which employs a
squared l2-norm to regularize the decomposition coefficients
introducing very low extra computational cost in testing,
is applicable to the large-scale datasets.

However, for the large-scale datasets with numerous
occlusion patterns, the SDBE_L2-based classification
scheme presented in [24] can exhaust the computational
resources on many computers in the training stage. In [24],
for each image class or occlusion pattern, at least tens of
DFVs or occlusion error vectors (OEVs) were employed
to construct the class dictionary (CD) or occlusion error
dictionary (OED), respectively. For numerous image classes
or occlusion patterns, this dictionary construction method
gives rise to a dictionary of catastrophically large size,
which requires a huge amount of memory to store and
extremely long time to process. Besides, constructing anOED
from exact-matching extra image pairs, which was adopted
in [24], is a labor-intensive task for real applications. The
exact-matching extra image pairs each is composed of a
non-corrupted and a corrupted version of an image. In prac-
tice, this type of image pairs usually requires intensivemanual
labor to prepare due to lack of an automatic approach to
precisely find out the corrupted versions of an occlusion-free
image from plenty of occluded images.

In this paper, we focus on overcoming the above-mentioned
deficiencies of the SDBE_L2-based classification scheme on
the large-scale datasets with numerous occlusion patterns.
We improve the SDBE_L2-based classification scheme from
two aspects: 1) reducing the labor intensity in acquiring
and forming the extra image pairs and 2) alleviating the
computational resource consumption in the training stage.

To reduce the labor intensity, we first investigate what
types of extra image pairs can contribute positively to the
improvement on the classification of occluded images. Then,
we enumerate several examples that can achieve a high over-
lap between the linear span of the generated OED and the
occlusion error subspace as the empirical guidelines for col-
lecting the extra images. Also, we introduce an intra-class
random pairing method to effectively exploit the extra images

that lack exact-matching counterparts and reduce the labor
intensity in forming the extra image pairs.

To alleviate the computational resource consump-
tion, we propose two novel dictionary compression
approaches: 1) uncentered PCA-based single partition com-
pression (UPSPC) and 2) uncentered PCA-based intra-class
partition compression (UPIPC). The proposed dictionary
compression approaches are based on the uncentered prin-
cipal component analysis (PCA). We prove that SDBE_L2 is
invariant to the uncentered PCA of sub-dictionaries. Two
methods are introduced to divide the CD and OED into sub-
ditionaries: 1) single paritition and 2) intra-class partition.
The single partition treats the CD or OED as a single sub-
dictionary.While for the intra-class partition, the CD or OED
is divided into sub-dictionaries according to the image classes
or occlusion classes, respectively. In UPSPC, the compres-
sion is achieved by reserving the non-zero uncentered prin-
cipal components (PCs) of each sub-dictionary of the single
partition. The maximum size of the dictionary compressed
by UPSPC is only twice the length of the column vectors.
When the number of the image classes or occlusion classes is
small, the size of the CD or OED can be further decreased by
UPIPC. In UPIPC, the intra-class partition is employed and
the compression is achieved by only reserving the first few
PCs of each sub-dictionary.

In summary, our main contributions to improve the
SDBE_L2-based classification scheme are as follows.
• We expand the admissible types of the extra image pairs
and provide the empirical guidelines for the collection of
the extra images to diminish the difficulty in acquiring
the extra images.

• We introduce the intra-class random pairing method to
reduce the workload in pairing the extra images.

• We propose two novel dictionary compression
approaches: UPSPC and UPIPC, to alleviate the con-
sumption of the computational resources in the training
stage.

The paper is organized as follows. Section II summa-
rizes the related works. Section III briefly reviews the
SDBE_L2-based classification scheme. Section IV investi-
gates the useful types of the extra image pairs and introduces
the intra-class random pairing method. Section V describes
the proposed dictionary compression approaches. Section VI
presents experimental results and Section VII concludes the
paper.

II. RELATED WORK
In the image space, deep generative models are commonly
employed to restore the occluded image regions. A large num-
ber of exact-matching occluded and occlusion-free image
pairs that can cover the variations caused by the occlusions
are usually required to train the generative models. In [16],
[18]–[20], the generative adversarial networks (GANs) were
used to yield the missing portions of the image. With-
out particular considerations on the classification, however,
the images recovered by purely inpainting are unsuitable for
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image classification due to the inter-class information intro-
duced by the generated patches, which degrades the classifi-
cation accuracy. Furthermore, these approaches need to know
the shapes and locations of the occlusions or missing portions
in advance. Unfortunately, automatic occlusion detection in
generic images is still a tough challenge in computer vision.

To avoid providing prior knowledge about the occlu-
sion structure, learning the occlusion structure from data
is developed for the generative model based approaches.
In [25], an average relative difference between the activa-
tions of the occluded and the clean image was introduced
to discriminate between the corrupted and the non-corrupted
elements of the DFVs for the stacked sparse denoising
auto-encoder. The corrupted elements are then replaced
with the averaged non-corrupted elements to reconstruct the
occlusion-free face image. Because of the holistic attribute
of the DFVs and inter-class information introduced by the
averaged non-corrupted elements, this approach only exhibits
improvement for small-scale face datasets with a few types of
synthetic occlusions.

To improve the classification performance for the gen-
erated model based approaches, in [26], an identity-based
supervised CNN was proposed to provide an extra guidance
for the training of robust LSTM-autoencoders to preserve the
identity information. The trained robust LSTM-autoencoders,
which have an LSTM branch to learn the structure of the
occlusion were then employed to de-occlude face images.
However, in order to cover the variations caused by the occlu-
sions, massive exact-matching occluded and occlusion-free
face image pairs are required to train the robust LSTM-
autoencoders. The robust LSTM-autoencoders only shows
improvement in face recognition.

In the deep feature space, the correspondence between the
occluded image regions and the corrupted elements of the
deep featuremap, trainingwith data augmentation, and recov-
ering uncorrupted DFVs were investigated to improve the
robustness of deep features to the occlusion. In [23], a pair-
wise differential Siamese network (PDSN) was proposed to
learn the correspondence between the occluded facial regions
and the corrupted activations of the top convolution layer.
The occlusion-associated feature elements, which will be
discarded in classification, are indicated by a discardingmask
that is generated according to the learned correspondence.
This approach however is highly rely on an accurate occlusion
detector and well-aligned face images because the correspon-
dence is built on a predefined image grid and the generation of
the feature discarding mask requires an accurate detection of
the occlusion. Consequently, this approach is not applicable
to the classification of generic occluded images. In [27],
a strategy for data augmentation with synthetic occluded face
images was proposed to train the CNNs so as to extract
the features more locally and equally. The occluded face
images were synthesized by placing the occluder with a high
probability at the face regions sensitive to the classification
result. The sensitive face regions were identified by an occlu-
sion map that was obtained via the visualization technique

proposed in [28]. The occlusion map, however, is only
effective for well-aligned images, e.g., aligned face images.
In addition, to cover the variations caused by numerous
occlusion patterns, an extremely large number of synthetic
occluded images should be employed in training. This will
prolong the training time dramatically. In [27], the improve-
ment was only shown on small face datasets with a few
occlusion patterns. In [24], the SDBE-based image classi-
fication scheme was proposed. The SDBE approach recov-
ers the non-corrupted DFV by projecting the DFV of the
occluded image onto the linear span of a CD along that
of an OED. Two implementations of SDBE were intro-
duced in [24], SDBE_L1 and SDBE_L2. For a large-scale
dataset, SDBE_L2 has much less computational complexity
in testing than but achieves classification accuracy similar to
SDBE_L1. While, the implementation of SDBE_L2 in [24]
is computational expensive in training for the large-scale
datasets and numerous occlusion patterns. This is because
the similarities between the OEVs associated with the same
occlusion class and between the DFVs of the same image
class are not effectively exploited. In addition, the redundancy
in the dictionary is not removed.

From the above analysis, we can learn that for the
large-scale generic image datasets with numerous occlu-
sion patterns, the practicable classification scheme is still a
challenge.

III. SDBE_L2-BASED CLASSIFICATION
In this section, we briefly describe SDBE_L2-based classi-
fication scheme for the sake of completeness. SDBE_L2 is
designed to estimate the non-corrupted DFV by projecting
the corrupted DFV onto the class subspace A along the
occlusion error subspace B. Because the projection is usu-
ally nonunique in practice, SDBE_L2 constrains the projec-
tion by minimizing the squared l2-norm of the projection
coefficients.

Suppose NA training images of KA image classes and
NB extra image pairs that are associated with KB occlusion
patterns are available. A base-CNN is employed to extract the
m-dimensional DFV from each image. For the ith image class,
there are NAi training images. Let aij denote the DFV of the
jth training image in the ith image class. For the ith occlusion
pattern, there are NBi extra image pairs. Let bij denote the
OEV obtained from the jth extra image pair and associated
with the ith occlusion pattern.
The OEV bij is calculated by bij = boij − bfij, where bfij

and boij are the DFVs of the occlusion-free and the occluded
image of the jth extra image pair associated with the ith
occlusion pattern, respectively. The CD A and OED B are
constructed by concatenating the DFVs of the training images
and the OEVs of the extra image pairs, respectively, i.e., A =
[A1, . . . ,Ai, . . . ,AKA ] with Ai = [ai1, ai2, . . . , aiNAi

] ∈
Rm×NAi and B = [B1, . . . ,Bi, . . . ,BKB ] with Bi =
[bi1,bi2, . . . ,biNBi

] ∈ Rm×NBi .
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Then, the DFV of the ith test image, vi, is decomposed as
follows,

vi = Aα + Bβ + n, (1)

where n is a noise term and α = [αT1 , . . . ,α
T
i , . . . ,α

T
KA

]T

and β = [βT1 , . . . ,β
T
i , . . . ,β

T
KB

]T are coefficients.
SDBE_L2 employs the squared l2-norm regularized LS

estimates to solve equation (1) as follows,

ω̂ = argmin
ω
{||vi − Dω||22 + λ||ω||

2
2}, (2)

where λ is a positive hyperparameter, D = [A B], and ωi =
[αT βT ]T .

The SDBE_L2-based classification scheme has two stages:
training stage and testing stage. The primary purpose of the
training stage is to construct the CD and OED and then
figure out the projection matrix. The details of the training
stage are listed below.
• Input: a set of training images and a set of extra image
pairs.

1) For each image, use the base-CNN to extract the DFV.
2) Calculate the OEV bij for each extra image pair.
3) Concatenate all aij’s to form the CD A and all bij’s to

create the OED B.
4) Normalize each column ofA andB to have unit l2-norm

(optional).
5) Calculate

P =
(
DTD+ λI

)−1
DT , (3)

where P = [PTα PTβ ]
T , Pα ∈ RnA×m, Pβ ∈ RpB×m.

6) Calculate the class subspace projection matrix

O = APα. (4)

7) Train the classifier C with the column vectors of A
(optional).

• Output: O and C.
The function of the testing stage is to predict the image

class of the test image. The details of the testing stage are
listed as follows.
• Input: O, C and test image yi.
1) Use the base-CNN to extract the DFV of the test

image vi.
2) Normalize vi to have unit l2-norm (optional).
3) Estimate the projection of the DFV vi onto the class

subspace by

v̂0i = Ovi. (5)

4) Predict the image class of v̂0i with the classifier C.
• Output: The image class of v̂0i.
While the testing stage is independent of the size of the dic-

tionary D because O ∈ Rm×m, the computational resources
consumed to figure out O in the training stage, such as the
memory and computing time, increase with the size of D.
To calculate O, the memory should be able to store the

matrixDTD, which is a matrix of size (NA+NB)×(NA+NB).

For a large-scale image dataset with numerous occlusion pat-
terns, (NA+NB) is very large such that the memory required
to compute O can easily exceed the memory capacity of
many computers. For instance, for a dataset with 1000 image
classes and 2000 occlusion patterns, adopting the setting used
in [24]: 20 DFVs for each image class and 100 OEVs for
each occlusion pattern, the size of DTD is 220000× 220000.
Considering the commonly used double-precision represen-
tation of real value (8 bytes per value), the minimummemory
required to store a 220000 × 220000 matrix is over 360GB,
which exceeds the memory capacity of desktop computers.

Themost time-consuming procedure in the training stage is
inverting

(
DTD+ λI

)
, which has a computational complex-

ity of overO((NA+NB)2.37) [31], [32]. Therefore, to process
a huge size matrix, such as the above-mentioned example,
the computing time will be extremely long.

Besides, in [24], employing the exact-matching extra
image pairs to generate the OED restrains the practical appli-
cation of the SDBE_L2-based classification scheme. In many
applications, the exact-matching counterparts of the extra
images are difficult to be acquired.

IV. ACQUIRING EXTRA IMAGE PAIRS
In this section, we investigate the types of the extra
image pairs that can contribute positively to the classifica-
tion of occluded images. Acquiring the extra image pairs
includes two steps: 1) collecting the occluded images and
occlusion-free images and 2) matching the occluded images
to the occlusion-free images to yield the extra image pairs.

As mentioned in [24], the linear span of the OED B is
regarded as an approximation of the occlusion error sub-
space B. To achieve a small estimation error, the linear span
ofB should heavily overlap withB, i.e., the overlapping ratio,

δ =
B ∩ B
B

, (6)

should be sufficiently large. In addition to the type of the extra
image pairs used in [24], i.e., covering all the occlusion pat-
terns in the test images and having exact-matching between
the occluded and the occlusion-free images, it is apparent that
many alternatives can yield the OEDs with high δ.

Through a toy example, we first take a close look at the
variation, caused by the occlusion, of the DFV. As shown
in Fig.1, the DFVs of the occluded images, which reflect
the features of both the occlusion patch and original images,
move from the class subspaces Ai’s to the linear span
Aoj that is associated with the jth occlusion pattern. For
instance, the black arrow line v0i (the DFV of the original
occlusion-free beaver image) moves from Ai to Aoj and
becomes the black arrow line vi (the DFV of a beaver image
with 25% occlusion). The OEV between vi and v0i, which
falls into the occlusion error subspace B, is drawn out as
a solid red arrow line. In Fig. 1, the blue arrow lines are
additional OEV examples associated with B.

From Fig.1, we can learn that for a given occlusion pattern,
the relative position between the class subspaces associated
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FIGURE 1. 2-D visualization of the DFVs of the occlusion-free and occluded images. The DFVs are extracted by using the
pre-trained ResNet-152 network [8]. The t-SNE algorithm [29] is adopted to project the DFVs from the original 2048-D to the 2-D for
visualization. The occlusion-free images are drawn from Caltech-101 dataset [30] and resized to 224 × 224. Only one occlusion
pattern is illustrated. The occluded images are synthesized by contaminating the occlusion-free images at the center with an
occlusion patch scaled to 25% of the occlusion-free images. The examples of occlusion-free images and occluded images are
shown. To make the illustration clear, merely 8 image classes (30 occlusion-free images each) are plotted. The DFVs of
occlusion-free images and occluded images are marked with hollow symbols and solid symbols, respectively. The red and blue
arrow lines represent the OEVs and the black arrow lines the DFVs. (better viewed in color) .

with the occlusion-free extra images, e.g.,Ai’s, and the linear
span associated with the occlusion pattern, e.g., Aoj, deter-
mines the linear span of the OEVs. This indicates that any
occluded and occlusion-free image pairs with appropriate
relative positions in the deep feature space can be adopted
as the extra image pairs because the linear span of their
generated OEVs can have a high δ.
In practice, many types of occluded and occlusion-free

image pairs can meet the requirement of high δ. To guide
acquiring useful extra image pairs in practice, we enumer-
ate some examples from three aspects: occlusion-free extra
image, occluded extra image, and pairing method. The effec-
tiveness of these examples is demonstrated in section VI-A.

A. OCCLUSION-FREE EXTRA IMAGE
The occlusion-free extra image determines the start point of
the OEV. Suppose the test images are drawn from an image
class set T . The occlusion-free extra images can be drawn
from either inside or outside T .
For the case inside T , the OEVs start from the space close

to the start points of the OEVs of the occluded test images1.

1The OEV of the occluded test image refers to the residual vector between
theDFV of the occluded test image and its original occlusion-free image. The
OEVs of the occluded test images definitely fall into B.

While for the case outside T , the start points of the OEVs
locate in the space far from those of the OEVs of the occluded
test images. The linear span of the OED, therefore, more
likely deviates from B for the case outside T than for the
case inside T . Consequently, drawing from outside T usually
shows smaller improvement than from inside T .

Despite achieving smaller improvement, drawing from
outside T facilitates the collection of extra images. For
instance, in a flower classification task, the animal images can
be adopted as the extra images. Here, we give two examples
regarding the case outside T .
1) Intra-dataset occlusion-free extra images: the

occlusion-free extra images are drawn from the same
dataset as the test images but distinct from the image
classes of the test images.

2) Inter-dataset occlusion-free extra images: the
occlusion-free extra images are drawn from the
datasets distinct from the task-specific dataset, For
instance, the OED used for the classification on the
Oxford-102 dataset [33] is constructed by drawing
the occlusion-free extra images from the Caltech-
101 dataset [30](see the experiment in section VI-A2).

Since the images from both inside and outside T can be
adopted as the occlusion-free extra images, the occluded extra
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images and the pairing method become the deterministic
factors for the usefulness of the extra image pairs.

B. OCCLUDED EXTRA IMAGE
The occluded extra image determines the endpoint of the
OEV. Suppose the occluded test images and the occluded
extra images are associated with the jth and j′th occlusion
patterns, respectively. If Aoj′ , the linear span of the DFVs of
the occluded extra images, is heavily overlapped with Aoj,
the OEVs of the extra image pairs would mainly end within
the space that can produce Bj′ , the linear span of the OEVs of
the extra image pairs, of high δ.

In addition to the jth occlusion pattern, it is easy to infer
that the following occlusion patterns can give rise to an Aoj′

heavily overlapped with Aoj.

1) The intra-class occlusion pattern: the occlusion patch
is distinct from but belongs to the same occlusion class
as the occlusion patch of the jth occlusion pattern.

2) The linear transformation occlusion pattern: the occlu-
sion pattern is a translation, rotation, or scaling of the
jth occlusion pattern.

3) The noised occlusion pattern: the occlusion patch is a
noised version, e.g., corrupted by the Gaussian noise,
of the occlusion patch of the jth occlusion pattern.

4) The cropped occlusion pattern: the occlusion patch is
cropped from the occlusion patch of the jth occlusion
pattern or vice versa.

For an extreme scaling in the second item, e.g., enlarg-
ing the occlusion patch from 25% occlusion to 80% (see
the experiment in section VI-A), Aoj and Aoj′ may not be
overlapped with each other. In such situation, however, both
Aoj and Aoj′ are in the same direction from Ai to the lin-
ear span associated with the image class of the occlusion
patch. It means that the OEVs associated with the extremely
scaled occlusion pattern point towards the direction similar
to the OEVs associated with the jth occlusion pattern. There-
fore, Bj and the linear span of Bj′ can have large overlapping.

C. PAIRING METHOD
In practical applications, many extra images may not have
their exactly matched counterparts. For instance, for face
recognition in the wild, it is almost unable to find an
occlusion-free face image and an occluded face image having
the same head pose, face expression, and illumination. In such
situation, the exact-matching method used in [24] is unable
to efficiently exploit the extra images. In particular, for a
small set of extra images, the extra image pairs generated
by using the exact-matching method will be insufficient to
produce an OED to approximate B with a small error. On the
other hand, finding the exactly matched occlusion-free and
occluded images from plenty of extra images usually con-
sumes a vast amount of labor.

To alleviate these problems, we introduce an intra-class
random pairing method, where each extra image pair is
formed by randomly combining an occlusion-free extra

image with an occluded extra image of the same image class.
The intra-class random pairing method is a semi-automatic
method only requiring to determine the image classes of the
occluded extra images manually. Therefore, much less labor
is needed to pair the extra images. It can also effectively
exploit the extra images lacking the exactly corresponding
counterparts in the set of collected extra images.

For a well-trained CNN, the DFVs of the occlusion-free
images of the same image class cluster together, and thus the
image class determines the approximate location of the start
point of an OEV. Meanwhile, the DFVs associated with the
same occlusion pattern locate close to each other since these
DFVs reflect the features of the same occlusion patch. For a
given occlusion pattern, it is apparent that the start points and
endpoints of the intra-class random pairingOEVs have small
deviations from the respective points of the exact-matching
OEVs since these two types of OEVs are associated with the
same image class and the same occlusion pattern. Therefore,
the intra-class random pairing OED, which is constructed by
using the extra image pairs that are formed with the intra-
class random pairing method, can have high δ.

V. DICTIONARY COMPRESSION
In this section, we introduce the uncentered PCA-based dic-
tionary compression approaches. As the basis of the proposed
approaches, the uncentered PCA of sub-dictionaries is first
described, and then, the strategies of dictionary partition and
compression are presented.

A. UNCENTERED PCA OF SUB-DICTIONARIES
The dictionary D can be split into multiple sub-dictionaries.
A sub-dictionary is a subset of the column vectors of D.
Let Di denote the ith sub-dictionary and ωi the vector of
coefficients associated with Di. Then, D can be written as
D = [. . . ,Di, . . .] and the associated coefficients ω =
[. . . ,ωTi , . . .]

T .
The uncentered PCA is given via a singular value decom-

position (SVD) of the matrix2. The SVD of Di is given by

Di = Li6iRT
i , (7)

where Li and Ri are the orthogonal matrices of the left and
the right singular vectors, respectively, and 6i is a diagonal
matrix of singular values in descending order. The column
vectors of Ri are actually the eigenvectors of DT

i Di, thereby
being viewed as the the principal axes of the uncentered
PCA [36] of Di.
To avoid confusing with the standard PCA [37], [38],

where the matrix is column-centered, in this paper, the nota-
tions for the uncentered PCA is modified by ‘‘uncentered’’,
e.g., the principal axes of the uncentered PCA is named
uncentered principal axes.

Equation (7) can be rewritten as DiRi = Li6i. The left
term represents the projection of Di onto the uncentered

2In the literature, many algorithms have been proposed to solve the SVD
of an extremely large matrix [34], [35].
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principal axes. The columns of Li6i therefore can be inter-
preted as the uncentered PCs3. Let

Dpca
i = Li6i (8)

and ωpcai = RT
i ωi. ω

pca
i is the projection of ωi onto the

uncentered principal axes. Then, we have
Lemma 1: Let F(ω) = ||vi−Dω||22+λ||ω||

2
2 and F̃(ω̃) =

||vi−D̃ω̃||22+λ||ω̃||
2
2, where D̃ = [. . . ,Di−1,D

pca
i ,Di+1, . . .]

and ω̃ = [. . . ,ωTi−1, (ω
pca
i )T ,ωTi−1, . . .]

T . Then, F(ω) =
F̃(ω̃).

Proof: Because Dpca
i ω

pca
i = Li6iRT

i ωi = Diωi,
we have D̃ω̃ = Dω. Then, we obtain

||vi − D̃ω̃||22 = ||vi − Dω||22. (9)

Recall that Ri is an orthogonal matrix, i.e., RiRT
i = I,

where I denotes the identity matrix. We have

(ωpcai )Tωpcai = ω
T
i RiRT

i ωi (10)

= ωTi ωi. (11)

From equation (11), we obtain

||ω||22 = ω
Tω (12)

=

∑
j

ωTj ωj (13)

=

∑
j6=i

ωTj ωj + (ωpcai )Tωpcai (14)

= ω̃T ω̃ (15)

= ||ω̃||22. (16)

From equation (9) and (16), we have F(ω) = F̃(ω̃).
It is easy to infer from Lemma 1 that in the uncentered

principal space of Di, which is defined by Ri, equation (2)
keeps unchanging.

By repeatedly replacing each Di with Dpca
i , we have the

following theorem.
Theorem 1: If Di’s in F(ω) are substituted with Dpca

i ’s,
then the solution of equation (2) can be obtained by replacing
ω̂i’s in ω̂ with RT

i ω̂i’s.
Theorem 1 indicates that SDBE_L2 is invariant to the

uncentered PCAof sub-dictionaries.Moreover, the projection
of a sub-dictionary onto the uncentered principal axes gives
rise to a significant-first form for the sub-dictionary since the
uncentered PCs carryingmore information come before those
capturing less information.

These properties facilitates the dictionary compression.
First, the size of Dpca

i is not larger than m × m because
the number of the non-zero columns of Dpca

i is equal to the
rank of Di, which is smaller than or equal to m. Second,
if the original column vectors of a sub-dictionary are highly
correlated, the information of the sub-dictionary concentrates
on the first few uncentered PCs, which correspond to the
large singular values. Consequently, the sub-dictionary can be
compressed by only reserving the first few uncentered PCs.

3In the literature, some authors confusingly call the column vectors of Ri
‘‘principal components’’ (e.g., [38]), but we reserve this name for DiRi in
keeping with the terminology in [37].

B. DICTIONARY PARTITION AND COMPRESSION
The above analysis encourages us to compress the dictionary
via the uncentered PCA of sub-dictionaries. However, how to
partition the dictionary D into sub-dictionaries has yet to be
investigated.

An intuitive partition is to consider the CD A or OED B
as a single sub-dictionary. We name this type of partition
single partition. The single partition can ensure that A or
B is compressed to a size not larger than m × m. Let mA
or mB denote the numbers of non-zero PCs of A or B,
respectively. Because the rank of A or B is not larger than
m, we have mA ≤ m or mB ≤ m. By dropping off the
zero PCs, A or B is shrunk to a size smaller than or equal
to m × m in the unentered principal space. We call this
type of compression uncentered PCA-based single partition
compression (UPSPC). The UPSPC algorithm is presented
in Algorithm 1. UPSPC is a type of lossless compression due
to the invariability of SDBE_L2 to the uncentered PCA.

Algorithm 1 The Proposed UPSPC Algorithm
Input: A or B.
1) Let D1 = A or B.
2) Conduct SVD on D1 according to equation (7).
3) Compute Dpca

1 by equation (8).
4) Drop off all of the zero vectors in Dpca

1 .
Output: AUPSPC

= Dpca
1 or BUPSPC

= Dpca
1 .

UPSPC provides a lower bound for the compression. ForD
associated with a small number of image classes or occlusion
classes, a higher compression ratio is able to be achieved.
We divide the CD or OED into sub-dictionaries accord-
ing to the image classes or occlusion classes, respectively,
i.e., put the CD column vectors of the same image class
into the same sub-dictionary or the OED column vectors
of the OED associated with the same occlusion class into
the same sub-dictionary. We name this type of partition
intra-class partition. The column vectors of the same image
class or occlusion class are usually highly correlated. There-
fore, for the intra-class partition, the first few uncentered
PCs of each sub-dictionary capture most of the information
of the sub-dictionary and can represent the sub-dictionary
approximately.

Suppose there are KA image classes and κB occlusion
classes in D. Let mAi and mBj denote the numbers of the
reserved uncentered PCs for the ith sub-CD and the jth
sub-OED, respectively. If

∑KA
1 mAi < mA or

∑κB
1 mBj <

mB, then A or B can be compressed to a size smaller than
that achieved by UPSPC by only reserving the first few
uncentered PCs of each sub-dictionary. We call this type
of compression uncentered PCA-based intra-class partition
compression (UPIPC). The UPIPC algorithm is presented in
Algorithm 2. Unlike UPSPC, the classification accuracy for
UPIPC has a small deviation from that for the uncompress
dictionary due to discarding some uncentered PCs in each
sub-dictionary.
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FIGURE 2. The SDBE_L2-based classification scheme with the proposed dictionary compression.

Algorithm 2 The Proposed UPIPC Algorithm

Input:A and {mAi}
KA
i=1, or B and {mBi}

κB
i=1.

1) Divide A into sub-matrices according to the image
classes: A = [A1, . . . ,Ai, . . . ,AKA ], or divide B into
sub-matrices according to the occlusion classes: B =
[B1, . . . ,Bi, . . . ,BκB ].

2) Let Di = Ai, i ∈ {1, . . . ,KA} or Di = Bi, i ∈
{1, . . . , κB}.

3) Conduct SVD on Di according to equation (7).
4) Compute Dpca

i = [di1, ..,dij, . . .] by equation (8),
where dij is the jth uncentered PC of Dpca

i .
5) Let DUPIPC

i = [di1, ..,dimAi
] or DUPIPC

i =

[di1, ..,dimBi
].

Output: AUPIPC
= [DUPIPC

1 , . . . ,DUPIPC
KA

] or
BUPIPC

= [DUPIPC
1 , . . . ,DUPIPC

κB
].

C. CLASSIFICATION SCHEME
The overall SDBE_L2-based classification scheme integrated
with the proposed dictionary compression approaches is illus-
trated in Fig. 2. In the training stage, the extra image pairs
can be generated with either the exact-matching or the pro-
posed intra-class random pairing method. The constructed
CD and OED are compressed with the proposed UPSPC or
UPIPC algorithm independently. Then, the compressed CD
and OED are concatenated to form the compressed dictio-
nary D = [A B], where A = AUPSPCorAUPIPC and B =
BUPSPCorBUPIPC. The remaining training procedures and the
testing stage are the same as the original SDBE_L2-based
classification scheme.

D. ANALYSIS OF COMPUTATIONAL RESOURCE
CONSUMPTION
For the large-scale datasets with numerous occlusion pat-
terns, it is apparent that NA � m and NB � m. Therefore,
the maximum size of the matrices needed to be stored is
m × (NA + NB), which is the size of the dictionary before

compression. Such a maximum size is much smaller than that
of the original SDBE_L2-based scheme, which is (NA+NB)×
(NA + NB).

Regarding the computational complexity, unlike the
original SDBE_L2-based classification scheme, inverting(
DTD+ λI

)
is not a computationally intensive procedure

anymore, because the size of D becomes not larger than m×
m after dictionary compression. The most time-consuming
procedure is the SVD of the uncompressed CD or OED. The
SVD has a computational complexity ofO(mNA) orO(mNB)
for the CD or OED, respectively [39]. This complexity is
much lower than that of inverting

(
DTD+ λI

)
in the original

SDBE_L2-based scheme, since NA � m and NB � m for
the large-scale datasets with numerous occlusion patterns.

VI. EXPERIMENTS
In the experiments, the proposed algorithms were imple-
mented with Matlab. Like [24], the MatConvNet [40]
implementation of the ResNet-152 network [8], which was
pre-trained on the ILSVRC2012 classification dataset [41],
was adopted as the base-CNN to extract the 2048-D DFVs.
The experiments are conducted on a PC with an i7 CPU and
64GB memory and without GPU acceleration.

A. EXPERIMENTS ON ACQUIRING EXTRA IMAGE PAIRS
In this section, we illustrate the effectiveness of the vari-
ous examples enumerated in Section IV. The experiments
were conducted on the Caltech-101 dataset [30] and Oxford-
102 flower dataset [33].

The l2-regularized l2-loss linear SVM [42] was adopted as
the classifier, which was trained on the normalized DFVs of
the training images for each experiment. The regularization
parameter of the linear SVMwas drawn from the grid set2 =
{2−15, . . . , 20, . . . , 215}. To match the input size of the base-
CNN, all of the images were directly resized to 224 × 224.
The occluded images were synthesized by superimposing the
occlusion patches scaled to specific occlusion ratios on the
resized images.
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The optional l2 normalization procedures (step 4 in the
training stage and step 2 in the testing stage) were adopted in
the experiments due to a strong preference of the linear SVM
for normalized vectors. The hyperparameter λ of SDBE_L2 is
drawn from the grid set 3 = {10−6, . . . , 0.5, 1, . . . , 10}.

1) CALTECH-101 DATASET
The Caltech-101 dataset excluding the ‘‘background’’ image
class is adopted for evaluation. The settings on the training
images, occlusion-free test images, and occlusion-free extra
images are the same as in [24]. In particular, the dataset
is split into a class set (80 image classes with names from
‘‘accordion’’ to ‘‘schooner’’ in alphabet order) and an extra
set (remaining 21 image classes). The training images and the
occlusion-free test images are drawn from the class set. The
occlusion-free extra images are drawn, unless otherwise spec-
ified, from the extra set. From each image class in the class
set, 30 images and a maximum of 50 images are randomly
drawn as the training images and occlusion-free test images,
respectively. The occlusion-free extra images, 30 images per
image class, are randomly drawn from each image class of
the extra set.

Two experiments were conducted on the Caltech-101
dataset to assess the enumerated examples on the collection of
occluded extra images and pairingmethods. In each trial, only
the best result with respect to the regularization parameter
of the linear SVM and the hyperparameter λ of SDBE_L2 is
reported.

In the first experiment, the cropping, noising, scaling,
rotation, and translation of the occlusion patch and intra-class
random pairing method with intra-dataset occlusion-free
images (example 1 in Section IV-A, example 2, 3, and 4 in
SectionIV-B, and example in Section IV-C) were evaluated.
The test images were synthesized by using a single occlusion
pattern (25% occlusion at the center of the image), named
original occlusion pattern, to contaminate the occlusion-free
test images. The example of the occluded image for the
original occlusion pattern is indexed by 1 in Fig.3a.

For each trial, the OED was constructed by employing
the occluded extra images synthesized only with the testing
occlusion pattern. In Fig.3, each trial, except the 22nd trial,
is numbered by the index of the occlusion pattern used to
synthesize the occluded extra images. The occluded extra
images of the first and 22nd trials were corrupted by using
the original occlusion pattern. The first 21 trials adopted
the exact-matching OEDs, while the last trial employed the
intra-class random pairing OED. The OED used in each trial
includes 630 OEVs associated with 21 image classes, each
30 OEVs.

Suppose the test images are contaminated with the kth
occlusion pattern and the OED is constructed by using the
extra image pairs associated with the lth occlusion pattern.
The intersection between Bk and the linear span of Bl is
unable to be measured directly since the exact span of Bk is
unavailable. Instead, we appraise the intersection between the
linear spans ofBl andBk as an approximation since the linear

FIGURE 3. Comparison of the OEDs constructed with various occlusion
patterns and distinct pairing methods. (a) shows the example extra
images employed to construct the OED for each trial. (b) plots the
classification accuracy and normalized mean correlation ρ(Bk ,Bl ) with
respect to the index of the evaluation. The occlusion ratio of the test
image is 25%.

span of Bk apparently has the smallest deviation from the Bk
among all of the occlusion patterns.

The normalized mean correlation between the column vec-
tors of Bk and Bl is employed to assess the degree of the
intersection between their linear spans. The normalized mean
correlation is defined as

ρ(Bk ,Bl) =

∑
i
∑

j ρij(Bk ,Bl)√∑
i
∑

j ρij(Bk ,Bk )
√∑

i
∑

j ρij(Bl,Bl)
,

(17)
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where ρij(Bk ,Bl) is the Pearson correlation coefficient [43]
between the ith OEV of Bk and the jth OEV of Bl . A high
magnitude of ρ(Bk ,Bl) indicates a strong correlation and
hence large intersection.

The result for each trial is shown in Fig.3b. Compar-
ing with the approach without employing SDBE_L2, which
achieves 55.4% classification accuracy, all of the evaluated
variants of the original OED (index 1) improve the perfor-
mance significantly, though smaller than the original OED.
Therefore, in practice, we can collect the occluded images
associated with the occlusion patterns being of the crop-
ping, nosing, scaling, rotation, and translation of the original
occlusion patterns. Also, we note that the intra-class ran-
dom pairing method achieves the improvement similar to the
exact-matchingmethod (index 22 vs. index 1). So, in practice,
we can employ the intra-class random pairing method to save
much labor.

By comparing the dash(blue) line and the solid(red) line
in Fig.3b, we can learn that the improvement is highly related
to the normalized mean correlation ρ. The results manifest
that the overlapping between the linear span of the OED
and the occlusion error subspace is a deterministic factor
for the performance of SDBE_L2. This also indicates that in
practice, ρ is able to be employed to estimate the effectiveness
and contribution of the acquired extra image pairs to the
performance improvement.

In the second experiment, we evaluated the perfor-
mances for the intra-class occlusion pattern (example 1 in
Section IV-B). The classification results are plotted in
FIGURE4. For each testing occlusion ratio, the OED is con-
structed by using the extra image pairs associated merely
with the testing occlusion ratio, e.g., for the test of 25%
occlusion, the occluded extra images only with 25% occlu-
sion are employed to construct the OED. At each testing
occlusion ratio, the intra-class occlusion pattern z2 achieves
a significant improvement, close to that achieved by the
original occlusion pattern z1, over that without SDBE_L2,
whereas the inter-class occlusion pattern z3 achieves a very
small improvement.

From the above two experiments, we know that if the
occlusion patterns in the extra image pairs are associated
with the same occlusion classes as those in the occluded test
images, the OED can provide positive contribution to the
classification. This indicates that the OEVs associated with
the same occlusion class are highly correlated.

2) OXFORD-102 FLOWER DATASET
We conducted a performance comparison between the
intra-dataset occlusion-free extra images and the inter-dataset
occlusion-free extra images (example 1 and 2 in Section IV-A)
on the Oxford-102 flower dataset.

The first 83 image classes of the Oxford-102 flower dataset
were regarded as the class set. The images of the class
set in the training set, validation set, and testing set, which
are defined in [33], were adopted as the training images
(10 images per image class), occlusion-free validation images

FIGURE 4. Comparison of the classification accuracies with respect to the
occlusion ratio for the OEDs associated with the original occlusion
patch z1, intra-class occlusion patch z2, and inter-class occlusion patch
z3. z1 and z2 are drawn from the same occlusion class and z1 and z3
from distinct occlusion classes. The occluded test images are synthesized
by contaminating the occlusion-free test images with the occlusion patch
z1 scaled to the testing occlusion ratios.

(10 images per image class), and occlusion-free test images,
respectively.

Two types of extra sets were evaluated for comparison.
The first type, where the occlusion-free extra images were
randomly drawn from the remaining 19 image classes each
with 30 images, is a case for the intra-dataset occlusion-free
extra images; the second one is a case for the inter-dataset
occlusion-free extra images, which adopts occlusion-free
images used in section VI-A1, except for those in ‘‘sun-
flower’’ and ‘‘water_lilly’’, which are two image classes of
flowers.

For each occlusion ratio, eight occlusion patterns - four
occlusion patches (shown in Fig.5a) at two occlusion posi-
tions: center and off-center (illustrated in the examples of
occluded images in Fig.5b) - were employed to synthesize
the occluded images.

Similar to the experiment in FIGURE4, for each test-
ing occlusion ratio, the occluded extra images were synthe-
sized with the occlusion patterns of the testing occlusion
ratio. The exact-matching method was employed to form
the extra image pairs. The occluded and occlusion-free val-
idation images were employed to determine the regulariza-
tion parameter for the linear SVM and the hyperparameter
λ for SDBE_L2. After the hyperparameters were obtained,
the training images and the occlusion-free validation images
were combined as the set of training images to train the linear
SVM for testing.

The experimental result is reported in Fig.5c. From the
results, we can observe that the extra sets of the sec-
ond type achieves significant improvement, though smaller
than the extra sets of the first type, for the occluded test
images. This result demonstrates that both the intra-dataset
and the inter-dataset occlusion-free extra images are appli-
cable to SDBE_L2. It is worth noting that the intra-dataset
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FIGURE 5. Comparison of classification accuracy for the intra-dataset
occlusion-free extra images and inter-dataset occlusion-free extra images
on the Oxford-102 flower dataset. (a) Four occlusion patches used in the
experiment. (b) Examples of occluded images with 20% occlusion and
two occlusion positions. (c) The classification accuracy with respect to the
occlusion ratio.

occlusion-free extra images can be irrelevant to the task. In
practice, exploiting the task-irrelevant images alleviates the
difficulty in collecting the extra images dramatically.

B. EXPERIMENTS ON DICTIONARY COMPRESSION
In this section, we concern ourselves with the dictionary
compression. We evaluated both UPSPC and UPIPC on a
large-scale synthetic occluded image dataset with numerous
occlusion patterns. The original ‘‘fc1000’’ and ‘‘prob’’ layers
of the pre-trained ResNet-152 network, which actually con-
stitute a softmax classifier, were adopted as the classifier in
the experiments.

Due to lack of publicly available large-scale datasets with
numerous occlusion patterns, we adopted the ILSVRC2012
dataset as the set of occlusion-free images and synthesize the
occluded images from the occlusion-free images. To match
the input size of the base-CNN, the occlusion-free images
were first resized to the shorter side of 256 and then cropped
the center with the size of 224×224 out as the occlusion-free
images for further processing.

The ILSVRC2012 dataset was split into the class set, extra
set, and occlusion patch set. The splitting configuration is
the same as in [24], i.e., 900 image classes in the class set,
20 image classes in the extra set, and 80 image classes in the
occlusion patch set.

To make the uncompressed CD tractable for comparison
in our computer, a subset of original training images, which
was formed by randomly drawing 20 original training images
from each image class of the class set, was adopted as the
training set for SDBE_L2.

The original validation images in the class set were treated
as the occlusion-free test images. To reduce the evaluation
workload, the occluded test images were synthesized from a
subset of the occlusion-free test images, which was obtained
by randomly drawn from the occlusion-free test images each
image class with five images. We compared the classifi-
cation accuracies of the subset and the whole set of the
occlusion-free test images with the original ResNet-152 net-
work and observed merely a very small increase (0.34%) in
classification accuracy for the subset. This indicates that the
statistic of the subset has a negligible deviation from that of
the whole set, and thus the occluded test images synthesized
from the subset can statistically represent those generated
from the whole set.

A total of 288 occlusion patterns were employed to synthe-
size the occluded test images. 36 occlusion patches, as shown
in FIGURE6a, were segmented from the images that are
randomly drawn from 12 image classes, each 3 images, of the
occlusion patch set. Each occlusion patch has 2 occlusion
ratios (10% and 20%) and 8 corruption positions (4 positions
for each occlusion ratio), which are randomly and indepen-
dently generated for each occlusion patch.

A total of 100 occlusion-free extra images, which were
randomly drawn from 20 image classes of the extra set,
each image class 5 images, were used in the experiment.
28800 occluded extra images were synthesized with all
288 occlusion patterns from the occlusion-free extra images.
Two types of original OEDs, exact-matching OED and
intra-class random pairing OED, which are denoted by the
superscriptions e and i, respectively, were evaluated in the
experiment.

By employing the OED construction method presented
in [24], the generated OED is a 2048× 28800 matrix. Taking
the CD of 2048×18000 into account, we got the matrix D of
2048× 46800. Accordingly, DTD, which is used to compute
P, is a matrix of 46800 × 46800. For the double-precision
representation, DTD requires over 17GB memory to
store, which is unable to be handled by many desktop
computers.

We first evaluated UPSPC for the CD and OED. To show
the advantage of the uncentered PCA over the centered PCA,
we also evaluated the center PCA-based single partition com-
pression (CPSPC), where the uncentered PCA of UPSPC is
replaced with the centered PCA. We employ the superscrip-
tions ‘‘UPSPC’’ and ‘‘CPSPC’’ to denote the CDs or OEDs
compressed by using UPSPC and CPSPC, respectively.

The classification results on the synthetic occluded test
images are tabulated in TABLE 1. The original CDs or
OEDs are indicated by the superscription ‘‘org’’. UPSPC
successfully reduces the size of the dictionary to m × 2m
(over 11 times smaller than the original dictionary) without
affecting the classification accuracy for both the cases of the
exact-matching OED and intra-class random pairing OED
(D = [AUPSPC BUPSPC,e] vs. D = [Aorg Borg,e] and D =
[AUPSPC BUPSPC,i] vs. D = [Aorg Borg,i]). While, CPSPC
fails to compress the dictionary because the classification
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FIGURE 6. (a) 36 occlusion patches that were used to synthesize the occluded images. Each column corresponds to an occlusion class.
(b) Examples of the occluded test images for the first occlusion class. Two occlusion ratios: 10% and 20%, and four random occlusion
positions for each occlusion patch at given occlusion ratio are shown. The occlusion positions for each occlusion patch at each occlusion
ratio were independently and randomly sampled.

TABLE 1. Comparison of dictionary compression for the single partition. The results for SDBEŁ2 with uncompressed dictionary and the original
ResNet-152 networks are also list for comparison. OR: occlusion ratio.

accuracy decreases almost to zero, i.e., the cases of D =
[ACPSPC BCPSPC,e] and D = [ACPSPC BCPSPC,i].
In our experiments, for the evaluations on the dictionaries

compressed with UPSPC, i.e., D = [AUPSPC BUPSPC,e]
and D = [AUPSPC BUPSPC,i], the maximum memeory
consumption is lower than 3.5GB and the training time
shorter than 100 seconds. While for the evaluations of the
original SDBE_L2-based classification scheme, i.e., D =
[Aorg Borg,e] and D = [Aorg Borg,i], the maximum memory

consumption is higher than 40GB (over 11 times than
UPSPC) and the training time longer than 1.1 hours (over
39 times than UPSPC).

Then, we evaluated UPIPC. Similarly, the centered
PCA-based intra-class partition compression (CPIPC), where
the uncentered PCA of UPIPC is substituted with the cen-
tered PCA, was evaluated for comparison. By the super-
scriptions ‘‘UPIPC’’ and ‘‘CPIPC’’, we denote the CDs or
OEDs compressed by using UPIPC and CPIPC, respectively.
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FIGURE 7. Classification accuracy with respect to mAi
for SDBE_L2 with

different types of compressed CDs. The result of the original
ResNet-152 is also shown for comparison.

In addition, for comparison, the random selection-based com-
pression approach, denoted by the superscription ‘‘rnd’’, was
also evaluated for the intra-class partition. In the random
selection-based compression approach, mAi (or mBj ) column
vectors are randomly drawn from the ith (or jth) instra-class
sub-CD (or sub-OED) to construct the CD (or OED).

We first evaluated the compression for the CD. Without
loss of generality, only the exact-matching OED was adopted
for evaluation. For simplicity, mAi ’s were set to the same
value for all i’s. The classification accuracy averaged over
all of the occluded test images is shown in FIGURE7, where
only the results for BUPSPC,e are plotted because Borg,e and
BUPSPC,e show the same results.

From FIGURE7, we can observe that the uncenter
PCA-based approach is slightly better than the centered
PCA-based approach and much better than the random
selection-based approach. Although for intra-class partition,
the compressed CD can achieve a classification accuracy
close to the uncompressed CD by only reserving 5 PCs
for each sub-dictionary, the size of the compressed CD is
much lager than for the single partition (2048 × 4500 vs.
2048 × 2048) owing to the large number of the image
classes. This result shows that for a large number of image
classes, the intra-class partition is worse than the single
partition.

Next, we evaluated the compression for the OED. Similar
to the experiment for the CD, mBj ’s were set to the same
value for all j’s. UPIPC, CPIPC, and the random selec-
tion based compression approach were evaluated. Both the
exact-matching OED and the intra-class random pairing OED
were adopted for compression. The classification accuracy
averaged over all of the occluded test images are shown in
FIGURE8.

From FIGURE8, we note that by only reserving 5 PCs
for each sub-dictionary, i.e., a total of 60 column vectors for
the compressed OED (much less than those for the single
partition, 60 vs. 2048), both the OEDs compressed by using
UPIPC and CPIPC achieve a slightly higher classification
accuracy than that compressed by using UPSPC, which has
the same results as the original OED. This result demonstrates
that for a small number of occlusion classes, the intra-class
partition can achieve higher compression ratio than the single
partition.

The slightly higher classification accuracy can be con-
tributed to the mitigation of the influence of the outlier OEVs.
The original OEDs usually contain some outlier OEVs that
are harm to SDBE_L2 and mainly captured by the PCs
associated with small singular values. By ignoring the less

FIGURE 8. Classification accuracy with respect to mBj
for SDBE_L2 with different compressed OEDs. The original OED is constructed from

(a) exact-matching extra image pairs or (b) intra-class random pairing extra image pairs. The result of the original ResNet-152 is also shown for
comparison.
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important PCs, the compressed OED can alleviate the influ-
ence of the outlier OEVs, thus achieving better result.

We can also observe that the uncentered PCA-based
approach, UPIPC, achieves the best results for both the
exact-matching OED and intra-class random pairing OED.
This indicates that the advantage of the proposed approach
is irrelevant to the pairing method.

In the above experiment for compression, we should note
that if a centered PCA-based compression approach is applied
to both the CD and OED, the classification accuracy is
degraded dramatically; while, if it is applied only to one of the
CD and OED, the classification result is just slightly worse
than that achieved by the uncentered PCA-based compression
approach. The SDBE approach is based on the uncorrelation
or independency between the CD and the OED [24]. In the
centered principal subspaces, the CD and the OED are not
nearly uncorrelated or indepencent. Therefore, applying the
centered PCA to both the CD and the OED gives rise to low
classification accuracy.

We should also note that the intra-class random pair-
ing OED has a similar performance (a small performance
loss, less than 0.5% in classification accuracy) comparing to
the exact-matching OED. This result demonstrates that the
intra-class random pairing method is an effective alternative
to reduce the construction workload of the OED.

VII. CONCLUSION
To reduce the difficulty and workload in acquiring the
extra image pairs for the SDBE_L2-based classification
scheme, we have given some examples on the useful types
of occlusion-free extra images and occluded extra images
and introduced the intra-class random pairing method to
semi-automatically form the extra image pairs. The extensive
experiments on various synthetic occluded image datasets
show that comparing to the original OED in [24], the enumer-
ated examples and the intra-class randompairingmethod only
result in a small loss in classification accuracy. We have also
observed that the classification performance for a variant of
the OED is highly related to the normalized mean correlation
to the original OED.

In addition, in order to decrease the dictionary size,
we have proved that SDBE_L2 is invariant to the uncen-
tered PCA and proposed two novel uncentered PCA-based
dictionary compression approaches, UPSPC and UPIPC. For
UPSPC, the size of the dictionary can be reduced to not
larger than twice the column vector length. For the OED
(or CD) associated with a small number of occlusion classes
(or image classes), the dictionary can be shrunk further by
UPIPC. The proposed dictionary compression approaches
facilitate the application of the SDBE_L2-based classifica-
tion scheme to the large-scale datasets with numerous occlu-
sion patterns. The experiments conducted on the large-scale
synthetic occluded image dataset have demonstrated the
effectiveness of the proposed dictionary compression
approaches.

In this paper, although UPIPC can achieved better com-
pression under the specific condition, the adoption of UPIPC
is manually determined. An automatic adoption approach
need to be investigated in the future. In addition, we only
propose the improvements from the perspective of the dic-
tionary generation. Promoting the classification accuracy on
the occluded images from the perspective of the base-CNN
training is deserved investigation in the future. Integrating
the SDBE_L2-based approach into other computer vision
tasks, such as object detection and semantic segmentation,
to improve the performance against the occlusion is also our
future research direction.
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