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ABSTRACT With the rapid increase of vehicles, the explosive growth of data flow and the increasing
shortage of spectrum resources, the performance of existing task offloading scheme is poor, and the on-board
terminal can’t achieve efficient computing. Therefore, this article proposes a task offload strategy based on
reinforcement learning computing in edge computing architecture of Internet of vehicles. Firstly, the system
architecture of Internet of vehicles is designed. The Road Side Unit receives the vehicle data in community
and transmits it to Mobile Edge Computing server for data analysis, while the control center collects all
vehicle information. Then, the calculation model, communication model, interference model and privacy
issues are constructed to ensure the rationality of task offloading in Internet of vehicles. Finally, the user cost
function isminimized as objective function, and double-layer deepQ-network in deep reinforcement learning
algorithm is used to solve the problem for real-time change of network state caused by user movement. The
results show that the proposed offloading strategy can achieve fast convergence. Besides, the impact of user
number, vehicle speed and MEC computing power on user cost is the least compared with other offloading
schemes. The task offloading rate of our proposed strategy is the highest with better performance, which is
more suitable for the scenario of Internet of vehicles.

INDEX TERMS Internet of Vehicles, mobile edge computing, task offloading, reinforcement learning,
privacy security.

I. INTRODUCTION
With the development of automobile industry and the
improvement of economic level, the number of automobiles
is increasing. This has caused serious traffic jams and fre-
quent traffic accidents. Thus, people’s demands for car safety
and driving comfort are becoming more and more urgent
[1]. The Internet of Vehicles (IoV) came into being. It has
become a research hotspot that the government, research
institutions and vehicle manufacturing companies pay atten-
tion to together [2], [3]. One of the most important meanings
of IoV is that messages exchanged between vehicles can help
improve road safety.
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IoV technology is a combination of information
technology and transportation. The vehicle is equipped with
an on-board equipment unit with wireless communication,
perception and computing capabilities. Vehicles can com-
municate through wireless transmission [4]. In addition,
the vehicle can also communicate with an RSU. RSU has the
function of providing routing and access network for vehicles.
At present, there are mainly two communication protocols
used in IoV: dedicated short-range communication and cel-
lular network-based wireless communication protocols for
vehicles. Cellular networks can provide vehicles with a wide
range of communications. But the current real-time infor-
mation exchange efficiency is lower than that of dedicated
short-range communication [5].

With the rapid development of in-vehicle equipment and
the increasing amount of data, in-vehicle applications have
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also generated computing needs, such as applications such as
real-time road conditions and automatic identification. These
in-vehicle applications require a lot of computing and storage
resources. And many in-vehicle applications are sensitive
to delay, such as application services such as autonomous
driving and driving safety enhancement. These applications
require a lot of computing resources and have very strict
requirements on time delay. The existing in-vehicle equip-
ment cannot meet these conditions. This brings huge chal-
lenges to IoV in terms of computing and communication
capabilities [6].

Cloud computing can make up for the lack of computing
resources of on-board equipment. However, due to the
huge amount of data transmitted, there will be a large
transmission delay from vehicle-mounted equipment to core
networks. This cannot meet the delay requirements of some
in-vehicle services [7]. To this end, MEC technology is intro-
duced into IoV. It migrates computing and storage capa-
bilities to the scope of access network, and can provide
low-latency, high-bandwidth and real-time network services
[8]. Specifically, the computing tasks of vehicles can be
offloaded toMEC server on RSU, saving a lot of transmission
delay and energy consumption of vehicles. Moreover, the
MEC server has rich computing and storage resources, which
can greatly accelerate the execution speed of computing tasks
and solve the problem of insufficient computing resources of
vehicle itself [9]. However, the complex network scenario of
IoV also brings many problems to the application of MEC
technology. The high-speed mobility of vehicles and the
diversity of offloading methods in IoV make the computing
task offloading strategy more complicated [10]. The move-
ment of vehicles will cause the communication parameters
to change during offloading process, and the impact of cell
handover on offloading needs to be considered. The coexis-
tence of multiple communication modes in IoV makes there
are multiple options for offloading in IoV. Therefore, how to
use a reasonable offloading scheme to efficiently complete
the computing task is a problem worthy of in-depth study.

II. RELATED WORK
In the MEC-based of IoV, due to the limited computing
resources of vehicle itself, in most cases it is insufficient
to support the needs of various computing tasks. Therefore,
offloading computing tasks by vehicles is an effective solu-
tion to this problem. Due to the abundant storage and com-
puting resources on MEC server, the vehicle can offload its
own computing tasks to nearby RSUs where MEC server
is deployed through Vehicle to Infrastructure (V2I) wireless
communication. Then the computing task can be calculated
on MEC server. The total delay of V2I computing task
offloading consists of several parts. The uploading delay of
computing tasks from vehicles to MEC server will occur.
After receiving computing tasks, the MEC server performs
corresponding calculation processing on it, which will cause
calculation execution time delay. When the calculation is
completed, calculation results need to be returned to original

vehicles, and there will be a delay. The traditional V2I
offloading is to transfer the entire computing task to MEC
server for calculation. The continuous connection of vehicles
with the remote will consume a lot of energy, and the upload
of computing tasks and the transmission of calculation results
will also bring a certain delay. The goal of reference [11]
was to minimize the weighted sum of energy consumption
and delay. Each user had multiple tasks, which was more
comprehensive. Reference [12] used game theory to solve
optimization problem and proves the existence of Nash equi-
librium. Reference [13] calculated the theoretical upper limit
of server task processing, and proved that its algorithm can be
very close to theoretical value. It transformed the non-convex
quadratic function under quadratic constraint condition into a
separable semi-definite programming problem by relaxation
techniques. Reference [14] proposed a compromise solution.
A part of tasks can be processed locally and then offloaded to
cloud to execute the remaining part. Reference [15] proposed
a collaboration method based on MEC and cloud computing.
This method offloaded services in vehicle network to the
car. By joint optimization of computing offloading decision-
making and computing resource allocation, the problem of
cloud-MEC collaborative computing offloading was pro-
posed. The simulation results showed that the algorithm can
effectively improve the practicability and calculation time of
system, especially for the case where MEC server cannot
meet the demand due to insufficient computing resources.

In order to minimize the energy consumption of smart
devices, it was necessary to jointly optimize offloading
options for wireless resource allocation and computing
resource allocation [16]. Reference [17] proposed a ran-
dom mixed integer nonlinear programming problem. This
problem was based on joint optimization of task distribu-
tion decision-making, flexible computing resource schedul-
ing and radio resource allocation. To solve this problem,
Lyapunov optimization theory was introduced to decompose
the original problem into four separate sub-problems. These
sub-problems were solved by convex decomposition method
and matching game, theoretically analyzed the trade-off
between energy efficiency and service delay. The simulation
results also verify the superiority of proposed task sharing and
resource allocation scheme in C-RAN. Reference [13] pro-
posed a new architecture. This architecture can dynamically
orchestrate edge computing and caching resources by making
full use of AI-based algorithms, thereby improving system
practicability. And it developed a joint edge computing and
caching scheme to maximize the practicability of system.
They developed a novel resource management scheme by
using deep reinforcement learning. Numerical results proved
the effectiveness of this scheme. Reference [18] transformed
the calculation of shunt formula into an optimization problem
to minimize the cost of shunting. At the same time it provided
performance guarantee. On the basis of random optimization,
a Dynamic Computation Offloading Algorithm (DCOA) was
proposed, which decomposed the optimization problem into
a series of sub-problems, and solved these sub-problems in
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parallel in an online and distributed manner. Experimental
evaluation showed that DCOA can be a trade-off between
offloading cost and performance.

The vehicle itself has certain computing resources. Thus,
Vehicle to Vehicle (V2V) communicationmethod can be used
to offload computing tasks to other idle vehicles. Performing
task calculations on idle vehicles was equivalent to treating
those vehicles with idle resources as edge devices similar
to MEC servers [19]. The computing resources of vehi-
cles are very limited compared to MEC server. Therefore,
the V2V offloading method is suitable for small comput-
ing tasks, or sharing a small part of large computing tasks.
The V2V offloading method can improve the utilization of
computing resources, make reasonable use of idle computing
resources, and also reduce the pressure on RSU. Reference
[20] proposed an event-triggered dynamic task allocation
framework based on linear programming optimization and
binary particle swarm optimization. In order to evaluate the
effectiveness of Folo, the mobility of fog nodes at different
times of the day was simulated based on realistic taxi tra-
jectories. Two representative tasks were performed, including
video streaming and real-time object recognition.

The V2V computing task offloading process includes three
processes: the transmission of computing tasks, the execu-
tion of calculation and the return of calculation result. The
transmission of computing tasks and the return of calculation
results both use V2V communication mode [21]. V2V com-
munication is to establish a mobile network between moving
vehicles, turning each participating vehicle into a wireless
router or node. The general V2V communication range is
about 100 meters to 300 meters. Vehicles within the V2V
communication range can be connected to each other and
create a larger VANET network. Reference [22] proposed
a context-aware communication method to use edge com-
puting technology to effectively integrate different licensed
and unlicensed spectrum. At the same time, it effectively
combined route aggregation, data caching, and decentral-
ized calculation methods to compensate for limited wire-
less resources. In order to improve the routing performance
of multi-hop broadcast and multi-hop unicast communica-
tion, asynchronous multi-hop broadcast and asynchronous
multi-hop unicast schemes are introduced.

With the popularization of 5G networks, the data in IoV
has increased sharply, and computing resources have become
increasingly tight. The above offloading strategies and com-
munication methods can no longer fully adapt to the devel-
opment of modern IoV. To this end, a task offloading strategy
based on reinforcement learning computing in the edge com-
puting architecture of IoV is proposed. The innovations are
summarized as follows:

1) In order to improve offloading efficiency, the IoV system
architecture is designed, and the IoV is divided into various
communities. The RSU of cells receives internal vehicle
information and transmits it to MEC server for data analysis.
The control center gathers all vehicle information and makes
full use of local and MEC computing resources of vehicles.

FIGURE 1. Overall framework of IoV system.

2) Due to the complex structure of IoV, the proposed task
offloading strategy constructs a calculation model, a commu-
nicationmodel, an interferencemode and a privacy protection
model. On this basis, the user cost function is minimized as
objective function. And we use deep reinforcement learn-
ing algorithm to solve it in order to achieve efficient task
offloading.

2) Considering that the mobility of IoV users may lead
to changes in cells where the user is located. And with
the increase of users, action space will also increase expo-
nentially. Thus, our proposed strategy adopts Double Deep
Q-Network (Double DQN) to solve task offloading problem
to overcome the real-time change of network status caused
by user movement, which improves the convergence of this
strategy.

III. SYSTEM MODEL AND PROBLEM MODELING
A. SYSTEM MODEL
The mentioned IoV system scenario is a one-way straight
road with RSUs deployed along one side of roads, as shown
in Fig.1. It is assumed that the roadside base station is a
micro cell with a coverage radius of about 200 meters. The
radius of micro cells is represented by r , and the vertical
distance from the center of corresponding cell to the road
is represented by d . Each RSU is equipped with a MEC
server. Moving vehicles may transfer their computing tasks
to the RSU closest to them. MEC server provides complex
computing services for computing tasks transmitted to RSU
[23]. There is a control center in the access network to obtain
information about base stations andMEC servers in each cell.
Vehicles can obtain information about the cell in front of it
through this control center.

There may be many vehicles in a cell within its
communication coverage area. For convenience, use v to
identify vehicle v. The vehicle that has a computing task to
be offloaded is designated as the source vehicle, which is
represented by symbol v. During V2V offloading process,
the computing task may go through multiple hops from v and
finally complete the computing service on a certain vehicle.
The vehicle that completes computing tasks is set as the target
vehicle, which is represented by symbol v.
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Through the known RSU coverage radius v and vertical
distance v from the center of cells to the road, total distance
v traveled by vehicles in the coverage of a single cell can be
calculated:

s = 2
√
r2 − d2 (1)

The dwell time v of vehicles within the coverage of a single
RSU can be expressed as:

tb = s/vs (2)

In the formula, parameter v represents the speed of source
vehicle v. In the set scene, the vehicles each travel at a
constant speed.

B. CALCULATION MODEL
1) LOCAL CALCULATION MODE
If IoV user v chooses to perform task v locally, define v as
the user’s local computing power. Therefore, local calculation
time consumes v:

t lv =
M∑
m=1

(
1− dv,m

)
bv

clv
, ∀v ∈ V (3)

In the formula, v is the path loss calculated locally by vehicles,
and v is the amount of data transmitted.

For local calculations, in order to calculate the energy
consumption of connected car users, the energy consump-
tion v per revolution of computer CPU is used. v represents
the energy consumption coefficient, and v represents the
frequency of CPU. Therefore, the locally calculated energy
consumption v:

elv =
M∑
m=1

(
1− dv,m

)
κ
(
f lv
)2
bv (4)

Thus, the cost function v of vehicle network user v on the local
computer can be expressed as:

C l
v = t lv + e

l
v (5)

2) TASK OFFLOADING MODE
The task offloading mode mainly includes three stages: task
transmission stage, task calculation stage and task result
return stage [24]. In the task transmission stage, according
to the system model, IoV users multiplex cellular channel
to transmit tasks to MEC server. Co-channel interference
in a small area needs to be considered. Since multi-cell
scenarios are considered, users in adjacent cells will also
cause inter-cell interference. Define the transmission power
allocation strategy of IoV users as v. According to Shannon’s
theorem, the expression of task transmission rate v of vehicle
network user v can be derived:

vt = B log

(
1+

pvγv∑V
i=1,i 6=v ϕipiγi + puγu + ρ

2

)
(6)

In the formula, v represents the transmission power of vehicle
network user v, and v represents the channel gain of uplink
transmission channel. v represents whether user v and user v
share a channel, if they share v, otherwise v. v represents the

transmission power of other IoV users, and v represents the
channel gain of other users’ uplink transmission channels. v
represents the transmit power of cellular user, and v represents
the channel gain of uplink channel of the cellular user. v
represents the power spectral density of white noise.

The IoV channel model uses Rayleigh fading model.
Since the mobility of vehicles will greatly affect the distance
between senders and receivers, the channel gain v can
be derived by estimating the change between senders and
receivers by speed.∣∣γi,j∣∣2 = G ·

∣∣di,j + vi,j · tw∣∣−a · |γ0|2 (7)

In the formula, v is the antenna gain, v is the distance between
senders and receivers, and v is the relative speed between
senders and receivers. v is the time interval between data
preparation and actual antenna transmission, and v represents
Rayleigh fading.

Then the task transmission process time consumption v:

t tv =
M∑
m=1

dv,mbv
vt

, ∀v ∈ V (8)

For task calculation phase, MEC server on each base station
side can provide computing offloading services to multiple
users at the same time [25]. After receiving the offloaded
task, the server will perform computing tasks and transmit
calculation results to users after the calculation is completed.
The computing resource allocation strategy is defined as v,
where v represents the computing power allocated after user v
is offloaded to MEC server m. Therefore, a feasible comput-
ing resource allocation strategy must satisfy the computing
resource constraints:

V∑
v=1

cm,v ≤ cm,∀m ∈ M (9)

In the formula, v represents the remaining computing power
of MEC server. Using the computing resources allocated by
MEC server, the time consumption v for MEC to execute the
machine loss task can be calculated:

tev =
M∑
m=1

dv,mbv
cm,v

, ∀v ∈ V (10)

For the task calculation result return stage, the downlink
transmission rate is generally higher. Secondly, the calcula-
tion result is generally much smaller than uploaded task data.
Therefore, the delay at this stage is negligible. Therefore,
the time consumption v and energy consumption v of the
task offloading phase of task v of connected car user can be
expressed as:

T uv = t tv + t
e
v

Euv = pv
(
tuv + t

e
v
)

(11)

At the same time, the cost function Cu
v of IoV user v in task

offloading stage can be derived:

Cu
v = T uv + E

u
v (12)
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Through the derivation of previous task model, the total cost
function υ for local computing mode car users and task
offloading computing mode users is expressed as follows:

Cs =
V∑
v=1

(
C l
v + C

u
v

)
(13)

C. COMMUNICATION MODEL
The communication between vehicles and RSU is carried
out through LTE-Advanced direct link. The upload link from
vehicles to RSUs is set as a frequency-flattened block fading
Rayleigh channel [26]. The path loss between vehicles and
RSUs can be represented by the model υ. The parameter υ
here is the distance between vehicle υ and the center of the
coverage area of RSUs, and the parameter υ is the path loss
factor. In addition, the channel fading factor of upload link is
represented by the symbol d1, and the Gaussian white noise
power is represented by symbol d1. According to Shannon’s
formula, the data transmission rate of upload link can be
calculated as:

vVR = BVR log2

(
1+

Ptd
−v
1 τ 2

N0

)
(14)

In the formula, d1 represents the bandwidth of upload
channel, and the parameter d1 represents the transmission
power of vehicle-mounted device.

In the set scene, all vehicles travel at a constant speed. The
speed of vehicle d1 is represented by symbol d1. The mobility
of vehicles will cause the distance d1 between vehicles and
the center of the coverage area of RSUs to change with time,
and the change rule is expressed as:

d1 (t) =

√
l2 +

( s
2
− vsat

)2
(15)

In the formula, vsa is the driving speed of source vehicle Vs.
Therefore, the data rate vVR of upload link changes over

time. This change is caused by the mobility of vehicle and can
be expressed as vVR (t). The vehicle stays within the coverage
of connected RSU. The average upload rate of tb during this
period can be expressed as:

vVR =

∫ tb
0 vVR (t) dt

tb
(16)

In order to simplify the problem, the average upload rate
represents data transmission rate at which source vehicle
offloads computing tasks to MEC server in the cell during
offloading process.

In addition, in V2V communication network, the
communication between V2V uses IEEE802.11p protocol in
the DSRC communication method. The maximum communi-
cation range is indicated by symbol dr . The communication
channel between vehicles uses a simple independent and
identically distributed channel, and the path loss can be
defined as:

ldBV2V = 63.3+ 17.7 log10
(
di,j
)

0 ≤ di,j ≤ dr (17)

In the formula, parameter di,j represents the communication
distance between any vehicle Vi and Vj.

Since the vehicles in the research scene travel at a constant
speed at their respective speeds, different speed values
between vehicles will produce a relative speed between vehi-
cles. The relative speed between vehicles Vi and Vj is rep-
resented by symbol vi,jre . In order to simplify the research
problem, it is assumed that the relative vehicle speed VM has
a very small effect on the path loss value, which can be
ignored [27].

In the scene, V2V communication uses orthogonal
frequencies to reduce the mutual influence between vehi-
cles. The communication bandwidth of V2V is denoted by
BV2V . Therefore, the data transmission rate between any two
communicable vehicles Vi and Vj can be expressed as:

vi,jV2V = BV2V log2

(
1+

Pt lV2V τ 2

N0

)
(18)

D. INTERFERENCE MODEL
Communication resources refer to the time-frequency blocks
required to transmit signals. In order to reduce the complexity
of communication resource allocation, the communication
resources used in V2V communication are isolated from
common user equipment. We use pair to represent a V2V
communication pair. Assume that different V2V resources
are independent of each other. In order to utilize commu-
nication resources as much as possible, V2V communica-
tion allows spatial multiplexing. That is, different pair use
the same V2V communication resources to communicate.
At the same time, it is assumed that the unit communication
resource can meet V2V data transmission demand in the
edge computing of vehicles. Thus, a V2V communication
resource needs to be allocated to each pair . But communi-
cation resources can be allocated repeatedly [28]. If two pair
use the same V2V communication resource, interference will
occur between them. In such scenarios, due to the mutual
interference of multiple V2V communications, the Signal
to Interference plus Noise Ratio (SINR) is a decisive factor
affecting the quality of V2V communications. It is equal to
the effective received signal power divided by interference
signal power plus the noise power, expressed as follows:

ϑ =
S

I + N0
(19)

In the formula, S represents the received signal power, I
represents the interference signal power, and N0 represents
the noise power.

For a V2V communication pair pairs, use dss to represent
the distance between its sender and receiver. dss represents the
V2V communication channel, Pt represents the transmission
power, and α represents the path loss index. Then the received
signal power Ss of pairs is:

Ss = Ptd−αss Hss
Hss = |hss|2 (20)
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For pairs and paird , dsd is used to indicate the distance
between the sender of paird and the receiver of pairs.
Assuming that the set of pairs that use the same communi-
cation resources as pair is 2s, the interference Is at Is =∑
d∈2s

Ptd
−α
sd Hsd is:

Is =
∑
d∈2s

Ptd
−α
sd Hsd (21)

Then the SINR of pairs is:

ϑs =
Ptd−αss Hss∑

d∈2s
Ptd
−α
sd Hsd + N0

(22)

In order to ensure the success of V2V communication,
the SINR of received signal must be greater than or equal to
a threshold Vi.

E. CONDITIONAL PRIVACY PROTECTION OF VEHICLE
IDENTITY
In the process of communicating with other entities of IoV,
vehicle Vi does not use its real identity, but its pseudonym
PIDi =

{
PID1

i ,PID
2
i

}
. Among them PID1

i = ri · P,
PID2

i = RID ⊕ h
(
ri · Ppud

)
. According to the discrete log-

arithm problem, other vehicles cannot obtain the private key
ri of vehicle Vi when PID1

i and P are known. At the same
time, because ri is stored in the vehicle securitymanager, even
vehicle Vi itself cannot leak ri. Therefore, for vehicles other
than pseudonymous owner, the true identity corresponding
to pseudonym cannot be obtained based on the pseudonym
received and known public information [29]. In order to be
able to hold a malicious vehicle accountable, it is necessary
to have the ability to trace the true identity of vehicles. If you
need to trace the true identity of vehicles, first find the corre-
sponding pseudonym PIDi =

{
PID1

i ,PID
2
i

}
in the message

sent by Vi. Get ri true identity according to the equation:

PID2
i ⊕ h

(
s · PID1

i

)
= RID⊕ h

(
ri · Ppub

)
⊕ h (s · ri · P)

= RID⊕ h
(
ri · Ppub

)
⊕ h

(
ri · Ppub

)
= RID

In order to ensure the timeliness of messages, after receiving
a message, the message receiver first checks whether the
message has expired [30]. Let tr denote the time when the
message was received, and t denote timestamp contained
in the message. 1t1 represents the time difference between
the message sending vehicle clock and system clock, and
1t2 represents the estimated network delay. If |tr − t| <
1t1+1t2 is satisfied, then the receiver receives this message.
Otherwise, the message is expired and receiver rejects the
message.

IV. RESOURCE ALLOCATION BASED ON DEEP
REINFORCEMENT LEARING
A. DEEP REINFORCEMENT LEARING THEORY
Reinforcement learning is a kind of machine learning. Agents
use reinforcement learning to find an effective strategy when
solving sequential decision problems. This strategy deter-
mines how the Agent should make the best choice in each

FIGURE 2. The framework of reinforcement learning.

state it may encounter. Unlike supervised learning, the agent
cannot determine whether the behavior is correct or not.
Instead, a reward signal represented by a value is used. The
current behavior of the agent not only affects the instanta-
neous reward it receives, but also affects the next state or
future reward [31]. Therefore, the strategy sought by a rein-
forcement learning agent is not to maximize instant rewards,
but to maximize the sum of rewards over a period of time.
Reinforcement learning is an important learning tool. Inmany
cases, acting on the Agent to make it more adaptive (such as
robot control, system optimization, etc.). Generally speaking,
if the ultimate goal of reinforcement learning is provided,
the agent can automatically learn how to change itself to the
greatest extent to achieve the ultimate goal [32].

The standard reinforcement learning framework is that the
agent continuously interacts with its environment in discrete
time. It is mainly composed of four elements: reward and pun-
ishment feedback function, value function, strategy selection
and interactive environment, as shown in Fig.2.

At each time t , the current environment state st ∈ S
perceived by the Agent. Where S is the sum of all possible
states, and then take some action at ∈ A, where A is the
set of all possible actions. The environment will feed back
a reward signal rt+1 ∈ R and a new arrival state st+1. It is
usually assumed that the state space is decomposable, namely
si = (x1, x2, . . . , xn) ∈ Rn. At the same time, it is also
assumed that the environment satisfies the Markov property,
that is, a given state. The reward is only determined by the
previous actions and status, which is:

Pr
{
st+1=s′, rt+1=r |st , at , rt , st−1, at−1, . . . , r1, s0, a0

}
= Pr

{
st+1 = s′, rt+1=r |st , at

}
(23)

MarkovDecision Processes (MDP) refers to the reinforcement
learning process that satisfies the Markov property. It can be
described as a four-tuple (S,A,P,R), P : S×A×S → [0, 1],
representing the probability of arrival between states:

P
(
s, a, s′

)
= Pr =

{
st+1 = s′ |st = s, at = a

}
(24)

R : S×A×S → R is the designated expected instant reward:

R
(
s, a, s′

)
= E

{
rt+1

∣∣st = s, at = a, st+1 = s′
}

(25)

Agent’s goal is to maximize the sum of future discount
rewards over a period of time. Time t is

∑
∞

k=0 ν
krt+k+1,

where ν ∈ [0, 1] is the discount parameter. In order to
maximize this formula, a strategy π : S 7→ A must be
learned, and π (s) specifies the action selected in state s [33].
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Each strategy has an associated state value function V π :
S 7→ R. Each strategy also has an action value function
Qπ : S × A 7→ R, which specifies the expected long-term
discount reward obtained after the a action and the strategy π
are selected in the state s:

Qπ (s, a) = E

{
∞∑
k=0

νkrt+k+1 |π, st = s, at = a

}
(26)

There is an optimal action value function Q∗ (s, a) =
maxπ Qπ (s, a), and there is an optimal strategy π∗ such that:

π∗ (s) = argmax
a
Q∗ (s, a)

= argmaxa
∑
s′
P
(
s, a, s′

) [
R
(
s, a, s′

)
+ νV ∗

(
s′
)]
(27)

The goal of reinforcement learning is to find the optimalπ∗ or
the optimal π∗ after all. As a commonly used reinforcement
learning method, Q-learning algorithm is characterized by
time series learning of offline strategies. The Q-learning algo-
rithm uses the state-action reward value and Q∗ (s, a) as the
estimation function during the iterative update, instead of the
V (s) and state rewards in the temporal difference algorithm
[34]. To ensure convergence, each action must be traversed in
each iteration of the calculation. The theoretical calculation
is:

Q∗ (s, a)

= ν
∑
s∈S ′

P
(
s, a, s′

) (
r
(
s, a, s′

)
+max

a′
Q∗
(
s′, a′

))
(28)

Q (st , at)

= Q (st , at)+ α
(
rt+1 + νmax

a
Q (st+1, a)− Q (st , at)

)
(29)

Among them, Q∗ (s, a) is the sum of the maximum reward
discounts that can be obtained by taking action a in state s.
It can be concluded that choosing the action that maximizes
the value of Q in state s will be the optimal strategy.
The Q-learning algorithm is an effective algorithm that

is not related to the model. It does not depend on the opti-
mal selection strategy of the model, but only depends on
the greedy strategy to select actions. Therefore, effective
convergence can be guaranteed.

B. RESOURCE ALLOCATION BASED ON DOUBLE DQN
In order to solve the problem of limited capacity and high
latency of a singleMEC server, consider an IoV scenario with
multiple MEC servers in multiple cells. Compared with the
traditional static user scene, this dynamic scene makes the
problem more complicated. And the task offloading problem
is a mixed integer nonlinear programming. Traditional opti-
mizationmethods or heuristic algorithms can only obtain sub-
optimal solutions to the problem [35]. Considering the user’s
mobility, dynamic scenarios, andmore complexmodels, deep
reinforcement learning is proposed to solve the problem. The
centralized control distribution method is adopted, and the

controller of the multi-MEC server located in the core net-
work is used as an intelligent body. The controller coordinates
MEC servers of all cells. Because reinforcement learning is
model-free. First, the problem needs to be modeled based on
three elements except the state transition probability.
(1) Status: The status of each time slot is set to the

computing power that each MEC server has at the beginning
of this time slot. That is, the remaining computing power
of MEC server. Because the size of the tasks performed by
MEC server is different, the computing power allocated to
each task is also different. This leads to differences in the
remaining computing power of MEC server after a time slot
ends. In addition, the computing power of each time slot of
MEC server is only related to the remaining computing power
of the previous time slot and the computing power released
after the previous time slot is calculated. This state change
satisfies the Markov property. Therefore, the state space S is
defined as follows:

S (t) = {s1 (t) , · · · si (t) · · · sM (t)} (30)

In the formula, S (t) is the state space of the t time slot. si (t)
represents the computing power of the i MEC server at the
beginning of the t time slot.
(2) Action: The core of Double DQN is the Q-learning

algorithm. In order to avoid the continuous action causing
the action space to be too large, the action is discretized.
According to the modeling problem, the variables to be opti-
mized mainly include the offloading decision of the user
task of the connected car, the transmission power and the
computing power allocated to the user by MEC. In the multi-
cell scenario, there are three calculationmodes for the tasks of
IoV user: local calculation, offloading to MEC server of the
cell for calculation, and offloading to theMEC server of other
nearby cells for calculation. In order to show the offloading
scheme of the agent more intuitively, define the action vector
as A:

A (t) = {�, c1, · · · , ci, · · · , cN , p1, · · · , pi, · · · pN } (31)

In the formula,� is the offloading decision vector of the user
task, which describes the offloading decision of the user task.
ci represents the computing power allocated by MEC server
for the i user. pi represents the transmission power of the i
IoV user.
(3) Reward: The agent expresses the degree of satisfaction

with the action through the expected value of the reward
over a period of time. Combined with the objective function
Cs, the goal of the original problem is to minimize the cost
function. The goal of reinforcement learning is to maximize
immediate rewards. Considering that the immediate reward
and the cost function of this article are negatively correlated,
the immediate reward function is defined as follows:

R (s, a) =
Cl − Cs (s, a)

Cl
(32)

In the formula, R (s, a) represents the immediate reward for
choosing action a in state s. Cl represents the cost of all
tasks calculated locally, which can be understood as the upper
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limit of the cost function. Cs (s, a) represents the cost of s
performing action a when the current time slot is in the state.

Then the long-term cumulative discount reward value
Q (s, a) of the original problem is expressed as follows:

Qπ (s, a) = Eπ

[
T∑
t=1

β t−1R (t)

]

= Eπ

[
T∑
t=1

β t−1
Cl − Cs (t)

Cl

]
(33)

Rewrite the above formula through Bellman optimization
function:

Qπ (s, a) = (1− α)Qπ (s, a)

+α

(
R (s, a)+ β max

a′
Qπ

(
s′, a′

))
(34)

For MEC controller, the purpose of learning is to find a
strategy to maximize long-term accumulated rewards:

π∗ = argmax
a∈A

Qπ (s, a) (35)

In order to fully explore the action space, the ε greedy
algorithm in exploration and utilization is adopted. The ε
greedy method is based on probability to compromise explo-
ration and utilization. That is, every time you try, explore
with the probability of ε and use it with the probability of
1 − ε. MEC controller will randomly generate a value φ
between (0, 1) during the training process. When φ is greater
than ε, MEC controller will randomly select a strategy from
the action space to explore the action space a. Otherwise,
MEC controller selects the strategy with the largest R (s, a)
in the current state through the Double DQN network.

Although the action has been discretized, the action strat-
egy assigned by the centralized controller covers all action
possibilities. This may include multiple non-existent situa-
tions. The proposed strategy filters the action space after
the completion of the construction of the action space, and
eliminates impossible situations. This further reduces the
action space, speeds up the training, and reduces the training
delay [36]. In addition, due to the mobility of connected
car users, the cell where the user is located may change.
And with the increase of users, the action space will also
increase exponentially. Therefore, a certain amount of pre-
processing was carried out for this situation. For vehicle
network user v, if the time delay t lv ≤ Tmax

v is calculated
locally, the task will be calculated locally. Otherwise, it will
choose to offload to MEC server for calculation. Through a
series of data preprocessing, the increase of action space can
be well controlled.

The task offloading and resource allocation process based
on Double DQN is shown in Fig.3.

V. EXPERIMENT SCHEME AND RESULT ANALYSIS
In the experiment, we consider the scenario of multiple cells
with multiple MEC servers, where each cell deploys one
MEC server. And IoV users in the community are evenly
distributed. In addition, the centralized controller deployed

FIGURE 3. Task offloading and resource allocation process based on
Double DQN.

TABLE 1. Simulation parameters.

in the core network can schedule all base stations and MEC
servers. The proposed task offloading strategy is deployed
in a centralized controller. The actual scenario uses offline
training and online resource scheduling. The specific sim-
ulation parameters are shown in Table 1. These parameters
are obtained from the experience of many experiments, and a
large number of similar cases have been referred to.

A. CONVERGENCE ANALYSIS
For comparison and explanation, three other offloading
schemes are introduced, namely, user tasks are only calcu-
lated locally, user tasks are only offloaded in the cell (local
and cell MEC servers), and user tasks are randomly offloaded
(local and cell MEC). Server and nearby community MEC
server). In order to simplify the description, use all local, local
offloading, and random offloading respectively.

Since different learning rates will affect the convergence
of the algorithm, the convergence curve of the reward value
under different learning rates in the Double DQN algorithm
is shown in Fig.4.

As can be seen from the above figure, when the learning
rate is 0.1, the convergence speed is the fastest. When the
number of iterations is 450, the reward value gradually con-
verges to 0.42. When the learning rate is 0.01, when the
number of iterations is 600, it gradually converges to 0.4.
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FIGURE 4. Convergence of reward value under different learning rates.

FIGURE 5. The influence of the number of IoV users on cost function.

When the learning rate is 0.001, when the number of itera-
tions is 800, it gradually converges to 0.39. The smaller the
learning rate, the easier it is to fall into a local optimal solu-
tion. Conversely, if the learning rate is too large, the reward
valuemay not converge. It is observed through simulation that
the learning rate of 0.1 is the best.

B. IMPACT ANALYSIS FOR DIFFERENT FACTORS ON
COST FUNCTION
1) IMPACT OF THE NUMBER OF USERS ON COST FUNCTION
The relationship between the number of different users and
the cost function is shown in Fig.5

As can be seen from the above figure, as the number of
user increases, the cost functions of the four schemes also
increase. The proposed resource allocation scheme based
on Double DQN is superior to the scheme in which tasks
are only offloaded in the cell. When the number of users
is small, the gap between the two is small. But with the
gradual increase in the number of users, the cost gap between
the two allocation schemes has gradually increased. When
the number of users is 9, it can be seen that the Double

FIGURE 6. Influence of MEC capacity on cost function.

DQN solution reduces the cost by about 29% compared to
the offloading solution in this cell alone. Mainly because
the number of users gradually increased and the task was
only offloaded in the cell, the load on MEC server gradually
increased. The proposed strategy can offload tasks to nearby
MEC servers to achieve load balancing of the entire network
environment.

2) IMPACT OF MEC CAPACITY ON COST FUNCTION
The relationship between the maximum computing capacity
of MEC server and the cost function is shown in Fig.6.

Since the solution where tasks are all calculated locally
does not involve MEC server, the cost remains unchanged.
The random offloading scheme has random resource allo-
cation, so the cost will fluctuate greatly. The cost of the
proposed task offloading solution based on Double DQN
and the task offloading solution only in the cell gradually
decreases with the increase of MEC server capacity. When
the computing power of MEC server is 4GHz/s, the task
offloading solution based on Double DQN reduces the cost
by about 15% compared to the offloading solution in this
cell only. However, as the capacity of MEC server increases,
the gap between the proposed scheme and the task of only
offloading in the cell gradually decreases. This is mainly
because the resources of MEC server are sufficient to meet
the task requirements of the current cell.

3) IMPACT OF VEHICLE SPEED ON COST FUNCTION
Speed itself is not a variable to optimize the original problem.
However, the change in the speed of vehicles will cause
changes in the channel conditions, which will affect the
delay and energy consumption in the transmission phase.
Therefore, the cost of the system will gradually increase as
the moving speed of vehicles increases. Then the relation-
ship between vehicles moving speed and the cost function is
shown in Fig.7.

As can be seen from the above figure, the local calculation
scheme of the task does not involve data transmission, so the
cost remains unchanged. The random offloading scheme
is completely random, so the cost will fluctuate greatly.
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FIGURE 7. Influence of vehicle speed on cost function.

FIGURE 8. Convergence of different offloading strategies.

The proposed task offloading scheme based on Double DQN
has the lowest cost. And it is about 12% lower than the cost
of offloading only in this cell.

C. COMPARATIVE ANALYSIS WITH OTHER OFFLOADING
STRATEGIES
In order to demonstrate the performance of the proposed
task offloading strategy, it is compared with the strategies
in reference [15], reference [13], and reference [20]. The
convergence curve of the cost function of various offloading
strategies with the number of iterations is shown in Fig.8.

As can be seen from the above figure, after 500 iterations,
the cost function gradually converges to about 5.6. It can be
seen that the image convergence has certain fluctuations. The
main reason is that the amount of task data for each user
is different, and the remaining computing power of MEC
server in each time slot is different. Therefore, there will be
certain fluctuations in the calculation of the cost function.
In addition, the offloading strategies in reference [15], refer-
ence [13] and reference [20] are compared. It can be clearly
observed that the cost function of Double DQN is better than
the other three. Mainly because the Double DQN algorithm

FIGURE 9. Comparison of offloading rates of different strategies.

solves the problem of overestimation by improving the loss
function.

In addition, the comparison result of the offloading rate of
different offloading strategies is shown in Fig.9.

As can be seen from the above figure, the offloading rate
decreases with the increase of data. This means that a large
amount of data may make offloading difficult. But the pro-
posed strategy uses Double DQN to perform optimal task
offloading. Comparedwith other strategies, its offloading rate
is the highest. Reference [15] offloaded the service in the
vehicle network to the car based on the collaboration method
of MEC and cloud computing. However, the local calculation
of vehicles is not considered, so the offloading rate is low.
Reference [13] developed a joint edge computing and caching
scheme, and used deep reinforcement learning to realize com-
puting resourcemanagement. However, the resources of vehi-
cles itself and edge nodes are not fully utilized. Therefore,
the offloading rate is not ideal. Reference [20] uses linear
programming optimization and binary particle swarm opti-
mization to trigger dynamic task allocation, and considers
the mobility of vehicles. But the use of fog node resources
is not ideal. Therefore, the offloading rate is lower than the
proposed strategy.

VI. CONCLUSION
With the continuous development of IoV technology, new
IoV service applications continue to emerge. The application
range of IoV has also been extensively expanded. Research
hotspots such as smart cities and smart transportation are
inseparable from driving networking technology, and IoV
data has also shown explosive growth. This puts a lot of
pressure on the existing IoV and core networks. In order
to relieve the pressure on core network and meet the strict
latency requirements of IoV applications, a task offload-
ing strategy based on reinforcement learning computing in
IoV edge computing architecture is proposed. Based on the
designed system architecture of IoV, the calculation model,
communication model, interference model and correspond-
ing privacy protection model of task offloading strategy are

173788 VOLUME 8, 2020



K. Wang et al.: Task Offloading Strategy Based on Reinforcement Learning Computing

constructed. Moreover, user cost function is minimized the
objective function. Double DQN algorithm is used to solve
the problem to realize the reasonable allocation of computing
resources and complete effective offloading of tasks in IoV.
Simulation results show that the proposed offloading strategy
can achieve rapid convergence. In addition, when the number
of users increases, vehicle speeds increase and MEC comput-
ing power increases, the cost is the lowest compared to other
offloading solutions. At the same time, the proposed strategy
has the highest offloading rate. It can be seen that it has better
performance and can be well applied to IoV.

The scenario considered is a one-way straight road with no
intersection, but the actual road scene is very complicated.
The complex road scenes in reality still need further research.
Besides, IoV users move all the time, and the network topol-
ogy changes rapidly. Frequent changes in communication
user links may cause communication interruption. In the next
work, we can consider combining relay communication, and
the reliability of communication can be improved by selecting
a suitable relay.
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