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ABSTRACT Smoothness constrained inversion dominates the field of geoelectrical imaging. However,
the resulting smooth images are unrealistic. In the absence of a priori underground information, the actual
shape of the target geological structures are not well described. To address these limitations, we propose a
multiscale inversion scheme. The inversion uses the wavelet transform method to convert the model param-
eters into Wavelet parameters. The Wavelet parameters are used as target values for the inversion. On this
basis, different smoothness values were applied to different regions by controlling the feature parameter
weights. Finally, the resistivity model was developed from the Wavelet parameters using the inverse wavelet
transform. This study mainly considers the features of different depths and scales. By reducing the weight of
the deep Wavelet parameters in the model objective function, the role of the data fitting objective function is
enhanced, thereby improving the imaging of deep targets. Similarly, by reducing the weight of small-scale
Wavelet parameters in the model objective function, the accuracy of the small-scale Wavelet parameters is
improved. The small-scale Wavelet parameters correspond to the target boundary (fine or local) in the space
domain, and hence, the actual shape of the target geological structures is better described. Compared with
the traditional smoothness constrained inversion, the new method has a stronger boundary description effect
on the target body. Numerical simulations have verified that different weights can improve the inversion
performance. The feasibility of the algorithm was verified by using the sandbox test.

INDEX TERMS Electrical resistivity tomography, multiscale inversion, wavelet transform, weighted
constraint.

I. INTRODUCTION
For geological interpretation purposes, inverse problems have
been studied via linear and nonlinear methods. The linear
method based on Tikhonov regularization (Tikhonov and
Arsenin [1]) has been widely applied in the fields of landslide
monitoring, hydrogeophysics, and environmental engineer-
ing (Loke et al. [15], Loperte et al. [7], Wilkinson et al. [2],
Uhlemann et al. [3], and Liu et al. [4]). The inversion result
using the linear method sometimes falls into a local optimal
solution (nonuniqueness of the inverse problem). In contrast,
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nonlinear methods can perform global searches without rely-
ing on the initial model. The problems of slow convergence
and overfitting in traditional nonlinear methods are overcome
by deep learning methods (Liu et al. [5] and Li et al. [6]).
However, deep learning methods are rarely applied to field
data due to lack of data (paired geological models and survey
data).

In general, the inherent nonuniqueness of the resis-
tivity inverse problem can be alleviated by adding reg-
ularization constraints, including smoothness constraints
(Sasaki [8]), inequality constraints (Kim et al. [9]), struc-
tural constraints (Li et al. [10] and Bergmann et al. [11]),
level-set method (Li et al. [12]), and image-guided
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constraints (Zhou et al. [13]). Most constrained inversion
methods rely on priori information. However, smoothness
constrained inversion is one of the most popular meth-
ods that needs no priori information. This method pro-
vides a smooth image of the real geoelectric structures,
which sometimes seems geologically unrealistic (Portni-
aguine and Zhdanov [14]). The shape of the target is usually
not well described as the discontinuities in the real resistivity
distribution are ignored and the effects of other factors such
as potential-field and complex environmental noise are not
considered.

In response to these problems, multiscale inversion meth-
ods have been developed in recent years. In seismic and
electromagnetic techniques, a common method is to extract
the high- and low-frequency data using wavelet transform
and then perform an inversion on models of different scales
(Bunks et al. [16], Fichtner et al. [17], and Li et al. [18]). The
method of direct current (DC) resistivity tomography is gen-
erally formulated as an ill-posed inverse problem and aims to
reconstruct the accurate resistivity distribution underground.
The data are usually obtained by injecting low-frequency
current into the ground and collecting potential information.
The number of data points is usually smaller than the number
of the model results to be obtained; thus, the nonuniqueness
of the solution is inherent. However, the data of DC resistivity
tomography consist of electric potential or apparent resistiv-
ity. Thus, the wavelet transform cannot be used on DC resis-
tivity tomography data. Chiao andKuo [19] proposed amodel
parameterization method using the Haar wavelet transform.
Liu et al. [20] studied the multiscale inversion method using
the Daubechies wavelet in frequency domain airborne elec-
tromagnetics. They verified that low-order wavelets (such as
Haar wavelets) can enable the recovery of sharp disconti-
nuities. A multiscale resistivity inversion based on the con-
volutional wavelet transform was proposed and experiments
showed that the method can accurately locate and delineate
the boundaries of geological targets (Pang et al. [21]). In these
methods, inversion is transformed from the model domain
to the feature domain by wavelet transform. These methods
aim to produce an image with clear boundaries by applying
uneven smoothing constraints. Studies on the applications of
multiscale parameterization to resistivity inverse problems
are limited.

The Haar wavelet is the simplest orthonormal wavelet with
compact support. It can quickly extract features of different
scales in the model (low computing requirement) and it is
widely used in pattern recognition and image processing
(Stankovicá and Falkowski [22]). However, the multiscale
inversion of DC resistivity using the Haar wavelet may pro-
duce redundant structures, and the imaging effect in deep
areas is poor. In this study, we investigate the multiscale resis-
tivity inversion method where the inversion process is guided
by changing the weightage; i.e., smoothness is given different
weights at different depths and scales. This method allows
for sharp contrasts between different zones, and small fake
anomalous regions generated by strong oscillations of the

wavelet basis function are suppressed. The remainder of this
paper is organized as follows. Section II introduces the mul-
tiscale inversion method with the weight matrix. Section III
discusses the weighting effect through numerical simulation.
In Section IV, the performance of the new method is verified
using synthetic models.

II. INVERSION METHODOLOGY
A. HAAR WAVELET TRANSFORM
Wavelet transform can decompose signals into different
scales and preserve a sense of spatial location (Ridsdill-Smith
and Dentith [23]). This study uses the simplest Haar wavelet,
which is represented by H(·). The calculation process of the
resistivity model is shown in Fig. 1. First, the resistivity
parameter matrix is expanded to a one-dimensional (1-D)
vector. The detail coefficient is obtained by averaging the
differences in adjacent parameter values. Similarly, approx-
imate coefficients are obtained by averaging adjacent param-
eter values. This operation is then continuously applied to
the approximation coefficients until only one approximation
coefficient remains.

FIGURE 1. Haar wavelet transform process in resistivity model.

Haar wavelet transform is expressed as follows:

m̃ = H(m), (1)

where m represents the 1-D vector and m̃ represents all
the detail coefficients and the last approximation coefficient.
Note that the horizontal resolution of the inversion result is
usually higher than the resolution in the depth direction. Since
discontinuous smoothing constraints are imposed on high-
confidence horizontal directions, the resistivity parameter
expands to 1-D by row.

B. MULTISCALE INVERSION EQUATION
The DC resistivity multiscale inversion function was reported
with the following objective function (Pang et al. [21]):

8 = 8data + λ ‖(m̃+1m̃)‖ . (2)
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The L1 norm is used in the model term to obtain a sharp resis-
tivity distribution. We further consider the effect of smooth-
ness at different depths and scales. The objective function is
then expanded to the following:

8 = 8data + λ ‖WZWS(m̃+1m̃)‖ . (3)

whereWZ andWS are the weight matrices of depth and scale,
respectively. The values of the weight matrix elements are
proposed by Li and Oldenburg [24] in the following format:

WS = diag [wS ] , WZ = diag [wZ ] , (4)

wS = (S + S0)β1 , wZ = (Z0 − Z )β2 . (5)

where S and Z represent the scale and depth of the corre-
sponding parameter. S0, Z0, β1 and β2 are empirical parame-
ters. It should be noted that detail coefficients on a large scale
often correspond to model parameters at multiple depths.
The above formula of the depth weighting matrix only cor-
responds to small-scale detail coefficients. The weight values
corresponding to large-scale detail coefficients are all 1.0 to
ensure the integrity of the matrix.

The data fit term can be expressed as follows:

8data =

∥∥∥G(H−1 (m̃))+ J̃1m̃− d∥∥∥ . (6)

where G is the forward modelling response, calculated using
the finite element method. J̃ represents the sensitivity matrix:

J̃ = ∂d
/
∂m̃. (7)

This study uses the general form of the Lp norm
(Ekblom [25]), which is

ρ(x) = (x2 + ε2)p/2, (8)

where ε is a threshold value. In this work, ε = 0.1. After
minimizing the objective function (3) and adding a damping
term, the inversion equation is obtained.

(J̃
T
J̃1m̃+ µI + λWT

sW
T
dRWdW s)1m̃

= J̃
T
(d − G(m))− λWT

s W
T
dRWdW sm̃, (9)

where λ and µ are the regularization coefficients. In this
work, µ = 3 × 10−3 and λ = 5 × 10−6. The elements of
matrix R are

Rii = ((m̃i +1m̃i)+ ε2)−1/2. (10)

Using an accurate initial model makes multiscale inversion
more efficient. If a uniform resistivity model is used as the
initial model for multiscale inversion, the detail coefficients
of the first iteration are all 0; i.e., the model terms do not
affect the inversion. Therefore, we only use the traditional
smoothness constrained inversion in the first iteration.

III. NUMERICAL EXPERIMENTS
To validate our inversion algorithm, we used three geoelectric
models (Fig. 2, Fig. 4, and Fig. 6). The first model was to
illustrate the effectiveness of weighting the model terms. The
last two models were compared with the traditional smooth
least-squares constraint.

FIGURE 2. A geoelectric model containing two low-resistivity targets.

A. WEIGHTED EFFECT
Since the depth resolution of the surface data is poor, when
minimizing the model terms, the effect tends to concentrate
near the surface. Therefore, we used a simple weighting
matrix (Z0 = 20, β2 = 0.5) to improve deep imaging.
Moreover, the interest of Wavelet parameters at different

scales was different. Large-scale Wavelet parameters typi-
cally focus on the background, whereas small-scale Wavelet
parameters are more concerned with the internal smooth-
ness of each region and thus they display the boundaries
more clearly. However, the number of large-scale feature data
points is relatively small, and sometimes there is greater noise
in the background. Therefore, the weight of the large-scale
data in the equation needs to be increased. Our solution was
S0 = 2 and β1 = 0.8.
As shown in Fig. 2, a two-dimensional (2-D) finite element

geoelectric model (124 m × 32 m) was constructed using
a quadrilateral grid (2 m × 2 m). The background resis-
tivity was 100 �·m. The resistivity of the two rectangular
low-resistivity objects was 20 �·m, and their sizes were
6 m × 10 m and 8 m × 14 m, respectively. Their top buried
depths are 8m and 10m, respectively. Data were obtained
from 64 electrodes on the surface (electrode spacing was
2 m). The complete dataset contained 4925 independent data
points, including Schlumberger and Dipole–Dipole arrays.

The relative root mean square (RMS) data misfit error is
calculated as follows:

RMS =

√
‖G(m)− d‖2

/
N , (11)

where N denotes the number of data points.
The imaging results using the scale and depth weighted

constraints are shown in Fig. 3a. As a comparative test, Fig. 3b
is the result without weighting. Fig. 3 shows that inversion
results successfully characterize the shape of the rectangular
body. However, due to the comprehensive weighting of the
Wavelet parameters, we can better identify the lower bound-
ary of the deep objects in Fig. 3a. RMS values are relatively
small, indicating that the inversion process shows a good
convergence.

B. SIMPLE MODEL
To verify the imaging effect of the high resistivity target,
a simple model was designed. In this sample, we compared
the imaging results of the new and traditional smoothness
constrained methods.
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FIGURE 3. Inversion results of the geoelectric model in FIGURE 1.
on whether the model terms are weighted. (a) weighted, (b) unweighted.

FIGURE 4. A geoelectric model containing two high-resistivity targets.

As shown in Fig. 4, the resistivity of the two rectangular
high-resistivity objects was 500 �·m, and their sizes were
6 m × 6 m and 8 m × 6 m, respectively. Their top buried
depths are 10 m and 12 m, respectively. Other conditions for
modeling, data acquisition, and inversion parameters were
consistent with those described in section III A.

FIGURE 5. Inversion results of the geoelectric model in FIGURE 4 from
two different inversion methods. (a) New method, (b) smooth constraint.

Comparing Figs. 3 and 5, it can be seen that the imaging
effect of the high-resistivity target body is not as good as
that of the low-resistivity target body. Advantageously, both
imaging methods can accurately locate the high resistivity
target, and the RMS value is also less than 4%. There is a clear
transition area around the target boundary in the image based
on smoothness constraints (Fig. 5b). But the new method
performs better in recognizing the shape of the target’s bound-
ary than the traditional smoothness constrained method. The
imaging results using the new method were closer to the true
shape.

C. COMPLICATED MODEL
To verify the imaging effect of complex targets, two target
bodies with complex shapes were designed. The shapes of the
objects are shown in Fig. 6. Other conditions for modeling,
data acquisition, and inversion parameters were consistent
with those described in section III A.

FIGURE 6. A complex geoelectric model.

FIGURE 7. Inversion results of the geoelectric model in FIGURE 6 from
two different inversion methods. (a) New method, (b) smoothness
constraint.

Fig. 7 shows the imaging results. The center positions
of the two targets were identified accurately by using both
methods. The RMS difference was small, suggesting that
the new method achieves better inversion convergence. The
current density and electric field strength gradually decrease
with increasing depth, resulting in low sensitivity of potential
data to deep targets. As shown in Fig. 7b, imaging based on
traditional smoothness constrained method does not correctly
describe the boundary of the left target body. But the new
method can get the general outline features of the target body.

IV. PHYSICAL MODEL TEST
Physical model tests were designed to detect and image low
resistivity objects at a farm in Zhangqiu City, Shandong
Province, China. As shown in Fig. 8, the volume of the
physical model was set at 6.5 m × 1.0 m × 1.2 m (length
× width × depth). The model was supported by wooden
baffles on both sides and filled with standard sand grains
(sizes ranging from 0.5 mm to 2.0 mm). Sand grains with
lowwater content represent the background of high resistivity
in the model. After the sand was compacted, the background
resistivity ranges from 200 �·m to 300 �·m. All the targets
were made of a mixture of clay, salt, and water and act as
low resistivity bodies in the model. The resistivity value was
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FIGURE 8. Photo of physical model test area. (a) Test area, (b) test area
filled with sand. (c) The model area was filled with sand. The surface ERT
line combines 64 electrodes with 10 cm electrode spacing.
(d) Measurement of electrode spacing.

controlled within the range of 20 �·m to 50 �·m through
ratio adjustment. Two sets of experiments were carried out.
The respective site environments and spatial locations of the
targets are shown in Figs. 9 and 10. Other specific parameters
such as shape and size are shown in Table 1. Multiple targets
were placed in the model, and the surface ERT method was
used to collect the data. Finally, the new method and the
traditional smoothness constrained inversion method were
used for processing.

TABLE 1. Parameters of abnormal body subjected To test.

A. WEIGHTED EFFECT
A total of 64 electrodes (copper nails) were installed in the
centerline with a spacing of 0.1 m. Each on and off time
was 0.3 s and 0.5 s, respectively, and the data collection time
was 1 h. After reciprocal data noise evaluation, the dataset
contained 1985 independent data points. The temperature
on the day of the test was –3 ◦C to 5 ◦C. The basic grid
size in the finite element model was 0.1 m × 0.1 m. All
inversion parameters were consistent with those presented

FIGURE 9. The overall design of the physical model test 1. (a) Top view.
(b) Left view. (c) One target in shape of ’L’. (d) One target in shape of
rectangle. (e) Positions of the two buried targets.

FIGURE 10. The overall design of the physical model test 2. (a)Top view.
(b) Left view. (c) One target in shape of rectangle.

in section III. The inversion time cost of the two methods is
almost the same. The results of the two tests are shown in
Fig. 11 and Fig. 12, respectively.

B. RESULTS AND ANALYSIS
There are many artifacts in both inversion images owing to
the uneven spatial compaction, uneven sandmoisture content,
and the non-uniqueness of inversion. Besides, the imaging
areas of the two targets are larger than the actual ones due
to the inherent volume effect of the resistivity method and
because the imaging profile is affected by lateral anomalies
in three-dimensional (3-D) detection.
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FIGURE 11. Inverted images obtained in Test 1 by two different inversion
methods. (a) New method, (b) smoothness constraint with L2 norm.

FIGURE 12. Inverted images obtained in Test 2 by two different inversion
methods. (a) New method, (b) smoothness constraint with L2 norm.

We first analyzed the results of Test 1, as shown in Fig. 10.
For L-shaped objects, smoothness constraints produce dull
and blurred images. However, the new method has uneven
smoothness, and its imaging results are closer to reality than
the smoothness constrained method. For rectangular objects,
the imaging results are larger than the actual model, which
means that the new method cannot eliminate the volume
effect. Nevertheless, the distance between the position of the
two targets and the actual placements is less than 10 cm.
To analyze whether the physical model fits the data well,
we compared the inversion results of forward modeling (new
method) with the measured data. According to statistics, the
ratio of the inversion results to the measured data within 5%
is about 83.6%. It suggests that the new method can be
effectively used for the real-world data, but it needs further
research for improvement.

The results of Test 2 are shown in Fig. 11. The results of
the two methods can roughly get the spatial position of the
two target bodies. The left target is offset 10cm to the right.
The imaging result of the traditional method has a smooth
transition boundary, which is much larger than that of the

actual model. But the results of the new method can more
accurately describe the boundary. According to the statistical
results of the data, the proportion of the data volume in which
the error between the inversion results and the measured data
is within 5% is 85%.

V. DISCUSSION AND CONCLUSION
This paper develops a multiscale resistivity inversion method
with weighted constraints. The new method considers both
depth and scale effects. The weighting factor is determined
by hundreds of numerical simulations. Compared with the
other algorithm, the advantage of this method is that the
shape of the target object can be more clearly represented by
controlling the utility of smoothing constraints in different
scales. This advantage is especially obvious in the numeri-
cal simulation. In the physical model test, the performance
of multi-scale inversion is slightly better than that of the
smooth constraint. This may be caused by factors such as
the complexity of the environment and errors in the test
process. Therefore, it is necessary to continue to focus on the
processing of actual data. This will improve the practicality
and reliability of field detection.

The DC multiscale inversion method is specifically pre-
scribed for spatial model parameters with multiple scales.
Multigrid technology can be introduced in future research for
further improvements (Pessel and Gibert [26]). The inversion
process transitions from a coarse grid to a fine grid to achieve
true multiscale inversion. This may further improve the imag-
ing effect.

It is difficult to obtain a good boundary effect only by the
inversion of the surface potential data. Increasing the effective
information in the data may improve the imaging accuracy.
By using other observation methods (e.g., seismic monitoring
and radar observations) and techniques (e.g., drilling) can be
developed to analyze geological conditions comprehensively
based on engineering requirements. In short, a new priori
information is added to the objective function of DC mul-
tiscale inversion, or in other words, a joint inversion of the
multiscale inversion method and other geophysical methods
is realized. It is expected to solve the problem of engineering
detection efficiently.

It was the first time that the multiscale weighted constraint
method was used in resistivity inversion. This method can be
extended to generalized electrical methods such as induced
polarization and complex resistivity inversion. This is a new
research direction in electrical inversion, which is expected
to gain more influence in practical application. The goal
of our work is to improve the resolution and reliability of
electrical exploration. The subject of future research could be
involved in multigrid technology, the dynamic weighting of
specific regions, and joint inversion methods. Those methods
as mentioned above contain more prior information that can
further improve the imaging resolution.
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