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ABSTRACT Pairwise constraints could enhance clustering performance in constraint-based clustering
problems, especially when these pairwise constraints are informative. In this paper, a novel active learning
pairwise constraint formulation algorithm would be constructed with aim to formulate informative pairwise
constraints efficiently and economically. This algorithm consists of three phases: Selecting, Exploring and
Consolidating. In Selecting phase, some type of unsupervised clustering algorithm is used to obtain an
informative data set in terms of Shannon entropy. In Exploring phase, some type of farthest-first strategy
is used to construct a series of query with aim to construct clustering skeleton set structure and informative
pairwise constraints are also collected meanwhile based on the informative data set. If the number of skeleton
sets equals the number of clusters, the new algorithm gets into third phase Consolidating; otherwise, it would
finish. In Consolidating phase, non-skeleton points included in the informative data set are used to construct
a series of query with skeleton set representative points constructed in Exploring phase. And some type
of priority principle is proposed to help collect more must-link pairwise constraints. Treat the well-known
MPCK-means (metric pairwise constrained K-means) as the underlying constraint-based semi-supervised
clustering algorithm and data experiment comparison between this new algorithm and its counterparts would

be done. Experiment outcome shows that significant improvement of this new algorithm.

INDEX TERMS Semi-supervised clustering, pairwise constraint, active learning, entropy, skeleton set.

I. INTRODUCTION

In the domain of machine learning, a traditional unsupervised
clustering which classifies samples into different categories
uses only similarity between samples [1]. In general, a super-
vised clustering method has better performance (higher clus-
tering accuracy) than the traditional unsupervised clustering
since the former makes the most of some type of prior infor-
mation [2]. As everyone knows, the process of collecting prior
information is time-consuming and costly. Hence, researchers
are really interested in how to collect prior information effi-
ciently and economically. The type of pairwise constraints [3]
is popular and widely studied. It consists of two categories:
must-link and cannot-link. Must-link constraints stipulate
that two samples involved must simultaneously belong to
some cluster and cannot-link constraints stipulate that two
samples involved must belong to two different clusters.
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Since the type of pairwise constraints contains only must-link
and cannot-link type information but not specific sample tag,
a supervised clustering which is only involved in pairwise
constraints is renamed and called semi-supervised clustering.
Previous study [4]-[9] has shown that pairwise constraints
could enhance clustering accuracy significantly. However,
if pairwise constraints are not properly selected, they may
even degrade the clustering performance [10]. The high cost
and time consumption may be unaffordable in the process
of collecting a large number of pairwise constraints, espe-
cially when the inspection to pairwise constraints is manually
operated. In order to solve this dilemma, a series of active
learning algorithms are proposed with aim to collect pairwise
constraints efficiently and economically. The key point in
these algorithms how to pick the most informative pairwise
constraints and avoid non-informative ones.

Active learning is already studied and used in many fields,
such as image processing [11]-[14], text processing [15]-[18]
and so on [19], [20], while the research of active learning
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in semi-supervised clustering based on pairwise constraints
is relatively limited [21]. In general, existing methods of
selecting pairwise constraints can be roughly divided into
two categories: initial selection [9], [22] and iterative selec-
tion [21]. The first category is that a set of pairwise constraints
is given in advance before executing semi-supervised clus-
tering while pairwise constraints are selected and updated in
each iteration based on already existing clustering outcome
in second category. Apparently, the initial selection is easy to
operate with its weak-point (listed in last paragraph) being
that some pairwise constraints are not properly selected.
At last, this improper selection would result in poor cluster-
ing performance. As expected, the iterative selection could
improve clustering performance since informative pairwise
constraints are more likely to be selected while more com-
puting time is needed. It could be considered that the iterative
selection corresponds to active learning while the initial
selection corresponds to non-active learning.

Zhong et al. [7] has listed two challenges that active learn-
ing faces. The first one is how to precisely generate pairwise
constraints which have significant impact on clustering out-
come. And the second is how to efficiently construct a series
of query which could significantly reduce cost in the process
of manual inspection to judge pairwise constraints.

In this paper, a novel active learning pairwise constraint
formulation algorithm is proposed and it could overcome
these two challenges successfully. Shannon entropy is used
to depict and measure the uncertainty of samples while
some of existing methods use neighborhood-based measure
scheme [21]-[23]. Samples with great uncertainty are most
likely involved in informative pairwise constraints. Hence
these samples could be considered as informative data sam-
ples and we use them directly to construct a series of query in
the new active learning algorithm proposed here. Some type
of farthest-first strategy and priority principle are introduced
with aim to enhance clustering performance and reduce cost
in inspection.

The rest of this paper is organized as follows.
Section II briefly review related work on active learning
for semi-supervised clustering. In Section III, the new pro-
posed active learning algorithm is introduced in details.
In Section IV, empirical data experiment is conducted and
the well-known MPCK-means (Metric Pairwise Constrained
K-means) is used as the underlying constraint-based cluster-
ing algorithm. Experiment outcome shows the improvement
of the proposed active learning algorithm in comparison with
its counterparts. Some conclusion and future research work
is presented in Section V.

Il. RELATED WORK
Active learning has been extensively studied in super-
vised learning problems [11]-[13], [15]-[20], while
in semi-supervised clustering its research is relatively
limited [21].

Basu et al. [9] proposed an active query selection algo-
rithm called Farthest First Query Selection (FFQS) algorithm.
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FFQS consists of two phases: Explore and Consolidate.
In Explore phase, the farthest-first traversal method is pro-
posed with aim to get disjoint non-null clusters (at least
one point per cluster). In Consolidate phase, points which
are not selected in Explore phase are picked randomly with
aim to form query with points in each cluster obtained in
Explore phase until a must-link constraint is confirmed and
collected. Based on FFQS, Mallapragada et al. [22] proposed
amodified version of FFQS called Min-Max and the min-max
criterion is used to replace the random selection strategy
in FFQS.

Xu et al. [24] proposed an active constrained spectral clus-
tering algorithm by identifying boundary and sparse points
based on spectral eigenvectors of the similarity matrix. The
oracle (acting like a library set) is queried with aim to
decide whether pairwise constraint is collected or not. Data
experiment shows that this algorithm is creative and effec-
tive. However it is limited in the case of two clusters prob-
lem and error is considered to happen on only boundary
points.

Huang and Lam [25] constructed an iterative framework
with aim to discover pairwise constraints for semi-supervised
text document clustering. In each iteration, the selection
of pairwise constraints is related to the previous clustering
result. Similar to Huang’s method, Xiong et al. [21] pro-
posed a neighborhood-based framework which focuses on the
uncertainty of data points in terms of to which neighborhood
it belongs rather than pairwise uncertainty. If a parallel query-
ing system is available, these two methods probably could not
use information effectively.

Zhong et al. [7] proposed a novel entropy-based active
informative pairwise constraint formulation algorithm
(AIPC) with aim to collect must-link constraints. AIPC
consists of two phases: Pre-clustering and Marking.
In Pre-clustering phase, some type of unsupervised clustering
is used to get a preliminary membership degree matrix.
In Marking phase, data sample are divided into two categories
(strong and weak) in terms of sample uncertainty and a
querying series is constructed and used to collect must-link
constraints.

Cai et al. [23] proposed an active learning method which
is a modified version of Min-Max algorithm. Both Explore
and Consolidate phases act on an informative data set and the
point with the greatest uncertainty is chosen as the first point
in Explore phase. It is worth mentioning that the uncertainty
measure used in Cai et al. [23] is depicted by point neighbor-
hood defined therein.

Mainly inspired by the work in Zhong et al. [7] and
Cai et al. [23], a novel active learning algorithm would be
proposed in this paper. The entropy-based uncertainty mea-
sure will be used here in order to construct an informa-
tive data set and both cannot-link and must-link pairwise
constraints are collected rather than only must-link type in
Zhong et al. [7]. Both Explore and Consolidate phases [23]
are adopted here and some type of new strategy and prior-
ity principle are introduced with aim to enhance clustering
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TABLE 1. List of abbreviation.

Abbreviation Explanation
FCM Fuzzy c-means clustering
MPCK-means | Metric Pairwise Constrained K-means[4]
FFQS Farthest First Query Selection[9]
Min-Max An improved method of FFQS[22]
AIPC Zhong’s method[7]
M Set of must-link pairs
C Set of cannot-link pairs
NMI Normalized Mutual Information[26]

performance and reduce cost in inspection. The time com-
plexity of this new algorithm is O(n) while that for Cai’s
method [23] is O(n?) (n is the data sample size).

Ill. ACTIVE LEARNING ALGORITHM

In this section, a new active learning pairwise constraint
formulation algorithm based on skeleton sets (ALPCS) would
be constructed with aim to formulate informative pairwise
constraints efficiently and economically. The key point within
ALPCS is how to construct a series of query between pairs
of samples such that the number of queries is small as much
as possible. Firstly, some related mathematical notations and
concepts will be introduced in the following.

A. PRELIMINARY & PROBLEM FORMULATION

Assume the data sample set is X = {xi, ..., x,} containing
n samples with x; being the j-th sample. Denote the set of
cannot-link pairs by C and the set of must-link pairs by M.
Obviously, C and M satisfy the following properties:

o (xj, xx) € M & (x, xp) € M = (x5, x,) € M

o (xj, x) e M & (xi,xp) € C= (x5, xp) €C

Besides similarity between samples, the type of pairwise
(cannot-link & must-link) constraints is another important
information source in semi-supervised clustering problem.
And it could enhance the clustering accuracy rate. How-
ever, not all pairwise constraints play an important role
in semi-supervised clustering problem. Once pairwise con-
straints are incorporated into some unsupervised clustering
(eg. fuzzy c-means clustering, FCM) problem, some pair-
wise constraints may have a significant impact on clustering
outcome while others have little impact. Zhong et al. [7]
has presented detailed explanation on this phenomenon
and divided pairwise constraints into two categories in
terms of their impact on clustering outcome: informative
and non-informative pairwise constraint. In general, non-
informative pairwise constraints are considered to be invalid
and redundant (even harmful) in semi-supervised clustering
problem.

Since the collection of pairwise constraints may be rather
time-consuming and costly, all active learning pairwise
constraint algorithms including ALPCS proposed here are
designed to collect informative pairwise constraints effi-
ciently and economically.
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B. METHODOLOGY

ALPCS consists of three phases: Selecting, Exploring and
Consolidating. In Selecting phase, FCM is used to obtain
an informative data set. In Exploring phase, the point with
greatest uncertainty (Shannon entropy, Definition 1) in the
informative data set is chosen as the first point, and then
the farthest-first strategy (Definition 2 & Definition 3) is
used to construct clustering skeleton sets and collect pairwise
constraints. If the number of skeleton sets equals the num-
ber of clusters, ALPCS gets into third phase Consolidating;
otherwise, ALPCS would finish. In Consolidating phase,
non-skeleton points included in the informative data set are
used to construct a series of query with skeleton set repre-
sentative points. The symmetric relative entropy minimum
priority principle (Definition 4 & Definition 5) is used to
depict the similarity between two points within these queries.
Figure 1 presents the flow chart of ALPCS.

1) SELECTING

Definition 1: Suppose that the data sample set X should be
grouped into c clusters, and {1y}, - - - , [L¢j} is the membership
degree vector of x;j, for j € {1, - - -, n}. This means that j;j is
the probability of x; belonging to the i-th cluster. Define the
Shannon entropy for x; by

c
E(g)=—)_ pylnp. M
i=1
In general, Shannon entropy is used to depict uncertainty
degree of sample point. When p;; = %for allie{l,---,c},
Shannon entropy reaches the maximum

Max(E(xj)) = Inc.

At this time, uncertainty gets its maximum. Generally speak-
ing, the greater Shannon entropy of sample point, the greater
uncertainty.

In Selecting phase, FCM algorithm is used to generate
an informative data set by selecting samples with greater
uncertainty. The objective function of FCM is defined by

c n
Trem(U, VY=Y ufll —vill®

i=1 j=1
¢
S.t. OE/,L,:/SI, ZMU:l
i=1
l<i<ec, 1=<j<n, 2

where m(m > 1) is the degree of fuzziness, ||x; — v;|| rep-
resents the Euclidean distance between x; and v;, U = ;]
is the membership degree matrix and V = [v, va, -+, v¢]
consists of ¢ center v;s of clusters. Using Lagrange multi-
plier method to minimize Jrcys, two iterative equations are
obtained as follows

n m
pB XjlLij

~ m o 3)
21

Vi =
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FIGURE 1. Flow chart of ALPCS.
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Tteration in FCM will terminate when |Jrcy U0 —Jrey @ <
€o (admissible error) or ¢ (number of cycles) reaches the
maximum number 7" of iteration given in advance.

Based on the ultimate membership degree matrix in FCM,
Shannon entropy for all sample points are calculated. Then
sort all sample points in decreasing order in terms of Shannon
entropy, and select the top p x 100% (0 < p < 1) part of
them as the informative data set (S; in Algorithm 1). Both
in Exploring phase and Consolidating phase, this informative
data set is a starting point.

HX,—VkII

2) EXPLORING
In Exploring phase, some type of distance (Definition 2)
between point and set is needed.

Definition 2: Assume a point x and a set Y

{1, ..., yw}. Define the distance between x and Y by
w
i—1 |y — x|
dte. vy = 2= Al 5)
w

where w is the element number (cardinality) of set Y and
[lyj — x|| is the Euclidean distance between y; and x.

Based on Definition 2, Farthest-first strategy is pro-
posed with aim to update skeleton sets in each iteration of
Algorithm 2.

Definition 3: Farthest-first strategy is that the point (from
surplus informative data set) which is farthest away from
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Constraint-based clustering algorithm

Algorithm 1 Selecting
Input: Data sample set X ; the number of clusters c; the max-
imum number of iteration T'; the ratio p of informative
sample points;
Output: Informative data set S 1 ;
1: Initialization: set U = [/Ll ] (some initial membership
degree matrix), the iteratlon number ¢ = 0;
repeat
Update cluster center v;s by (3);
Update membership degree ;s by (4);
Updata iteration number ¢t < ¢ + 1;
until |Jggﬁ,1,) %MI <eort=T
Calculate Shannon entropy for all sample points and sort
them in terms of Shannon entropy in decreasing order;
8: Select the top p x 100 part of all sample points as the
informative data set S;;
9: return S;

already existing skeleton sets is the preferred choice treated
as one point of query series in next iteration.

Based on the informative data set S;, a skeleton set struc-
ture would be constructed in Exploring phase. In this process,
element from S; is chosen one by one as one point of query
series, the informative data set shrinks and skeleton set struc-
ture grows by degrees. Since the farthest point is most likely
to succeed in constructing informative pairwise constraint,
Farthest-first strategy is adopted.

In the process of constructing skeleton set structure, the
point with the greatest uncertainty in Sj is picked up as
the first (initial) point while FFQS [9] selects the first

VOLUME 8, 2020
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point randomly. This manipulation could reduce randomness
and it is reasonable to choose the point with the greatest
uncertainty as the first point since the greatest uncertainty
most likely corresponds to the type of informative pairwise
constraints. Further, by Farthest-first strategy, the point (in
surplus informative data set) which is farthest away from
already existing skeleton sets is selected and used to design
a series of query with all points in already existing skeleton
sets. If these queries are all cannot-link, a new skeleton set
would be constructed and this farthest point is its unique
element. Otherwise, there must be at least one of these queries
which is must-link. Then this farthest point is incorporated
into some existing skeleton set to which this must-link query
corresponds. This process continues until iteration runs out
of its upper limit or ¢ skeleton sets are already constructed.

M N

@ Add x to Ny,

NTVI

Ny Ny Ny

Create a new
neighborhood Ny
and add x to Ny

Ny

Ny

N

Ny

NTYI

Na+1

FIGURE 2. Overview of exploring phase. The solid line indicates must-link
constraint and the dotted line indicates cannot-link constraint.

The key procedure in Algorithm 2 is shown in Figure 2.
Pairwise constraint sets (C and M outputted by Algorithm 2)
are exactly what the constraint-based clustering algorithm
needs in next clustering stage, refer to Figure 1.

3) CONSOLIDATING

If the number of skeleton sets obtained in Exploring phase
equals the cluster number ¢, ALPCS gets into third phase
Consolidating; otherwise, ALPCS would finish in second
phase. Since surplus informative data set S» outputted by
Algorithm 2 maybe include significant information for
informative pairwise constraint, third phase Consolidating is
really needed to dig must-link constraints included in it.

In this phase, a difference measure between membership
vectors of two sample points in each query is needed which
is defined in Definition 4.

Definition 4: Define relative entropy between two sample
point xj and xi by

c
Drr(gll) = Y gl 2L (1 <jik <),
im ik
where uj is the membership degree of the j-th sample belong-
ing to the i-th cluster and i is the membership degree
of the k-th sample belonging to the i-th cluster. Relative
entropy is also called Kullback-Leibler divergence which is
used to depict the difference between two probability distribu-

tions. The greater Dk (xj||x), the greater difference between
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Algorithm 2 Exploring

Input: Informative data set St; the number of clusters c; the
maximum number of queries Q;

Output: A(A < ¢) disjoint skeleton set {N, ;\=1 with at least
one point per set; cannot-link constraint set C; must-link
constraint set M; surplus informative data set S»;

1: Initialization: set {Nt}Lp C and M to null, the iteration
number g = 0;

2: Pick the point x with the greatest uncertainty in Sj, set
A < land Ny < {x}, update S1 < S; — {x};

3: repeat

Pick the point x (€ S1) which is farthest away from
already existing skeleton set {Nt}lkzl;

5: Construct a series of query between x and all points
in already existing skeleton sets;

6: if these queries are all cannot-link then

7: Update . <« A + 1, construct a new skeleton
set N;, = {x}, and add all these cannot-link constraints
into C;

8: else

9: Pick one must-link constraint (recommend the
first one in decreasing uncertainty searching order)
and add x into the existing skeleton set to which this
must-link query corresponds; Add this must-link con-
straint into M;

10: end if
11: Update S| < S1 — {x};
12: Update iteration number g <— g + 1;

13: until Obtain c disjoint skeleton sets with at least one point
persetor g =Q

14: S =87;

15: return {N,}*_,,C, M, $»

=1

xj and xi. Considering the asymmetry property of rela-
tive entropy, symmetric relative entropy is introduced and
defined by

1
Dk (xjllxe) = 5 (Dxr(llx) + Drr. (el ) - (6)

The greater Dsky(xj||xx), the greater difference between
xj and xy.

Based on Definition 4, a priority principle is introduced as
follows.

Definition 5: The symmetric relative entropy minimum
priority principle is that when a non-skeleton set point x in
surplus informative data set S, is judged whether to be added
into a skeleton set or not, y in skeleton sets with minimum
symmetric relative entropy Dsgr (x||y) is the preferred choice
to form a query with x.

Since the number of skeleton sets is ¢ in Consolidating
phase, there are at most ¢ — 1 times needed to determine to
which skeleton set the non-skeleton point from S belongs.
According to the symmetric relative entropy minimum prior-
ity principle, we prefer to choose the point u; that minimizes
the value of Dggr (x, u;) to form a query with x. In each
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iteration, the point x with the greatest uncertainty in updated
surplus informative data set S is selected, and then represen-
tative point u;s in skeleton set {N,}[c=1 which are closest to x
are selected. The technique of choosing representative points
for skeleton sets is motivated by [9], and it could reduce the
number of queries obviously and significantly.

Algorithm 3 Consolidating

Input: Surplus informative data set S»; the number of clus-
ters ¢; the maximum number of queries Q; ¢ disjoint
skeleton set {N;}{_, with at least one point per set;
must-link constraint set M;

Output: Updated must-link constraint set M;

1: Set the iteration number g = 0;

2: repeat

3: Pick the point x (€ S») with the greatest uncertainty;

4 Select representative point u;s for all skeleton set
{N:};_, such that u, is closest to x;

5: Calculate the symmetric relative entropy Dsky (x, u;)
between x and u; (€ N;);

6: Rearrange Dgkyr(x, u;) in increasing order and

denote this sorted entropy series by {Dskr(x, ur;)), -«
Dgkr(x, uy))}s
7: for h=1tocdo
Seek answer to the query (x, Usgy) till must-link is
obtained; and then add this must-link constraint into M
add x into the skeleton set to which this must-link query

corresponds;
9: end for
10: Update S < Sy — {x};
11: Update iteration number g <— g + 1;

12: until ¢ = Q or §; turns into a null set;
13: return M

) () ()
O O KW /) O
Sort the u, in ‘ Query in order O
increasing order until a specific
of Dggr (%, ue) g, is found such
@ U, that (x, uln)e M @

FIGURE 3. Overview of consolidating phase. The arrow indicates the
query and the solid lines indicates must-link constraint.

The key procedure in Algorithm 3 is shown in Figure 3 and
the must-link constraint set M from Algorithm 2 is updated
by Algorithm 3.

IV. EXPERIMENTS

In this section, the well-known MPCK-means (Metric Pair-
wise Constrained K-means) semi-supervised clustering algo-
rithm [4] is used as the underlying constraint-based clustering
algorithm. The performance of ALPCS is evaluated in com-
parison with its related counterparts in six empirical dataset
experiments.
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A. DATASETS

Six benchmark UCI datasets (Iris, Wine, Breast, Heart,
Parkinsons and Ecoli) have been extensively analyzed with
aim to evaluate the performance of constraint-based cluster-
ing algorithms [21], [23]. We also use them to do experiments
in this section. For dataset Ecoli, the smallest three classes
which only contain 2,2 and 5 instances respectively are
deleted in advance. Table 2 lists characteristics of these six
datasets.

TABLE 2. Characteristics of datasets.

Datasets | # of Samples # of Features # of Clusters
Iris 150 4 3
Wine 178 13 3
Breast 683 9 2
Heart 270 12 2
Parkinsons 195 22 2
Ecoli 327 7 5

B. COMPARATIVE METHOD

In order to demonstrate the effectiveness of ALPCS proposed
in this paper, five counterparts are considered here: Random
policy, FFQS [9], Min-Max method [22], Cai’s method [23]
and AIPC [7].

Random policy: points are totally randomly selected in
order to form pairwise constraints and this policy is com-
monly used as comparative baseline in active learning study.

FFQS: two phases (Explore and Consolidate) are included.
In Explore phase, some type of farthest-first strategy is
used to construct disjoint neighborhoods, at least one point
per neighborhood. In Consolidate phase, non-neighborhood
points are selected randomly to form queries with each point
in neighborhoods until a must-link pair is obtained.

Min-Max: this method is a modified version of FFQS.
A type of Min-Max criterion is proposed with aim to replace
the random selection strategy in FFQS.

Cai’s method: this method is a modified version of
Min-Max. A notation of information data set is introduced
and point selection strategy is based on an information
data set.

ATIPC: samples are divided into two categories (weak and
strong) in terms of entropy-based uncertainty. A type of
priority principle is introduced and used to construct queries
between weak and strong points.

C. TIME COMPLEXITY ANALYSIS

ALPCS consists of three phases. The first phase is similar
to Pre-clustering phase in Zhong et al. [7] and the remaining
two phases are similar two phases in Basu et al. [9]. Hence
the time complexity of ALPCS is a compound body of FFQS
and AIPC. Table 3 lists the time complexity of all algo-
rithms involved in this paper. The time complexity for Cai’s
method [23] is O(n?).

VOLUME 8, 2020
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FIGURE 4. NMI values of different methods on six datasets as a function of the number of pairwise queries.

D. EVALUATION CRITERIA

The index NMI (Normalized Mutual Information) is used to
evaluate the clustering assignments against the ground truth
class labels [26]. NMI considers both the actual class label
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and the predicted clustering assignment as random variables
and measures the mutual information between these two ran-
dom variables. It is normalized to a zero-to-one range. If C is
the random variable representing the cluster assignments of
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FIGURE 5. NMI values of different methods on six datasets as a function of the number of pairwise queries.

instances and K is the random variable representing the class

labels of instances, then NMI is defined by
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21(C; K)
NMI =

H(C)+HK)’

where I(C; K) = H(C) — H(C|K) is the mutual information
between these two random variables, H(C) is the entropy of C
and H(C|K) is the the conditional entropy of C given K. The
closer value of NMI to 1, the better clustering performance.
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TABLE 3. The time complexity.

Method Time complexity
ALPCS O(n)
AIPC O(n)
Cai O(n?)
Min-Max O(n)
FFQS O(n)

E. EXPERIMENTAL SETTING

The well-known MPCK-means semi-supervised clustering
algorithm [4] is used as the underlying constraint-based
clustering algorithm after all active learning algorithms
involved here have been executed. The iteration number of
MPCK-means is set to be 100 and other parameters within it
use default values.

In each experiment, around 100 pairwise queries are
collected. The answer for queries is verified by inspec-
tion according to the true class label in each dateset.
Then MPCK-means is used to execute clustering based
on pairwise constraints obtained in active learning stage.
In order to reduce randomness of both active learning
and MPCK-means, 50 independent repetitions are used to
estimate NMI.

The parameter p values in Selecting phase of ALPCS
corresponding to datasets analysed here are listed in Table 4.
ny (the number of points in the informative data set, this is
n; = p x sample size of data set) is chosen such that the
total number of queries obtained in Exploring phase reaches
around 100.

TABLE 4. Values of p given in advance.

Datesets # of Samples ny P
Iris 150 103 0.6867
Wine 178 136 0.7640
Breast 683 103 0.1508
Heart 270 102 0.3778
Parkinsons 195 102 0.5231
Ecoli 327 108 0.3303

For ny, in our experiment, we set the maximum number of
queries to be 100, so n1 should satisfy two conditions: 1) it
can get 100 queries; 2) it is the minimum value that satisfies
condition 1. We use a simple iterative method to calculate ny,
letny =n—i(i=1,2,...,n), when we get a special i1 that
makes n satisfy condition 1, at the same time i; — 1 makes
n1 not satisfy condition 1, then obviously #; also makes n
satisfy condition 2. Finally, after obtaining the definite ny,
we also get the corresponding p.

F. EXPERIMENTAL RESULT

Figure 4 and 5 show the result of experiments: the x-axis is the
number of pairwise queries and the y-axis is the value of NMI.
Each curve denotes the mean of 50 repetitions independently.
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The more pairwise constrains selected by active learning
algorithms except the random policy, the better clustering
performance of MPCK-means. Counterparts in Figure 4 are
four neighborhood-based algorithms (Cai,Min-Max,FFQS
and Random policy) and counterpart in Figure 5 is a recent
entropy-based method (AIPC).

In Figure 4, for Breast, Parkinsons and Ecoli, the perfor-
mance of ALPCS improves significantly with the increase of
the number of pair constraints and is always better than the
other four counterparts. For Iris and Heart, although ALPCS
is not as good as its counterparts under a small number of
pairwise constraints, it shows a better performance under
a large number of pairwise constraints. For Wine, ALPCS
has some fluctuations and is still competitive. Fig. 5 shows
that ALPCS is comparable to AIPC for Iris, Wine and Ecoli
and for Breast, Heart and Parkinsons, ALPCS has better
performance. In a word, ALPCS provides a better (at least
competitive) selection of pairwise constraints in the cluster-
ing process.

It is confirmed that the random policy degrades the clus-
tering performance dramatically as the number of pairwise
constraints increases in four datasets (Breast, Heart, Wine
and Ecoli). This phenomenon has been shown in previous
study and demonstrates the importance of pairwise constraint
proper selection. Of three counterparts (FFQS, Min-Max,
Cai’s method), the performance of Cai’s method is the best
and FFQS is the worst. This is consistent with the relationship
of these three algorithms.

V. CONCLUSION AND FUTURE WORK

In this paper, a new active learning method (ALPCS)
is proposed for semi-supervised clustering. A Shannon
entropy-based uncertainty measure is used here to construct
an informative data set. And some type of strategy and pri-
ority principle are introduced to construct queries between
points in the informative data set and collect two types of pair-
wise constraints with aim to enhance clustering performance
and reduce cost in manual inspection. Data experiment shows
that ALPCS provides a better (at least competitive) selection
of pairwise constraints in the clustering process.

ALPCS is mainly inspired by the work in Zhong et al. [7]
and Cai ef al. [23]. Both cannot-link and must-link pair-
wise constraints are collected by ALPCS rather than
only must-link type by AIPC in Zhong et al. [7]. Further,
the time complexity of ALPCS is O(n) while that for Cai’s
method [23] is O(n?).

In Selecting phase of ALPCS, FCM is recommended
here since its good performance in depicting uncertainty
of samples. There have been some even better alterna-
tives [27]-[31] to FCM which could be used here. Besides,
cross entropy [32], [33] could be used here to replace rela-
tive entropy in Consolidating phase. However, this requires
great difference between different classes otherwise it would
increase cost in manual inspection. The clustering perfor-
mance would be influenced by unbalance and dimension
of data set significantly. As a reviewer pointed out that
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unbalance due to scarcity of samples in some categories could
be alleviated by over-sampling and subrogation methods or
simply using replicates of the original data. These would be
research directions for modified version of ALPCS in the
future.
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